UEFITool/common/ffsparser.cpp

4652 lines
201 KiB
C++
Raw Normal View History

/* ffsparser.cpp
Copyright (c) 2016, Nikolaj Schlej. All rights reserved.
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHWARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*/
#include "ffsparser.h"
#include <cmath>
#include <algorithm>
// Region info structure definition
struct REGION_INFO {
UINT32 offset;
UINT32 length;
UINT8 type;
QByteArray data;
friend bool operator< (const REGION_INFO & lhs, const REGION_INFO & rhs){ return lhs.offset < rhs.offset; }
};
// Firmware image parsing functions
STATUS FfsParser::parse(const QByteArray & buffer)
{
QModelIndex root;
STATUS result = performFirstPass(buffer, root);
addOffsetsRecursive(root);
if (result)
return result;
if (lastVtf.isValid())
result = performSecondPass(root);
else
msg(QObject::tr("parse: not a single Volume Top File is found, the image may be corrupted"));
return result;
}
STATUS FfsParser::performFirstPass(const QByteArray & buffer, QModelIndex & index)
{
// Reset capsule offset fixup value
capsuleOffsetFixup = 0;
// Check buffer size to be more than or equal to size of EFI_CAPSULE_HEADER
if ((UINT32)buffer.size() <= sizeof(EFI_CAPSULE_HEADER)) {
msg(QObject::tr("performFirstPass: image file is smaller than minimum size of %1h (%2) bytes").hexarg(sizeof(EFI_CAPSULE_HEADER)).arg(sizeof(EFI_CAPSULE_HEADER)));
return ERR_INVALID_PARAMETER;
}
UINT32 capsuleHeaderSize = 0;
// Check buffer for being normal EFI capsule header
if (buffer.startsWith(EFI_CAPSULE_GUID)
|| buffer.startsWith(INTEL_CAPSULE_GUID)
|| buffer.startsWith(LENOVO_CAPSULE_GUID)
|| buffer.startsWith(LENOVO2_CAPSULE_GUID)) {
// Get info
const EFI_CAPSULE_HEADER* capsuleHeader = (const EFI_CAPSULE_HEADER*)buffer.constData();
// Check sanity of HeaderSize and CapsuleImageSize values
if (capsuleHeader->HeaderSize == 0 || capsuleHeader->HeaderSize > (UINT32)buffer.size() || capsuleHeader->HeaderSize > capsuleHeader->CapsuleImageSize) {
msg(QObject::tr("performFirstPass: UEFI capsule header size of %1h (%2) bytes is invalid")
.hexarg(capsuleHeader->HeaderSize).arg(capsuleHeader->HeaderSize));
return ERR_INVALID_CAPSULE;
}
if (capsuleHeader->CapsuleImageSize == 0 || capsuleHeader->CapsuleImageSize > (UINT32)buffer.size()) {
msg(QObject::tr("performFirstPass: UEFI capsule image size of %1h (%2) bytes is invalid")
.hexarg(capsuleHeader->CapsuleImageSize).arg(capsuleHeader->CapsuleImageSize));
return ERR_INVALID_CAPSULE;
}
capsuleHeaderSize = capsuleHeader->HeaderSize;
QByteArray header = buffer.left(capsuleHeaderSize);
QByteArray body = buffer.mid(capsuleHeaderSize);
QString name = QObject::tr("UEFI capsule");
QString info = QObject::tr("Capsule GUID: %1\nFull size: %2h (%3)\nHeader size: %4h (%5)\nImage size: %6h (%7)\nFlags: %8h")
.arg(guidToQString(capsuleHeader->CapsuleGuid))
.hexarg(buffer.size()).arg(buffer.size())
.hexarg(capsuleHeaderSize).arg(capsuleHeaderSize)
.hexarg(capsuleHeader->CapsuleImageSize - capsuleHeaderSize).arg(capsuleHeader->CapsuleImageSize - capsuleHeaderSize)
.hexarg2(capsuleHeader->Flags, 8);
// Set capsule offset fixup for correct volume allignment warnings
capsuleOffsetFixup = capsuleHeaderSize;
// Add tree item
index = model->addItem(Types::Capsule, Subtypes::UefiCapsule, name, QString(), info, header, body, true);
}
// Check buffer for being Toshiba capsule header
else if (buffer.startsWith(TOSHIBA_CAPSULE_GUID)) {
// Get info
const TOSHIBA_CAPSULE_HEADER* capsuleHeader = (const TOSHIBA_CAPSULE_HEADER*)buffer.constData();
// Check sanity of HeaderSize and FullSize values
if (capsuleHeader->HeaderSize == 0 || capsuleHeader->HeaderSize > (UINT32)buffer.size() || capsuleHeader->HeaderSize > capsuleHeader->FullSize) {
msg(QObject::tr("performFirstPass: Toshiba capsule header size of %1h (%2) bytes is invalid")
.hexarg(capsuleHeader->HeaderSize).arg(capsuleHeader->HeaderSize));
return ERR_INVALID_CAPSULE;
}
if (capsuleHeader->FullSize == 0 || capsuleHeader->FullSize > (UINT32)buffer.size()) {
msg(QObject::tr("performFirstPass: Toshiba capsule full size of %1h (%2) bytes is invalid")
.hexarg(capsuleHeader->FullSize).arg(capsuleHeader->FullSize));
return ERR_INVALID_CAPSULE;
}
capsuleHeaderSize = capsuleHeader->HeaderSize;
QByteArray header = buffer.left(capsuleHeaderSize);
QByteArray body = buffer.right(buffer.size() - capsuleHeaderSize);
QString name = QObject::tr("Toshiba capsule");
QString info = QObject::tr("Capsule GUID: %1\nFull size: %2h (%3)\nHeader size: %4h (%5)\nImage size: %6h (%7)\nFlags: %8h")
.arg(guidToQString(capsuleHeader->CapsuleGuid))
.hexarg(buffer.size()).arg(buffer.size())
.hexarg(capsuleHeaderSize).arg(capsuleHeaderSize)
.hexarg(capsuleHeader->FullSize - capsuleHeaderSize).arg(capsuleHeader->FullSize - capsuleHeaderSize)
.hexarg2(capsuleHeader->Flags, 8);
// Set capsule offset fixup for correct volume allignment warnings
capsuleOffsetFixup = capsuleHeaderSize;
// Add tree item
index = model->addItem(Types::Capsule, Subtypes::ToshibaCapsule, name, QString(), info, header, body, true);
}
// Check buffer for being extended Aptio capsule header
else if (buffer.startsWith(APTIO_SIGNED_CAPSULE_GUID) || buffer.startsWith(APTIO_UNSIGNED_CAPSULE_GUID)) {
bool signedCapsule = buffer.startsWith(APTIO_SIGNED_CAPSULE_GUID);
if ((UINT32)buffer.size() <= sizeof(APTIO_CAPSULE_HEADER)) {
msg(QObject::tr("performFirstPass: AMI capsule image file is smaller than minimum size of %1h (%2) bytes").hexarg(sizeof(APTIO_CAPSULE_HEADER)).arg(sizeof(APTIO_CAPSULE_HEADER)));
return ERR_INVALID_PARAMETER;
}
// Get info
const APTIO_CAPSULE_HEADER* capsuleHeader = (const APTIO_CAPSULE_HEADER*)buffer.constData();
// Check sanity of RomImageOffset and CapsuleImageSize values
if (capsuleHeader->RomImageOffset == 0 || capsuleHeader->RomImageOffset > (UINT32)buffer.size() || capsuleHeader->RomImageOffset > capsuleHeader->CapsuleHeader.CapsuleImageSize) {
msg(QObject::tr("performFirstPass: AMI capsule image offset of %1h (%2) bytes is invalid").hexarg(capsuleHeader->RomImageOffset).arg(capsuleHeader->RomImageOffset));
return ERR_INVALID_CAPSULE;
}
if (capsuleHeader->CapsuleHeader.CapsuleImageSize == 0 || capsuleHeader->CapsuleHeader.CapsuleImageSize > (UINT32)buffer.size()) {
msg(QObject::tr("performFirstPass: AMI capsule image size of %1h (%2) bytes is invalid").hexarg(capsuleHeader->CapsuleHeader.CapsuleImageSize).arg(capsuleHeader->CapsuleHeader.CapsuleImageSize));
return ERR_INVALID_CAPSULE;
}
capsuleHeaderSize = capsuleHeader->RomImageOffset;
QByteArray header = buffer.left(capsuleHeaderSize);
QByteArray body = buffer.mid(capsuleHeaderSize);
QString name = QObject::tr("AMI Aptio capsule");
QString info = QObject::tr("Capsule GUID: %1\nFull size: %2h (%3)\nHeader size: %4h (%5)\nImage size: %6h (%7)\nFlags: %8h")
.arg(guidToQString(capsuleHeader->CapsuleHeader.CapsuleGuid))
.hexarg(buffer.size()).arg(buffer.size())
.hexarg(capsuleHeaderSize).arg(capsuleHeaderSize)
.hexarg(capsuleHeader->CapsuleHeader.CapsuleImageSize - capsuleHeaderSize).arg(capsuleHeader->CapsuleHeader.CapsuleImageSize - capsuleHeaderSize)
.hexarg2(capsuleHeader->CapsuleHeader.Flags, 8);
// Set capsule offset fixup for correct volume allignment warnings
capsuleOffsetFixup = capsuleHeaderSize;
// Add tree item
index = model->addItem(Types::Capsule, signedCapsule ? Subtypes::AptioSignedCapsule : Subtypes::AptioUnsignedCapsule, name, QString(), info, header, body, true);
// Show message about possible Aptio signature break
if (signedCapsule) {
msg(QObject::tr("performFirstPass: Aptio capsule signature may become invalid after image modifications"), index);
}
}
// Skip capsule header to have flash chip image
QByteArray flashImage = buffer.mid(capsuleHeaderSize);
// Check for Intel flash descriptor presence
const FLASH_DESCRIPTOR_HEADER* descriptorHeader = (const FLASH_DESCRIPTOR_HEADER*)flashImage.constData();
// Check descriptor signature
STATUS result;
if (descriptorHeader->Signature == FLASH_DESCRIPTOR_SIGNATURE) {
// Parse as Intel image
QModelIndex imageIndex;
result = parseIntelImage(flashImage, capsuleHeaderSize, index, imageIndex);
if (result != ERR_INVALID_FLASH_DESCRIPTOR) {
if (!index.isValid())
index = imageIndex;
return result;
}
}
// Get info
QString name = QObject::tr("UEFI image");
QString info = QObject::tr("Full size: %1h (%2)").hexarg(flashImage.size()).arg(flashImage.size());
// Construct parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
pdata.offset = capsuleHeaderSize;
// Add tree item
QModelIndex biosIndex = model->addItem(Types::Image, Subtypes::UefiImage, name, QString(), info, QByteArray(), flashImage, TRUE, parsingDataToQByteArray(pdata), index);
// Parse the image
result = parseRawArea(biosIndex);
if (!index.isValid())
index = biosIndex;
return result;
}
STATUS FfsParser::parseIntelImage(const QByteArray & intelImage, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
{
// Sanity check
if (intelImage.isEmpty())
return EFI_INVALID_PARAMETER;
// Get parent's parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Store the beginning of descriptor as descriptor base address
const UINT8* descriptor = (const UINT8*)intelImage.constData();
// Check for buffer size to be greater or equal to descriptor region size
if (intelImage.size() < FLASH_DESCRIPTOR_SIZE) {
msg(QObject::tr("parseIntelImage: input file is smaller than minimum descriptor size of %1h (%2) bytes").hexarg(FLASH_DESCRIPTOR_SIZE).arg(FLASH_DESCRIPTOR_SIZE));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
// Parse descriptor map
const FLASH_DESCRIPTOR_MAP* descriptorMap = (const FLASH_DESCRIPTOR_MAP*)(descriptor + sizeof(FLASH_DESCRIPTOR_HEADER));
const FLASH_DESCRIPTOR_UPPER_MAP* upperMap = (const FLASH_DESCRIPTOR_UPPER_MAP*)(descriptor + FLASH_DESCRIPTOR_UPPER_MAP_BASE);
// Check sanity of base values
if (descriptorMap->MasterBase > FLASH_DESCRIPTOR_MAX_BASE
|| descriptorMap->MasterBase == descriptorMap->RegionBase
|| descriptorMap->MasterBase == descriptorMap->ComponentBase) {
msg(QObject::tr("parseIntelImage: invalid descriptor master base %1h").hexarg2(descriptorMap->MasterBase, 2));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
if (descriptorMap->RegionBase > FLASH_DESCRIPTOR_MAX_BASE
|| descriptorMap->RegionBase == descriptorMap->ComponentBase) {
msg(QObject::tr("parseIntelImage: invalid descriptor region base %1h").hexarg2(descriptorMap->RegionBase, 2));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
if (descriptorMap->ComponentBase > FLASH_DESCRIPTOR_MAX_BASE) {
msg(QObject::tr("parseIntelImage: invalid descriptor component base %1h").hexarg2(descriptorMap->ComponentBase, 2));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
const FLASH_DESCRIPTOR_REGION_SECTION* regionSection = (const FLASH_DESCRIPTOR_REGION_SECTION*)calculateAddress8(descriptor, descriptorMap->RegionBase);
const FLASH_DESCRIPTOR_COMPONENT_SECTION* componentSection = (const FLASH_DESCRIPTOR_COMPONENT_SECTION*)calculateAddress8(descriptor, descriptorMap->ComponentBase);
// Check descriptor version by getting hardcoded value of FlashParameters.ReadClockFrequency
UINT8 descriptorVersion = 0;
if (componentSection->FlashParameters.ReadClockFrequency == FLASH_FREQUENCY_20MHZ) // Old descriptor
descriptorVersion = 1;
else if (componentSection->FlashParameters.ReadClockFrequency == FLASH_FREQUENCY_17MHZ) // Skylake+ descriptor
descriptorVersion = 2;
else {
msg(QObject::tr("parseIntelImage: unknown descriptor version with ReadClockFrequency %1h").hexarg(componentSection->FlashParameters.ReadClockFrequency));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
// Regions
std::vector<REGION_INFO> regions;
// ME region
REGION_INFO me;
me.type = Subtypes::MeRegion;
me.offset = 0;
me.length = 0;
if (regionSection->MeLimit) {
me.offset = calculateRegionOffset(regionSection->MeBase);
me.length = calculateRegionSize(regionSection->MeBase, regionSection->MeLimit);
me.data = intelImage.mid(me.offset, me.length);
regions.push_back(me);
}
// BIOS region
REGION_INFO bios;
bios.type = Subtypes::BiosRegion;
bios.offset = 0;
bios.length = 0;
if (regionSection->BiosLimit) {
bios.offset = calculateRegionOffset(regionSection->BiosBase);
bios.length = calculateRegionSize(regionSection->BiosBase, regionSection->BiosLimit);
// Check for Gigabyte specific descriptor map
if (bios.length == (UINT32)intelImage.size()) {
if (!me.offset) {
msg(QObject::tr("parseIntelImage: can't determine BIOS region start from Gigabyte-specific descriptor"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
// Use ME region end as BIOS region offset
bios.offset = me.offset + me.length;
bios.length = (UINT32)intelImage.size() - bios.offset;
bios.data = intelImage.mid(bios.offset, bios.length);
}
// Normal descriptor map
else {
bios.data = intelImage.mid(bios.offset, bios.length);
}
regions.push_back(bios);
}
else {
msg(QObject::tr("parseIntelImage: descriptor parsing failed, BIOS region not found in descriptor"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
// GbE region
REGION_INFO gbe;
gbe.type = Subtypes::GbeRegion;
gbe.offset = 0;
gbe.length = 0;
if (regionSection->GbeLimit) {
gbe.offset = calculateRegionOffset(regionSection->GbeBase);
gbe.length = calculateRegionSize(regionSection->GbeBase, regionSection->GbeLimit);
gbe.data = intelImage.mid(gbe.offset, gbe.length);
regions.push_back(gbe);
}
// PDR region
REGION_INFO pdr;
pdr.type = Subtypes::PdrRegion;
pdr.offset = 0;
pdr.length = 0;
if (regionSection->PdrLimit) {
pdr.offset = calculateRegionOffset(regionSection->PdrBase);
pdr.length = calculateRegionSize(regionSection->PdrBase, regionSection->PdrLimit);
pdr.data = intelImage.mid(pdr.offset, pdr.length);
regions.push_back(pdr);
}
// Reserved1 region
REGION_INFO reserved1;
reserved1.type = Subtypes::Reserved1Region;
reserved1.offset = 0;
reserved1.length = 0;
if (regionSection->Reserved1Limit && regionSection->Reserved1Base != 0xFFFF && regionSection->Reserved1Limit != 0xFFFF) {
reserved1.offset = calculateRegionOffset(regionSection->Reserved1Base);
reserved1.length = calculateRegionSize(regionSection->Reserved1Base, regionSection->Reserved1Limit);
reserved1.data = intelImage.mid(reserved1.offset, reserved1.length);
regions.push_back(reserved1);
}
// Reserved2 region
REGION_INFO reserved2;
reserved2.type = Subtypes::Reserved2Region;
reserved2.offset = 0;
reserved2.length = 0;
if (regionSection->Reserved2Limit && regionSection->Reserved2Base != 0xFFFF && regionSection->Reserved2Limit != 0xFFFF) {
reserved2.offset = calculateRegionOffset(regionSection->Reserved2Base);
reserved2.length = calculateRegionSize(regionSection->Reserved2Base, regionSection->Reserved2Limit);
reserved2.data = intelImage.mid(reserved2.offset, reserved2.length);
regions.push_back(reserved2);
}
// Reserved3 region
REGION_INFO reserved3;
reserved3.type = Subtypes::Reserved3Region;
reserved3.offset = 0;
reserved3.length = 0;
// EC region
REGION_INFO ec;
ec.type = Subtypes::EcRegion;
ec.offset = 0;
ec.length = 0;
// Reserved4 region
REGION_INFO reserved4;
reserved3.type = Subtypes::Reserved4Region;
reserved4.offset = 0;
reserved4.length = 0;
// Check for EC and reserved region 4 only for v2 descriptor
if (descriptorVersion == 2) {
if (regionSection->Reserved3Limit) {
reserved3.offset = calculateRegionOffset(regionSection->Reserved3Base);
reserved3.length = calculateRegionSize(regionSection->Reserved3Base, regionSection->Reserved3Limit);
reserved3.data = intelImage.mid(reserved3.offset, reserved3.length);
regions.push_back(reserved3);
}
if (regionSection->EcLimit) {
ec.offset = calculateRegionOffset(regionSection->EcBase);
ec.length = calculateRegionSize(regionSection->EcBase, regionSection->EcLimit);
ec.data = intelImage.mid(ec.offset, ec.length);
regions.push_back(ec);
}
if (regionSection->Reserved4Limit) {
reserved4.offset = calculateRegionOffset(regionSection->Reserved4Base);
reserved4.length = calculateRegionSize(regionSection->Reserved4Base, regionSection->Reserved4Limit);
reserved4.data = intelImage.mid(reserved4.offset, reserved4.length);
regions.push_back(reserved4);
}
}
// Sort regions in ascending order
std::sort(regions.begin(), regions.end());
// Check for intersections and paddings between regions
REGION_INFO region;
// Check intersection with the descriptor
if (regions.front().offset < FLASH_DESCRIPTOR_SIZE) {
msg(QObject::tr("parseIntelImage: %1 region has intersection with flash descriptor").arg(itemSubtypeToQString(Types::Region, regions.front().type)), index);
return ERR_INVALID_FLASH_DESCRIPTOR;
}
// Check for padding between descriptor and the first region
else if (regions.front().offset > FLASH_DESCRIPTOR_SIZE) {
region.offset = FLASH_DESCRIPTOR_SIZE;
region.length = regions.front().offset - FLASH_DESCRIPTOR_SIZE;
region.data = intelImage.mid(region.offset, region.length);
region.type = getPaddingType(region.data);
regions.insert(regions.begin(), region);
}
// Check for intersections/paddings between regions
for (size_t i = 1; i < regions.size(); i++) {
UINT32 previousRegionEnd = regions[i-1].offset + regions[i-1].length;
// Check that current region is fully present in the image
if (regions[i].offset + regions[i].length > (UINT32)intelImage.size()) {
msg(QObject::tr("parseIntelImage: %1 region is located outside of opened image, if your system uses dual-chip storage, please append another part to the opened image")
.arg(itemSubtypeToQString(Types::Region, regions[i].type)), index);
return ERR_TRUNCATED_IMAGE;
}
// Check for intersection with previous region
if (regions[i].offset < previousRegionEnd) {
msg(QObject::tr("parseIntelImage: %1 region has intersection with %2 region")
.arg(itemSubtypeToQString(Types::Region, regions[i].type))
.arg(itemSubtypeToQString(Types::Region, regions[i-1].type)), index);
return ERR_INVALID_FLASH_DESCRIPTOR;
}
// Check for padding between current and previous regions
else if (regions[i].offset > previousRegionEnd) {
region.offset = previousRegionEnd;
region.length = regions[i].offset - previousRegionEnd;
region.data = intelImage.mid(region.offset, region.length);
region.type = getPaddingType(region.data);
std::vector<REGION_INFO>::iterator iter = regions.begin();
std::advance(iter, i - 1);
regions.insert(iter, region);
}
}
// Check for padding after the last region
if (regions.back().offset + regions.back().length < (UINT32)intelImage.size()) {
region.offset = regions.back().offset + regions.back().length;
region.length = intelImage.size() - region.offset;
region.data = intelImage.mid(region.offset, region.length);
region.type = getPaddingType(region.data);
regions.push_back(region);
}
// Region map is consistent
// Intel image
QString name = QObject::tr("Intel image");
QString info = QObject::tr("Full size: %1h (%2)\nFlash chips: %3\nRegions: %4\nMasters: %5\nPCH straps: %6\nPROC straps: %7")
.hexarg(intelImage.size()).arg(intelImage.size())
.arg(descriptorMap->NumberOfFlashChips + 1) //
.arg(descriptorMap->NumberOfRegions + 1) // Zero-based numbers in storage
.arg(descriptorMap->NumberOfMasters + 1) //
.arg(descriptorMap->NumberOfPchStraps)
.arg(descriptorMap->NumberOfProcStraps);
// Construct parsing data
pdata.offset = parentOffset;
// Add Intel image tree item
index = model->addItem(Types::Image, Subtypes::IntelImage, name, QString(), info, QByteArray(), intelImage, TRUE, parsingDataToQByteArray(pdata), parent);
// Descriptor
// Get descriptor info
QByteArray body = intelImage.left(FLASH_DESCRIPTOR_SIZE);
name = QObject::tr("Descriptor region");
info = QObject::tr("Full size: %1h (%2)").hexarg(FLASH_DESCRIPTOR_SIZE).arg(FLASH_DESCRIPTOR_SIZE);
// Add offsets of actual regions
for (size_t i = 0; i < regions.size(); i++) {
if (regions[i].type != Subtypes::ZeroPadding && regions[i].type != Subtypes::OnePadding && regions[i].type != Subtypes::DataPadding)
info += QObject::tr("\n%1 region offset: %2h").arg(itemSubtypeToQString(Types::Region, regions[i].type)).hexarg(regions[i].offset + parentOffset);
}
// Region access settings
if (descriptorVersion == 1) {
const FLASH_DESCRIPTOR_MASTER_SECTION* masterSection = (const FLASH_DESCRIPTOR_MASTER_SECTION*)calculateAddress8(descriptor, descriptorMap->MasterBase);
info += QObject::tr("\nRegion access settings:");
info += QObject::tr("\nBIOS: %1h %2h ME: %3h %4h\nGbE: %5h %6h")
.hexarg2(masterSection->BiosRead, 2)
.hexarg2(masterSection->BiosWrite, 2)
.hexarg2(masterSection->MeRead, 2)
.hexarg2(masterSection->MeWrite, 2)
.hexarg2(masterSection->GbeRead, 2)
.hexarg2(masterSection->GbeWrite, 2);
// BIOS access table
info += QObject::tr("\nBIOS access table:");
info += QObject::tr("\n Read Write");
info += QObject::tr("\nDesc %1 %2")
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_DESC ? "Yes " : "No ")
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_DESC ? "Yes " : "No ");
info += QObject::tr("\nBIOS Yes Yes");
info += QObject::tr("\nME %1 %2")
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_ME ? "Yes " : "No ")
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_ME ? "Yes " : "No ");
info += QObject::tr("\nGbE %1 %2")
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_GBE ? "Yes " : "No ")
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_GBE ? "Yes " : "No ");
info += QObject::tr("\nPDR %1 %2")
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_PDR ? "Yes " : "No ")
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_PDR ? "Yes " : "No ");
}
else if (descriptorVersion == 2) {
const FLASH_DESCRIPTOR_MASTER_SECTION_V2* masterSection = (const FLASH_DESCRIPTOR_MASTER_SECTION_V2*)calculateAddress8(descriptor, descriptorMap->MasterBase);
info += QObject::tr("\nRegion access settings:");
info += QObject::tr("\nBIOS: %1h %2h ME: %3h %4h\nGbE: %5h %6h EC: %7h %8h")
.hexarg2(masterSection->BiosRead, 3)
.hexarg2(masterSection->BiosWrite, 3)
.hexarg2(masterSection->MeRead, 3)
.hexarg2(masterSection->MeWrite, 3)
.hexarg2(masterSection->GbeRead, 3)
.hexarg2(masterSection->GbeWrite, 3)
.hexarg2(masterSection->EcRead, 3)
.hexarg2(masterSection->EcWrite, 3);
// BIOS access table
info += QObject::tr("\nBIOS access table:");
info += QObject::tr("\n Read Write");
info += QObject::tr("\nDesc %1 %2")
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_DESC ? "Yes " : "No ")
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_DESC ? "Yes " : "No ");
info += QObject::tr("\nBIOS Yes Yes");
info += QObject::tr("\nME %1 %2")
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_ME ? "Yes " : "No ")
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_ME ? "Yes " : "No ");
info += QObject::tr("\nGbE %1 %2")
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_GBE ? "Yes " : "No ")
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_GBE ? "Yes " : "No ");
info += QObject::tr("\nPDR %1 %2")
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_PDR ? "Yes " : "No ")
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_PDR ? "Yes " : "No ");
info += QObject::tr("\nEC %1 %2")
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_EC ? "Yes " : "No ")
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_EC ? "Yes " : "No ");
}
// VSCC table
const VSCC_TABLE_ENTRY* vsccTableEntry = (const VSCC_TABLE_ENTRY*)(descriptor + ((UINT16)upperMap->VsccTableBase << 4));
info += QObject::tr("\nFlash chips in VSCC table:");
UINT8 vsscTableSize = upperMap->VsccTableSize * sizeof(UINT32) / sizeof(VSCC_TABLE_ENTRY);
for (int i = 0; i < vsscTableSize; i++) {
info += QObject::tr("\n%1%2%3h")
.hexarg2(vsccTableEntry->VendorId, 2)
.hexarg2(vsccTableEntry->DeviceId0, 2)
.hexarg2(vsccTableEntry->DeviceId1, 2);
vsccTableEntry++;
}
// Add descriptor tree item
QModelIndex regionIndex = model->addItem(Types::Region, Subtypes::DescriptorRegion, name, QString(), info, QByteArray(), body, TRUE, parsingDataToQByteArray(pdata), index);
// Parse regions
UINT8 result = ERR_SUCCESS;
UINT8 parseResult = ERR_SUCCESS;
for (size_t i = 0; i < regions.size(); i++) {
region = regions[i];
switch (region.type) {
case Subtypes::BiosRegion:
result = parseBiosRegion(region.data, region.offset, index, regionIndex);
break;
case Subtypes::MeRegion:
result = parseMeRegion(region.data, region.offset, index, regionIndex);
break;
case Subtypes::GbeRegion:
result = parseGbeRegion(region.data, region.offset, index, regionIndex);
break;
case Subtypes::PdrRegion:
result = parsePdrRegion(region.data, region.offset, index, regionIndex);
break;
case Subtypes::Reserved1Region:
case Subtypes::Reserved2Region:
case Subtypes::Reserved3Region:
case Subtypes::EcRegion:
case Subtypes::Reserved4Region:
result = parseGeneralRegion(region.type, region.data, region.offset, index, regionIndex);
break;
case Subtypes::ZeroPadding:
case Subtypes::OnePadding:
case Subtypes::DataPadding: {
// Add padding between regions
QByteArray padding = intelImage.mid(region.offset, region.length);
// Get parent's parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
// Get info
name = QObject::tr("Padding");
info = QObject::tr("Full size: %1h (%2)")
.hexarg(padding.size()).arg(padding.size());
// Construct parsing data
pdata.offset = parentOffset + region.offset;
// Add tree item
regionIndex = model->addItem(Types::Padding, getPaddingType(padding), name, QString(), info, QByteArray(), padding, TRUE, parsingDataToQByteArray(pdata), index);
result = ERR_SUCCESS;
} break;
default:
msg(QObject::tr("parseIntelImage: region of unknown type found"), index);
result = ERR_INVALID_FLASH_DESCRIPTOR;
}
// Store the first failed result as a final result
if (!parseResult && result)
parseResult = result;
}
return parseResult;
}
STATUS FfsParser::parseGbeRegion(const QByteArray & gbe, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
{
// Check sanity
if (gbe.isEmpty())
return ERR_EMPTY_REGION;
if ((UINT32)gbe.size() < GBE_VERSION_OFFSET + sizeof(GBE_VERSION))
return ERR_INVALID_REGION;
// Get parent's parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Get info
QString name = QObject::tr("GbE region");
const GBE_MAC_ADDRESS* mac = (const GBE_MAC_ADDRESS*)gbe.constData();
const GBE_VERSION* version = (const GBE_VERSION*)(gbe.constData() + GBE_VERSION_OFFSET);
QString info = QObject::tr("Full size: %1h (%2)\nMAC: %3:%4:%5:%6:%7:%8\nVersion: %9.%10")
.hexarg(gbe.size()).arg(gbe.size())
.hexarg2(mac->vendor[0], 2)
.hexarg2(mac->vendor[1], 2)
.hexarg2(mac->vendor[2], 2)
.hexarg2(mac->device[0], 2)
.hexarg2(mac->device[1], 2)
.hexarg2(mac->device[2], 2)
.arg(version->major)
.arg(version->minor);
// Construct parsing data
pdata.offset += parentOffset;
// Add tree item
index = model->addItem(Types::Region, Subtypes::GbeRegion, name, QString(), info, QByteArray(), gbe, TRUE, parsingDataToQByteArray(pdata), parent);
return ERR_SUCCESS;
}
STATUS FfsParser::parseMeRegion(const QByteArray & me, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
{
// Check sanity
if (me.isEmpty())
return ERR_EMPTY_REGION;
// Get parent's parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Get info
QString name = QObject::tr("ME region");
QString info = QObject::tr("Full size: %1h (%2)").
hexarg(me.size()).arg(me.size());
// Parse region
bool versionFound = true;
bool emptyRegion = false;
// Check for empty region
if (me.count() == me.count('\xFF') || me.count() == me.count('\x00')) {
// Further parsing not needed
emptyRegion = true;
info += QObject::tr("\nState: empty");
}
else {
// Search for new signature
INT32 versionOffset = me.indexOf(ME_VERSION_SIGNATURE2);
if (versionOffset < 0){ // New signature not found
// Search for old signature
versionOffset = me.indexOf(ME_VERSION_SIGNATURE);
if (versionOffset < 0){
info += QObject::tr("\nVersion: unknown");
versionFound = false;
}
}
// Check sanity
if ((UINT32)me.size() < (UINT32)versionOffset + sizeof(ME_VERSION))
return ERR_INVALID_REGION;
// Add version information
if (versionFound) {
const ME_VERSION* version = (const ME_VERSION*)(me.constData() + versionOffset);
info += QObject::tr("\nVersion: %1.%2.%3.%4")
.arg(version->major)
.arg(version->minor)
.arg(version->bugfix)
.arg(version->build);
}
}
// Construct parsing data
pdata.offset += parentOffset;
// Add tree item
index = model->addItem(Types::Region, Subtypes::MeRegion, name, QString(), info, QByteArray(), me, TRUE, parsingDataToQByteArray(pdata), parent);
// Show messages
if (emptyRegion) {
msg(QObject::tr("parseMeRegion: ME region is empty"), index);
}
else if (!versionFound) {
msg(QObject::tr("parseMeRegion: ME version is unknown, it can be damaged"), index);
}
return ERR_SUCCESS;
}
STATUS FfsParser::parsePdrRegion(const QByteArray & pdr, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
{
// Check sanity
if (pdr.isEmpty())
return ERR_EMPTY_REGION;
// Get parent's parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Get info
QString name = QObject::tr("PDR region");
QString info = QObject::tr("Full size: %1h (%2)").
hexarg(pdr.size()).arg(pdr.size());
// Construct parsing data
pdata.offset += parentOffset;
// Add tree item
index = model->addItem(Types::Region, Subtypes::PdrRegion, name, QString(), info, QByteArray(), pdr, TRUE, parsingDataToQByteArray(pdata), parent);
// Parse PDR region as BIOS space
UINT8 result = parseRawArea(index);
if (result && result != ERR_VOLUMES_NOT_FOUND && result != ERR_INVALID_VOLUME)
return result;
return ERR_SUCCESS;
}
STATUS FfsParser::parseGeneralRegion(const UINT8 subtype, const QByteArray & region, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
{
// Check sanity
if (region.isEmpty())
return ERR_EMPTY_REGION;
// Get parent's parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Get info
QString name = QObject::tr("%1 region").arg(itemSubtypeToQString(Types::Region, subtype));
QString info = QObject::tr("Full size: %1h (%2)").
hexarg(region.size()).arg(region.size());
// Construct parsing data
pdata.offset += parentOffset;
// Add tree item
index = model->addItem(Types::Region, subtype, name, QString(), info, QByteArray(), region, TRUE, parsingDataToQByteArray(pdata), parent);
return ERR_SUCCESS;
}
STATUS FfsParser::parseBiosRegion(const QByteArray & bios, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
{
// Sanity check
if (bios.isEmpty())
return ERR_EMPTY_REGION;
// Get parent's parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Get info
QString name = QObject::tr("BIOS region");
QString info = QObject::tr("Full size: %1h (%2)").
hexarg(bios.size()).arg(bios.size());
// Construct parsing data
pdata.offset += parentOffset;
// Add tree item
index = model->addItem(Types::Region, Subtypes::BiosRegion, name, QString(), info, QByteArray(), bios, TRUE, parsingDataToQByteArray(pdata), parent);
return parseRawArea(index);
}
UINT8 FfsParser::getPaddingType(const QByteArray & padding)
{
if (padding.count('\x00') == padding.count())
return Subtypes::ZeroPadding;
if (padding.count('\xFF') == padding.count())
return Subtypes::OnePadding;
return Subtypes::DataPadding;
}
STATUS FfsParser::parseRawArea(const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Get parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
UINT32 headerSize = model->header(index).size();
UINT32 offset = pdata.offset + headerSize;
// Get item data
QByteArray data = model->body(index);
// Search for first volume
STATUS result;
UINT32 prevVolumeOffset;
result = findNextVolume(index, data, offset, 0, prevVolumeOffset);
if (result)
return result;
// First volume is not at the beginning of RAW area
QString name;
QString info;
if (prevVolumeOffset > 0) {
// Get info
QByteArray padding = data.left(prevVolumeOffset);
name = QObject::tr("Padding");
info = QObject::tr("Full size: %1h (%2)")
.hexarg(padding.size()).arg(padding.size());
// Construct parsing data
pdata.offset = offset;
// Add tree item
model->addItem(Types::Padding, getPaddingType(padding), name, QString(), info, QByteArray(), padding, TRUE, parsingDataToQByteArray(pdata), index);
}
// Search for and parse all volumes
UINT32 volumeOffset = prevVolumeOffset;
UINT32 prevVolumeSize = 0;
while (!result)
{
// Padding between volumes
if (volumeOffset > prevVolumeOffset + prevVolumeSize) {
UINT32 paddingOffset = prevVolumeOffset + prevVolumeSize;
UINT32 paddingSize = volumeOffset - paddingOffset;
QByteArray padding = data.mid(paddingOffset, paddingSize);
// Get info
name = QObject::tr("Padding");
info = QObject::tr("Full size: %1h (%2)")
.hexarg(padding.size()).arg(padding.size());
// Construct parsing data
pdata.offset = offset + paddingOffset;
// Add tree item
model->addItem(Types::Padding, getPaddingType(padding), name, QString(), info, QByteArray(), padding, TRUE, parsingDataToQByteArray(pdata), index);
}
// Get volume size
UINT32 volumeSize = 0;
UINT32 bmVolumeSize = 0;
result = getVolumeSize(data, volumeOffset, volumeSize, bmVolumeSize);
if (result) {
msg(QObject::tr("parseRawArea: getVolumeSize failed with error \"%1\"").arg(errorCodeToQString(result)), index);
return result;
}
// Check that volume is fully present in input
if (volumeSize > (UINT32)data.size() || volumeOffset + volumeSize > (UINT32)data.size()) {
msg(QObject::tr("parseRawArea: one of volumes inside overlaps the end of data"), index);
return ERR_INVALID_VOLUME;
}
QByteArray volume = data.mid(volumeOffset, volumeSize);
if (volumeSize > (UINT32)volume.size()) {
// Mark the rest as padding and finish the parsing
QByteArray padding = data.right(volume.size());
// Get info
name = QObject::tr("Padding");
info = QObject::tr("Full size: %1h (%2)")
.hexarg(padding.size()).arg(padding.size());
// Construct parsing data
pdata.offset = offset + volumeOffset;
// Add tree item
QModelIndex paddingIndex = model->addItem(Types::Padding, getPaddingType(padding), name, QString(), info, QByteArray(), padding, TRUE, parsingDataToQByteArray(pdata), index);
msg(QObject::tr("parseRawArea: one of volumes inside overlaps the end of data"), paddingIndex);
// Update variables
prevVolumeOffset = volumeOffset;
prevVolumeSize = padding.size();
break;
}
// Parse current volume's header
QModelIndex volumeIndex;
result = parseVolumeHeader(volume, headerSize + volumeOffset, index, volumeIndex);
if (result)
msg(QObject::tr("parseRawArea: volume header parsing failed with error \"%1\"").arg(errorCodeToQString(result)), index);
else {
// Show messages
if (volumeSize != bmVolumeSize)
msg(QObject::tr("parseRawArea: volume size stored in header %1h (%2) differs from calculated using block map %3h (%4)")
.hexarg(volumeSize).arg(volumeSize)
.hexarg(bmVolumeSize).arg(bmVolumeSize),
volumeIndex);
}
// Go to next volume
prevVolumeOffset = volumeOffset;
prevVolumeSize = volumeSize;
result = findNextVolume(index, data, offset, volumeOffset + prevVolumeSize, volumeOffset);
}
// Padding at the end of RAW area
volumeOffset = prevVolumeOffset + prevVolumeSize;
if ((UINT32)data.size() > volumeOffset) {
QByteArray padding = data.mid(volumeOffset);
// Get info
name = QObject::tr("Padding");
info = QObject::tr("Full size: %1h (%2)")
.hexarg(padding.size()).arg(padding.size());
// Construct parsing data
pdata.offset = offset + headerSize + volumeOffset;
// Add tree item
model->addItem(Types::Padding, getPaddingType(padding), name, QString(), info, QByteArray(), padding, TRUE, parsingDataToQByteArray(pdata), index);
}
// Parse bodies
for (int i = 0; i < model->rowCount(index); i++) {
QModelIndex current = index.child(i, 0);
switch (model->type(current)) {
case Types::Volume:
parseVolumeBody(current);
break;
case Types::Padding:
// No parsing required
break;
default:
return ERR_UNKNOWN_ITEM_TYPE;
}
}
return ERR_SUCCESS;
}
STATUS FfsParser::parseVolumeHeader(const QByteArray & volume, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
{
// Sanity check
if (volume.isEmpty())
return ERR_INVALID_PARAMETER;
// Get parent's parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Check that there is space for the volume header
if ((UINT32)volume.size() < sizeof(EFI_FIRMWARE_VOLUME_HEADER)) {
msg(QObject::tr("parseVolumeHeader: input volume size %1h (%2) is smaller than volume header size 40h (64)").hexarg(volume.size()).arg(volume.size()));
return ERR_INVALID_VOLUME;
}
// Populate volume header
const EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (const EFI_FIRMWARE_VOLUME_HEADER*)(volume.constData());
// Check sanity of HeaderLength value
if ((UINT32)ALIGN8(volumeHeader->HeaderLength) > (UINT32)volume.size()) {
msg(QObject::tr("parseVolumeHeader: volume header overlaps the end of data"));
return ERR_INVALID_VOLUME;
}
// Check sanity of ExtHeaderOffset value
if (volumeHeader->Revision > 1 && volumeHeader->ExtHeaderOffset
&& (UINT32)ALIGN8(volumeHeader->ExtHeaderOffset + sizeof(EFI_FIRMWARE_VOLUME_EXT_HEADER)) > (UINT32)volume.size()) {
msg(QObject::tr("parseVolumeHeader: extended volume header overlaps the end of data"));
return ERR_INVALID_VOLUME;
}
// Calculate volume header size
UINT32 headerSize;
EFI_GUID extendedHeaderGuid = {{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }};
bool hasExtendedHeader = false;
if (volumeHeader->Revision > 1 && volumeHeader->ExtHeaderOffset) {
hasExtendedHeader = true;
const EFI_FIRMWARE_VOLUME_EXT_HEADER* extendedHeader = (const EFI_FIRMWARE_VOLUME_EXT_HEADER*)(volume.constData() + volumeHeader->ExtHeaderOffset);
headerSize = volumeHeader->ExtHeaderOffset + extendedHeader->ExtHeaderSize;
extendedHeaderGuid = extendedHeader->FvName;
}
else
headerSize = volumeHeader->HeaderLength;
// Extended header end can be unaligned
headerSize = ALIGN8(headerSize);
// Check for volume structure to be known
bool isUnknown = true;
bool isNvramVolume = false;
UINT8 ffsVersion = 0;
// Check for FFS v2 volume
QByteArray guid = QByteArray((const char*)volumeHeader->FileSystemGuid.Data, sizeof(EFI_GUID));
if (std::find(FFSv2Volumes.begin(), FFSv2Volumes.end(), guid) != FFSv2Volumes.end()) {
isUnknown = false;
ffsVersion = 2;
}
// Check for FFS v3 volume
if (std::find(FFSv3Volumes.begin(), FFSv3Volumes.end(), guid) != FFSv3Volumes.end()) {
isUnknown = false;
ffsVersion = 3;
}
// Check for VSS NVRAM volume
if (guid == NVRAM_MAIN_STORE_VOLUME_GUID || guid == NVRAM_ADDITIONAL_STORE_VOLUME_GUID) {
isUnknown = false;
isNvramVolume = true;
}
// Check volume revision and alignment
bool msgAlignmentBitsSet = false;
bool msgUnaligned = false;
bool msgUnknownRevision = false;
UINT32 alignment = 65536; // Default volume alignment is 64K
if (volumeHeader->Revision == 1) {
// Acquire alignment capability bit
bool alignmentCap = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_CAP;
if (!alignmentCap) {
if ((volumeHeader->Attributes & 0xFFFF0000))
msgAlignmentBitsSet = true;
}
// Do not check for volume alignment on revision 1 volumes
// No one gives a single crap about setting it correctly
/*else {
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_2) alignment = 2;
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_4) alignment = 4;
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_8) alignment = 8;
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_16) alignment = 16;
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_32) alignment = 32;
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_64) alignment = 64;
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_128) alignment = 128;
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_256) alignment = 256;
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_512) alignment = 512;
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_1K) alignment = 1024;
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_2K) alignment = 2048;
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_4K) alignment = 4096;
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_8K) alignment = 8192;
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_16K) alignment = 16384;
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_32K) alignment = 32768;
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_64K) alignment = 65536;
}*/
}
else if (volumeHeader->Revision == 2) {
// Acquire alignment
alignment = (UINT32)pow(2.0, (int)(volumeHeader->Attributes & EFI_FVB2_ALIGNMENT) >> 16);
// Check alignment
if (!isUnknown && !model->compressed(parent) && ((pdata.offset + parentOffset - capsuleOffsetFixup) % alignment))
msgUnaligned = true;
}
else
msgUnknownRevision = true;
// Check attributes
// Determine value of empty byte
UINT8 emptyByte = volumeHeader->Attributes & EFI_FVB_ERASE_POLARITY ? '\xFF' : '\x00';
// Check for AppleCRC32 and AppleFreeSpaceOffset in ZeroVector
bool hasAppleCrc32 = false;
bool hasAppleFSO = false;
UINT32 volumeSize = volume.size();
UINT32 appleCrc32 = *(UINT32*)(volume.constData() + 8);
UINT32 appleFSO = *(UINT32*)(volume.constData() + 12);
if (appleCrc32 != 0) {
// Calculate CRC32 of the volume body
UINT32 crc = crc32(0, (const UINT8*)(volume.constData() + volumeHeader->HeaderLength), volumeSize - volumeHeader->HeaderLength);
if (crc == appleCrc32) {
hasAppleCrc32 = true;
}
// Check if FreeSpaceOffset is non-zero
if (appleFSO != 0) {
hasAppleFSO = true;
}
}
// Check header checksum by recalculating it
bool msgInvalidChecksum = false;
QByteArray tempHeader((const char*)volumeHeader, volumeHeader->HeaderLength);
((EFI_FIRMWARE_VOLUME_HEADER*)tempHeader.data())->Checksum = 0;
UINT16 calculated = calculateChecksum16((const UINT16*)tempHeader.constData(), volumeHeader->HeaderLength);
if (volumeHeader->Checksum != calculated)
msgInvalidChecksum = true;
// Get info
QByteArray header = volume.left(headerSize);
QByteArray body = volume.mid(headerSize);
QString name = guidToQString(volumeHeader->FileSystemGuid);
QString info = QObject::tr("ZeroVector:\n%1 %2 %3 %4 %5 %6 %7 %8\n%9 %10 %11 %12 %13 %14 %15 %16\nFileSystem GUID: %17\nFull size: %18h (%19)\n"
"Header size: %20h (%21)\nBody size: %22h (%23)\nRevision: %24\nAttributes: %25h\nErase polarity: %26\nChecksum: %27h, %28")
.hexarg2(volumeHeader->ZeroVector[0], 2).hexarg2(volumeHeader->ZeroVector[1], 2).hexarg2(volumeHeader->ZeroVector[2], 2).hexarg2(volumeHeader->ZeroVector[3], 2)
.hexarg2(volumeHeader->ZeroVector[4], 2).hexarg2(volumeHeader->ZeroVector[5], 2).hexarg2(volumeHeader->ZeroVector[6], 2).hexarg2(volumeHeader->ZeroVector[7], 2)
.hexarg2(volumeHeader->ZeroVector[8], 2).hexarg2(volumeHeader->ZeroVector[9], 2).hexarg2(volumeHeader->ZeroVector[10], 2).hexarg2(volumeHeader->ZeroVector[11], 2)
.hexarg2(volumeHeader->ZeroVector[12], 2).hexarg2(volumeHeader->ZeroVector[13], 2).hexarg2(volumeHeader->ZeroVector[14], 2).hexarg2(volumeHeader->ZeroVector[15], 2)
.arg(guidToQString(volumeHeader->FileSystemGuid))
.hexarg(volumeSize).arg(volumeSize)
.hexarg(headerSize).arg(headerSize)
.hexarg(volumeSize - headerSize).arg(volumeSize - headerSize)
.arg(volumeHeader->Revision)
.hexarg2(volumeHeader->Attributes, 8)
.arg(emptyByte ? "1" : "0")
.hexarg2(volumeHeader->Checksum, 4)
.arg(msgInvalidChecksum ? QObject::tr("invalid, should be %1h").hexarg2(calculated, 4) : QObject::tr("valid"));
// Extended header present
if (volumeHeader->Revision > 1 && volumeHeader->ExtHeaderOffset) {
const EFI_FIRMWARE_VOLUME_EXT_HEADER* extendedHeader = (const EFI_FIRMWARE_VOLUME_EXT_HEADER*)(volume.constData() + volumeHeader->ExtHeaderOffset);
info += QObject::tr("\nExtended header size: %1h (%2)\nVolume GUID: %3")
.hexarg(extendedHeader->ExtHeaderSize).arg(extendedHeader->ExtHeaderSize)
.arg(guidToQString(extendedHeader->FvName));
}
// Construct parsing data
pdata.offset += parentOffset;
pdata.emptyByte = emptyByte;
pdata.ffsVersion = ffsVersion;
pdata.volume.hasExtendedHeader = hasExtendedHeader ? TRUE : FALSE;
pdata.volume.extendedHeaderGuid = extendedHeaderGuid;
pdata.volume.alignment = alignment;
pdata.volume.revision = volumeHeader->Revision;
pdata.volume.hasAppleCrc32 = hasAppleCrc32;
pdata.volume.hasAppleFSO = hasAppleFSO;
pdata.volume.isWeakAligned = (volumeHeader->Revision > 1 && (volumeHeader->Attributes & EFI_FVB2_WEAK_ALIGNMENT));
// Add text
QString text;
if (hasAppleCrc32)
text += QObject::tr("AppleCRC32 ");
if (hasAppleFSO)
text += QObject::tr("AppleFSO ");
// Add tree item
UINT8 subtype = Subtypes::UnknownVolume;
if (!isUnknown) {
if (ffsVersion == 2)
subtype = Subtypes::Ffs2Volume;
else if (ffsVersion == 3)
subtype = Subtypes::Ffs3Volume;
else if (isNvramVolume)
subtype = Subtypes::NvramVolume;
}
index = model->addItem(Types::Volume, subtype, name, text, info, header, body, TRUE, parsingDataToQByteArray(pdata), parent);
// Show messages
if (isUnknown)
msg(QObject::tr("parseVolumeHeader: unknown file system %1").arg(guidToQString(volumeHeader->FileSystemGuid)), index);
if (msgInvalidChecksum)
msg(QObject::tr("parseVolumeHeader: volume header checksum is invalid"), index);
if (msgAlignmentBitsSet)
msg(QObject::tr("parseVolumeHeader: alignment bits set on volume without alignment capability"), index);
if (msgUnaligned)
msg(QObject::tr("parseVolumeHeader: unaligned volume"), index);
if (msgUnknownRevision)
msg(QObject::tr("parseVolumeHeader: unknown volume revision %1").arg(volumeHeader->Revision), index);
return ERR_SUCCESS;
}
STATUS FfsParser::findNextVolume(const QModelIndex & index, const QByteArray & bios, const UINT32 parentOffset, const UINT32 volumeOffset, UINT32 & nextVolumeOffset)
{
int nextIndex = bios.indexOf(EFI_FV_SIGNATURE, volumeOffset);
if (nextIndex < EFI_FV_SIGNATURE_OFFSET)
return ERR_VOLUMES_NOT_FOUND;
// Check volume header to be sane
for (; nextIndex > 0; nextIndex = bios.indexOf(EFI_FV_SIGNATURE, nextIndex + 1)) {
const EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (const EFI_FIRMWARE_VOLUME_HEADER*)(bios.constData() + nextIndex - EFI_FV_SIGNATURE_OFFSET);
if (volumeHeader->FvLength < sizeof(EFI_FIRMWARE_VOLUME_HEADER) + 2 * sizeof(EFI_FV_BLOCK_MAP_ENTRY) || volumeHeader->FvLength >= 0xFFFFFFFFUL) {
msg(QObject::tr("findNextVolume: volume candidate at offset %1h skipped, has invalid FvLength %2h").hexarg(parentOffset + (nextIndex - EFI_FV_SIGNATURE_OFFSET)).hexarg2(volumeHeader->FvLength, 16), index);
continue;
}
if (volumeHeader->Reserved != 0xFF && volumeHeader->Reserved != 0x00) {
msg(QObject::tr("findNextVolume: volume candidate at offset %1h skipped, has invalid Reserved byte value %2").hexarg(parentOffset + (nextIndex - EFI_FV_SIGNATURE_OFFSET)).hexarg2(volumeHeader->Reserved, 2), index);
continue;
}
if (volumeHeader->Revision != 1 && volumeHeader->Revision != 2) {
msg(QObject::tr("findNextVolume: volume candidate at offset %1h skipped, has invalid Revision byte value %2").hexarg(parentOffset + (nextIndex - EFI_FV_SIGNATURE_OFFSET)).hexarg2(volumeHeader->Revision, 2), index);
continue;
}
// All checks passed, volume found
break;
}
// No more volumes found
if (nextIndex < EFI_FV_SIGNATURE_OFFSET)
return ERR_VOLUMES_NOT_FOUND;
nextVolumeOffset = nextIndex - EFI_FV_SIGNATURE_OFFSET;
return ERR_SUCCESS;
}
STATUS FfsParser::getVolumeSize(const QByteArray & bios, UINT32 volumeOffset, UINT32 & volumeSize, UINT32 & bmVolumeSize)
{
// Check that there is space for the volume header and at least two block map entries.
if ((UINT32)bios.size() < volumeOffset + sizeof(EFI_FIRMWARE_VOLUME_HEADER) + 2 * sizeof(EFI_FV_BLOCK_MAP_ENTRY))
return ERR_INVALID_VOLUME;
// Populate volume header
const EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (const EFI_FIRMWARE_VOLUME_HEADER*)(bios.constData() + volumeOffset);
// Check volume signature
if (QByteArray((const char*)&volumeHeader->Signature, sizeof(volumeHeader->Signature)) != EFI_FV_SIGNATURE)
return ERR_INVALID_VOLUME;
// Calculate volume size using BlockMap
const EFI_FV_BLOCK_MAP_ENTRY* entry = (const EFI_FV_BLOCK_MAP_ENTRY*)(bios.constData() + volumeOffset + sizeof(EFI_FIRMWARE_VOLUME_HEADER));
UINT32 calcVolumeSize = 0;
while (entry->NumBlocks != 0 && entry->Length != 0) {
if ((void*)entry > bios.constData() + bios.size())
return ERR_INVALID_VOLUME;
calcVolumeSize += entry->NumBlocks * entry->Length;
entry += 1;
}
volumeSize = volumeHeader->FvLength;
bmVolumeSize = calcVolumeSize;
if (volumeSize == 0)
return ERR_INVALID_VOLUME;
return ERR_SUCCESS;
}
STATUS FfsParser::parseVolumeNonUefiData(const QByteArray & data, const UINT32 parentOffset, const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Get parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
// Modify it
pdata.offset += parentOffset;
// Search for VTF GUID backwards in received data
QByteArray padding = data;
QByteArray vtf;
INT32 vtfIndex = data.lastIndexOf(EFI_FFS_VOLUME_TOP_FILE_GUID);
if (vtfIndex >= 0) { // VTF candidate found inside non-UEFI data
padding = data.left(vtfIndex);
vtf = data.mid(vtfIndex);
const EFI_FFS_FILE_HEADER* fileHeader = (const EFI_FFS_FILE_HEADER*)vtf.constData();
if ((UINT32)vtf.size() < sizeof(EFI_FFS_FILE_HEADER) // VTF candidate is too small to be a real VTF in FFSv1/v2 volume
|| (pdata.ffsVersion == 3
&& (fileHeader->Attributes & FFS_ATTRIB_LARGE_FILE)
&& (UINT32)vtf.size() < sizeof(EFI_FFS_FILE_HEADER2))) { // VTF candidate is too small to be a real VTF in FFSv3 volume
vtfIndex = -1;
padding = data;
vtf.clear();
}
}
// Add non-UEFI data first
// Get info
QString info = QObject::tr("Full size: %1h (%2)").hexarg(padding.size()).arg(padding.size());
// Add padding tree item
QModelIndex paddingIndex = model->addItem(Types::Padding, Subtypes::DataPadding, QObject::tr("Non-UEFI data"), "", info, QByteArray(), padding, TRUE, parsingDataToQByteArray(pdata), index);
msg(QObject::tr("parseVolumeNonUefiData: non-UEFI data found in volume's free space"), paddingIndex);
if (vtfIndex >= 0) {
// Get VTF file header
QByteArray header = vtf.left(sizeof(EFI_FFS_FILE_HEADER));
const EFI_FFS_FILE_HEADER* fileHeader = (const EFI_FFS_FILE_HEADER*)header.constData();
if (pdata.ffsVersion == 3 && (fileHeader->Attributes & FFS_ATTRIB_LARGE_FILE)) {
header = vtf.left(sizeof(EFI_FFS_FILE_HEADER2));
}
//Parse VTF file header
QModelIndex fileIndex;
STATUS result = parseFileHeader(vtf, parentOffset + vtfIndex, index, fileIndex);
if (result) {
msg(QObject::tr("parseVolumeNonUefiData: VTF file header parsing failed with error \"%1\"").arg(errorCodeToQString(result)), index);
// Add the rest as non-UEFI data too
pdata.offset += vtfIndex;
// Get info
QString info = QObject::tr("Full size: %1h (%2)").hexarg(vtf.size()).arg(vtf.size());
// Add padding tree item
QModelIndex paddingIndex = model->addItem(Types::Padding, Subtypes::DataPadding, QObject::tr("Non-UEFI data"), "", info, QByteArray(), vtf, TRUE, parsingDataToQByteArray(pdata), index);
msg(QObject::tr("parseVolumeNonUefiData: non-UEFI data found in volume's free space"), paddingIndex);
}
}
return ERR_SUCCESS;
}
STATUS FfsParser::parseVolumeBody(const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Get volume header size and body
QByteArray volumeBody = model->body(index);
UINT32 volumeHeaderSize = model->header(index).size();
// Get parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
UINT32 offset = pdata.offset;
// Parse VSS NVRAM volumes with a dedicated function
if (model->subtype(index) == Subtypes::NvramVolume)
return parseNvramVolumeBody(index);
if (pdata.ffsVersion != 2 && pdata.ffsVersion != 3) // Don't parse unknown volumes
return ERR_SUCCESS;
// Search for and parse all files
UINT32 volumeBodySize = volumeBody.size();
UINT32 fileOffset = 0;
while (fileOffset < volumeBodySize) {
UINT32 fileSize = getFileSize(volumeBody, fileOffset, pdata.ffsVersion);
// Check file size
if (fileSize < sizeof(EFI_FFS_FILE_HEADER) || fileSize > volumeBodySize - fileOffset) {
// Check that we are at the empty space
QByteArray header = volumeBody.mid(fileOffset, sizeof(EFI_FFS_FILE_HEADER));
if (header.count(pdata.emptyByte) == header.size()) { //Empty space
// Check free space to be actually free
QByteArray freeSpace = volumeBody.mid(fileOffset);
if (freeSpace.count(pdata.emptyByte) != freeSpace.count()) {
// Search for the first non-empty byte
UINT32 i;
UINT32 size = freeSpace.size();
const UINT8* current = (UINT8*)freeSpace.constData();
for (i = 0; i < size; i++) {
if (*current++ != pdata.emptyByte)
break;
}
// Align found index to file alignment
// It must be possible because minimum 16 bytes of empty were found before
if (i != ALIGN8(i))
i = ALIGN8(i) - 8;
// Construct parsing data
pdata.offset = offset + volumeHeaderSize + fileOffset;
// Add all bytes before as free space
if (i > 0) {
QByteArray free = freeSpace.left(i);
// Get info
QString info = QObject::tr("Full size: %1h (%2)").hexarg(free.size()).arg(free.size());
// Add free space item
model->addItem(Types::FreeSpace, 0, QObject::tr("Volume free space"), "", info, QByteArray(), free, FALSE, parsingDataToQByteArray(pdata), index);
}
// Parse non-UEFI data
parseVolumeNonUefiData(freeSpace.mid(i), volumeHeaderSize + fileOffset + i, index);
}
else {
// Construct parsing data
pdata.offset = offset + volumeHeaderSize + fileOffset;
// Get info
QString info = QObject::tr("Full size: %1h (%2)").hexarg(freeSpace.size()).arg(freeSpace.size());
// Add free space item
model->addItem(Types::FreeSpace, 0, QObject::tr("Volume free space"), "", info, QByteArray(), freeSpace, FALSE, parsingDataToQByteArray(pdata), index);
}
break; // Exit from parsing loop
}
else { //File space
// Parse non-UEFI data
parseVolumeNonUefiData(volumeBody.mid(fileOffset), volumeHeaderSize + fileOffset, index);
break; // Exit from parsing loop
}
}
// Get file header
QByteArray file = volumeBody.mid(fileOffset, fileSize);
QByteArray header = file.left(sizeof(EFI_FFS_FILE_HEADER));
const EFI_FFS_FILE_HEADER* fileHeader = (const EFI_FFS_FILE_HEADER*)header.constData();
if (pdata.ffsVersion == 3 && (fileHeader->Attributes & FFS_ATTRIB_LARGE_FILE)) {
header = file.left(sizeof(EFI_FFS_FILE_HEADER2));
}
//Parse current file's header
QModelIndex fileIndex;
STATUS result = parseFileHeader(file, volumeHeaderSize + fileOffset, index, fileIndex);
if (result)
msg(QObject::tr("parseVolumeBody: file header parsing failed with error \"%1\"").arg(errorCodeToQString(result)), index);
// Move to next file
fileOffset += fileSize;
fileOffset = ALIGN8(fileOffset);
}
// Check for duplicate GUIDs
for (int i = 0; i < model->rowCount(index); i++) {
QModelIndex current = index.child(i, 0);
// Skip non-file entries and pad files
if (model->type(current) != Types::File || model->subtype(current) == EFI_FV_FILETYPE_PAD)
continue;
QByteArray currentGuid = model->header(current).left(sizeof(EFI_GUID));
// Check files after current for having an equal GUID
for (int j = i + 1; j < model->rowCount(index); j++) {
QModelIndex another = index.child(j, 0);
// Skip non-file entries
if (model->type(another) != Types::File)
continue;
// Check GUIDs for being equal
QByteArray anotherGuid = model->header(another).left(sizeof(EFI_GUID));
if (currentGuid == anotherGuid) {
msg(QObject::tr("parseVolumeBody: file with duplicate GUID %1").arg(guidToQString(*(const EFI_GUID*)anotherGuid.constData())), another);
}
}
}
//Parse bodies
for (int i = 0; i < model->rowCount(index); i++) {
QModelIndex current = index.child(i, 0);
switch (model->type(current)) {
case Types::File:
parseFileBody(current);
break;
case Types::Padding:
case Types::FreeSpace:
// No parsing required
break;
default:
return ERR_UNKNOWN_ITEM_TYPE;
}
}
return ERR_SUCCESS;
}
UINT32 FfsParser::getFileSize(const QByteArray & volume, const UINT32 fileOffset, const UINT8 ffsVersion)
{
if (ffsVersion == 2) {
if ((UINT32)volume.size() < fileOffset + sizeof(EFI_FFS_FILE_HEADER))
return 0;
const EFI_FFS_FILE_HEADER* fileHeader = (const EFI_FFS_FILE_HEADER*)(volume.constData() + fileOffset);
return uint24ToUint32(fileHeader->Size);
}
else if (ffsVersion == 3) {
if ((UINT32)volume.size() < fileOffset + sizeof(EFI_FFS_FILE_HEADER2))
return 0;
const EFI_FFS_FILE_HEADER2* fileHeader = (const EFI_FFS_FILE_HEADER2*)(volume.constData() + fileOffset);
if (fileHeader->Attributes & FFS_ATTRIB_LARGE_FILE)
return fileHeader->ExtendedSize;
else
return uint24ToUint32(fileHeader->Size);
}
else
return 0;
}
STATUS FfsParser::parseFileHeader(const QByteArray & file, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
{
// Sanity check
if (file.isEmpty())
return ERR_INVALID_PARAMETER;
if ((UINT32)file.size() < sizeof(EFI_FFS_FILE_HEADER))
return ERR_INVALID_FILE;
// Get parent's parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Get file header
QByteArray header = file.left(sizeof(EFI_FFS_FILE_HEADER));
const EFI_FFS_FILE_HEADER* fileHeader = (const EFI_FFS_FILE_HEADER*)header.constData();
if (pdata.ffsVersion == 3 && (fileHeader->Attributes & FFS_ATTRIB_LARGE_FILE)) {
if ((UINT32)file.size() < sizeof(EFI_FFS_FILE_HEADER2))
return ERR_INVALID_FILE;
header = file.left(sizeof(EFI_FFS_FILE_HEADER2));
}
// Check file alignment
bool msgUnalignedFile = false;
UINT8 alignmentPower = ffsAlignmentTable[(fileHeader->Attributes & FFS_ATTRIB_DATA_ALIGNMENT) >> 3];
UINT32 alignment = (UINT32)pow(2.0, alignmentPower);
if ((parentOffset + header.size()) % alignment)
msgUnalignedFile = true;
// Check file alignment agains volume alignment
bool msgFileAlignmentIsGreaterThanVolumes = false;
if (!pdata.volume.isWeakAligned && pdata.volume.alignment < alignment)
msgFileAlignmentIsGreaterThanVolumes = true;
// Check header checksum
QByteArray tempHeader = header;
EFI_FFS_FILE_HEADER* tempFileHeader = (EFI_FFS_FILE_HEADER*)(tempHeader.data());
tempFileHeader->IntegrityCheck.Checksum.Header = 0;
tempFileHeader->IntegrityCheck.Checksum.File = 0;
UINT8 calculatedHeader = calculateChecksum8((const UINT8*)tempFileHeader, header.size() - 1);
bool msgInvalidHeaderChecksum = false;
if (fileHeader->IntegrityCheck.Checksum.Header != calculatedHeader)
msgInvalidHeaderChecksum = true;
// Check data checksum
// Data checksum must be calculated
bool msgInvalidDataChecksum = false;
UINT8 calculatedData = 0;
if (fileHeader->Attributes & FFS_ATTRIB_CHECKSUM) {
UINT32 bufferSize = file.size() - header.size();
// Exclude file tail from data checksum calculation
if (pdata.volume.revision == 1 && (fileHeader->Attributes & FFS_ATTRIB_TAIL_PRESENT))
bufferSize -= sizeof(UINT16);
calculatedData = calculateChecksum8((const UINT8*)(file.constData() + header.size()), bufferSize);
if (fileHeader->IntegrityCheck.Checksum.File != calculatedData)
msgInvalidDataChecksum = true;
}
// Data checksum must be one of predefined values
else if (pdata.volume.revision == 1 && fileHeader->IntegrityCheck.Checksum.File != FFS_FIXED_CHECKSUM) {
calculatedData = FFS_FIXED_CHECKSUM;
msgInvalidDataChecksum = true;
}
else if (pdata.volume.revision == 2 && fileHeader->IntegrityCheck.Checksum.File != FFS_FIXED_CHECKSUM2) {
calculatedData = FFS_FIXED_CHECKSUM2;
msgInvalidDataChecksum = true;
}
// Check file type
bool msgUnknownType = false;
if (fileHeader->Type > EFI_FV_FILETYPE_SMM_CORE && fileHeader->Type != EFI_FV_FILETYPE_PAD) {
msgUnknownType = true;
};
// Get file body
QByteArray body = file.mid(header.size());
// Check for file tail presence
UINT16 tail = 0;
bool msgInvalidTailValue = false;
bool hasTail = false;
if (pdata.volume.revision == 1 && (fileHeader->Attributes & FFS_ATTRIB_TAIL_PRESENT))
{
hasTail = true;
//Check file tail;
tail = *(UINT16*)body.right(sizeof(UINT16)).constData();
if (fileHeader->IntegrityCheck.TailReference != (UINT16)~tail)
msgInvalidTailValue = true;
// Remove tail from file body
body = body.left(body.size() - sizeof(UINT16));
}
// Get info
QString name;
QString info;
if (fileHeader->Type != EFI_FV_FILETYPE_PAD)
name = guidToQString(fileHeader->Name);
else
name = QObject::tr("Pad-file");
info = QObject::tr("File GUID: %1\nType: %2h\nAttributes: %3h\nFull size: %4h (%5)\nHeader size: %6h (%7)\nBody size: %8h (%9)\nState: %10h\nHeader checksum: %11h, %12\nData checksum: %13h, %14")
.arg(guidToQString(fileHeader->Name))
.hexarg2(fileHeader->Type, 2)
.hexarg2(fileHeader->Attributes, 2)
.hexarg(header.size() + body.size()).arg(header.size() + body.size())
.hexarg(header.size()).arg(header.size())
.hexarg(body.size()).arg(body.size())
.hexarg2(fileHeader->State, 2)
.hexarg2(fileHeader->IntegrityCheck.Checksum.Header, 2)
.arg(msgInvalidHeaderChecksum ? QObject::tr("invalid, should be %1h").hexarg2(calculatedHeader, 2) : QObject::tr("valid"))
.hexarg2(fileHeader->IntegrityCheck.Checksum.File, 2)
.arg(msgInvalidDataChecksum ? QObject::tr("invalid, should be %1h").hexarg2(calculatedData, 2) : QObject::tr("valid"));
// Set raw file format to unknown by default
pdata.file.format = RAW_FILE_FORMAT_UNKNOWN;
QString text;
bool isVtf = false;
QByteArray guid = header.left(sizeof(EFI_GUID));
// Check if the file is a Volume Top File
if (guid == EFI_FFS_VOLUME_TOP_FILE_GUID) {
// Mark it as the last VTF
// This information will later be used to determine memory addresses of uncompressed image elements
// Because the last byte of the last VFT is mapped to 0xFFFFFFFF physical memory address
isVtf = true;
text = QObject::tr("Volume Top File");
}
// Check if the file is NVRAM store with NVAR format
else if (guid == NVRAM_NVAR_STORE_FILE_GUID || guid == NVRAM_NVAR_EXTERNAL_DEFAULTS_FILE_GUID) {
// Mark the file as NVAR store
pdata.file.format = RAW_FILE_FORMAT_NVAR_STORE;
}
// Construct parsing data
bool fixed = fileHeader->Attributes & FFS_ATTRIB_FIXED;
pdata.offset += parentOffset;
pdata.file.hasTail = hasTail ? TRUE : FALSE;
pdata.file.tail = tail;
// Add tree item
index = model->addItem(Types::File, fileHeader->Type, name, text, info, header, body, fixed, parsingDataToQByteArray(pdata), parent);
// Overwrite lastVtf, if needed
if (isVtf) {
lastVtf = index;
}
// Show messages
if (msgUnalignedFile)
msg(QObject::tr("parseFileHeader: unaligned file"), index);
if (msgFileAlignmentIsGreaterThanVolumes)
msg(QObject::tr("parseFileHeader: file alignment %1h is greater than parent volume alignment %2h").hexarg(alignment).hexarg(pdata.volume.alignment), index);
if (msgInvalidHeaderChecksum)
msg(QObject::tr("parseFileHeader: invalid header checksum"), index);
if (msgInvalidDataChecksum)
msg(QObject::tr("parseFileHeader: invalid data checksum"), index);
if (msgInvalidTailValue)
msg(QObject::tr("parseFileHeader: invalid tail value"), index);
if (msgUnknownType)
msg(QObject::tr("parseFileHeader: unknown file type %1h").hexarg2(fileHeader->Type, 2), index);
return ERR_SUCCESS;
}
UINT32 FfsParser::getSectionSize(const QByteArray & file, const UINT32 sectionOffset, const UINT8 ffsVersion)
{
if (ffsVersion == 2) {
if ((UINT32)file.size() < sectionOffset + sizeof(EFI_COMMON_SECTION_HEADER))
return 0;
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(file.constData() + sectionOffset);
return uint24ToUint32(sectionHeader->Size);
}
else if (ffsVersion == 3) {
if ((UINT32)file.size() < sectionOffset + sizeof(EFI_COMMON_SECTION_HEADER2))
return 0;
const EFI_COMMON_SECTION_HEADER2* sectionHeader = (const EFI_COMMON_SECTION_HEADER2*)(file.constData() + sectionOffset);
UINT32 size = uint24ToUint32(sectionHeader->Size);
if (size == EFI_SECTION2_IS_USED)
return sectionHeader->ExtendedSize;
else
return size;
}
else
return 0;
}
STATUS FfsParser::parseFileBody(const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Do not parse non-file bodies
if (model->type(index) != Types::File)
return ERR_SUCCESS;
// Parse pad-file body
if (model->subtype(index) == EFI_FV_FILETYPE_PAD)
return parsePadFileBody(index);
// Parse raw files as raw areas
if (model->subtype(index) == EFI_FV_FILETYPE_RAW || model->subtype(index) == EFI_FV_FILETYPE_ALL) {
// Get data from parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
// Parse NVAR store
if (pdata.file.format == RAW_FILE_FORMAT_NVAR_STORE)
return parseNvarStore(model->body(index), index);
return parseRawArea(index);
}
// Parse sections
return parseSections(model->body(index), index);
}
STATUS FfsParser::parsePadFileBody(const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Get data from parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
// Check if all bytes of the file are empty
QByteArray body = model->body(index);
if (body.size() == body.count(pdata.emptyByte))
return ERR_SUCCESS;
// Search for the first non-empty byte
UINT32 i;
UINT32 size = body.size();
const UINT8* current = (const UINT8*)body.constData();
for (i = 0; i < size; i++) {
if (*current++ != pdata.emptyByte)
break;
}
// Add all bytes before as free space...
if (i >= 8) {
// Align free space to 8 bytes boundary
if (i != ALIGN8(i))
i = ALIGN8(i) - 8;
QByteArray free = body.left(i);
// Get info
QString info = QObject::tr("Full size: %1h (%2)").hexarg(free.size()).arg(free.size());
// Constuct parsing data
pdata.offset += model->header(index).size();
// Add tree item
model->addItem(Types::FreeSpace, 0, QObject::tr("Free space"), QString(), info, QByteArray(), free, FALSE, parsingDataToQByteArray(pdata), index);
}
else
i = 0;
// ... and all bytes after as a padding
QByteArray padding = body.mid(i);
// Get info
QString info = QObject::tr("Full size: %1h (%2)").hexarg(padding.size()).arg(padding.size());
// Constuct parsing data
pdata.offset += i;
// Add tree item
QModelIndex dataIndex = model->addItem(Types::Padding, Subtypes::DataPadding, QObject::tr("Non-UEFI data"), "", info, QByteArray(), padding, TRUE, parsingDataToQByteArray(pdata), index);
// Show message
msg(QObject::tr("parsePadFileBody: non-UEFI data found in pad-file"), dataIndex);
// Rename the file
model->setName(index, QObject::tr("Non-empty pad-file"));
return ERR_SUCCESS;
}
STATUS FfsParser::parseSections(const QByteArray & sections, const QModelIndex & index, const bool preparse)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Get data from parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
// Search for and parse all sections
UINT32 bodySize = sections.size();
UINT32 headerSize = model->header(index).size();
UINT32 sectionOffset = 0;
STATUS result = ERR_SUCCESS;
while (sectionOffset < bodySize) {
// Get section size
UINT32 sectionSize = getSectionSize(sections, sectionOffset, pdata.ffsVersion);
// Check section size
if (sectionSize < sizeof(EFI_COMMON_SECTION_HEADER) || sectionSize > (bodySize - sectionOffset)) {
// Add padding to fill the rest of sections
QByteArray padding = sections.mid(sectionOffset);
// Get info
QString info = QObject::tr("Full size: %1h (%2)").hexarg(padding.size()).arg(padding.size());
// Constuct parsing data
pdata.offset += headerSize + sectionOffset;
// Final parsing
if (!preparse) {
// Add tree item
QModelIndex dataIndex = model->addItem(Types::Padding, Subtypes::DataPadding, QObject::tr("Non-UEFI data"), "", info, QByteArray(), padding, TRUE, parsingDataToQByteArray(pdata), index);
// Show message
msg(QObject::tr("parseSections: non-UEFI data found in sections area"), dataIndex);
}
// Preparsing
else {
return ERR_INVALID_SECTION;
}
break; // Exit from parsing loop
}
// Parse section header
QModelIndex sectionIndex;
result = parseSectionHeader(sections.mid(sectionOffset, sectionSize), headerSize + sectionOffset, index, sectionIndex, preparse);
if (result) {
if (!preparse)
msg(QObject::tr("parseSections: section header parsing failed with error \"%1\"").arg(errorCodeToQString(result)), index);
else
return ERR_INVALID_SECTION;
}
// Move to next section
sectionOffset += sectionSize;
sectionOffset = ALIGN4(sectionOffset);
}
//Parse bodies, will be skipped on preparse phase
for (int i = 0; i < model->rowCount(index); i++) {
QModelIndex current = index.child(i, 0);
switch (model->type(current)) {
case Types::Section:
parseSectionBody(current);
break;
case Types::Padding:
// No parsing required
break;
default:
return ERR_UNKNOWN_ITEM_TYPE;
}
}
return ERR_SUCCESS;
}
STATUS FfsParser::parseSectionHeader(const QByteArray & section, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index, const bool preparse)
{
// Check sanity
if ((UINT32)section.size() < sizeof(EFI_COMMON_SECTION_HEADER))
return ERR_INVALID_SECTION;
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(section.constData());
switch (sectionHeader->Type) {
// Special
case EFI_SECTION_COMPRESSION: return parseCompressedSectionHeader(section, parentOffset, parent, index, preparse);
case EFI_SECTION_GUID_DEFINED: return parseGuidedSectionHeader(section, parentOffset, parent, index, preparse);
case EFI_SECTION_FREEFORM_SUBTYPE_GUID: return parseFreeformGuidedSectionHeader(section, parentOffset, parent, index, preparse);
case EFI_SECTION_VERSION: return parseVersionSectionHeader(section, parentOffset, parent, index, preparse);
case PHOENIX_SECTION_POSTCODE:
case INSYDE_SECTION_POSTCODE: return parsePostcodeSectionHeader(section, parentOffset, parent, index, preparse);
// Common
case EFI_SECTION_DISPOSABLE:
case EFI_SECTION_DXE_DEPEX:
case EFI_SECTION_PEI_DEPEX:
case EFI_SECTION_SMM_DEPEX:
case EFI_SECTION_PE32:
case EFI_SECTION_PIC:
case EFI_SECTION_TE:
case EFI_SECTION_COMPATIBILITY16:
case EFI_SECTION_USER_INTERFACE:
case EFI_SECTION_FIRMWARE_VOLUME_IMAGE:
case EFI_SECTION_RAW: return parseCommonSectionHeader(section, parentOffset, parent, index, preparse);
// Unknown
default:
STATUS result = parseCommonSectionHeader(section, parentOffset, parent, index, preparse);
msg(QObject::tr("parseSectionHeader: section with unknown type %1h").hexarg2(sectionHeader->Type, 2), index);
return result;
}
}
STATUS FfsParser::parseCommonSectionHeader(const QByteArray & section, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index, const bool preparse)
{
// Check sanity
if ((UINT32)section.size() < sizeof(EFI_COMMON_SECTION_HEADER))
return ERR_INVALID_SECTION;
// Get data from parent's parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Obtain header fields
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(section.constData());
UINT32 headerSize = sizeof(EFI_COMMON_SECTION_HEADER);
if (pdata.ffsVersion == 3 && uint24ToUint32(sectionHeader->Size) == EFI_SECTION2_IS_USED)
headerSize = sizeof(EFI_COMMON_SECTION_HEADER2);
QByteArray header = section.left(headerSize);
QByteArray body = section.mid(headerSize);
// Get info
QString name = sectionTypeToQString(sectionHeader->Type) + QObject::tr(" section");
QString info = QObject::tr("Type: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)")
.hexarg2(sectionHeader->Type, 2)
.hexarg(section.size()).arg(section.size())
.hexarg(headerSize).arg(headerSize)
.hexarg(body.size()).arg(body.size());
// Construct parsing data
pdata.offset += parentOffset;
// Add tree item
if (!preparse) {
index = model->addItem(Types::Section, sectionHeader->Type, name, QString(), info, header, body, FALSE, parsingDataToQByteArray(pdata), parent);
}
return ERR_SUCCESS;
}
STATUS FfsParser::parseCompressedSectionHeader(const QByteArray & section, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index, const bool preparse)
{
// Check sanity
if ((UINT32)section.size() < sizeof(EFI_COMPRESSION_SECTION))
return ERR_INVALID_SECTION;
// Get data from parent's parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Obtain header fields
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(section.constData());
const EFI_COMPRESSION_SECTION* compressedSectionHeader = (const EFI_COMPRESSION_SECTION*)sectionHeader;
UINT32 headerSize = sizeof(EFI_COMPRESSION_SECTION);
UINT8 compressionType = compressedSectionHeader->CompressionType;
UINT32 uncompressedLength = compressedSectionHeader->UncompressedLength;
if (pdata.ffsVersion == 3 && uint24ToUint32(sectionHeader->Size) == EFI_SECTION2_IS_USED) {
if ((UINT32)section.size() < sizeof(EFI_COMPRESSION_SECTION2))
return ERR_INVALID_SECTION;
const EFI_COMPRESSION_SECTION2* compressedSectionHeader2 = (const EFI_COMPRESSION_SECTION2*)sectionHeader;
headerSize = sizeof(EFI_COMPRESSION_SECTION2);
compressionType = compressedSectionHeader2->CompressionType;
uncompressedLength = compressedSectionHeader->UncompressedLength;
}
QByteArray header = section.left(headerSize);
QByteArray body = section.mid(headerSize);
// Get info
QString name = sectionTypeToQString(sectionHeader->Type) + QObject::tr(" section");
QString info = QObject::tr("Type: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)\nCompression type: %8h\nDecompressed size: %9h (%10)")
.hexarg2(sectionHeader->Type, 2)
.hexarg(section.size()).arg(section.size())
.hexarg(headerSize).arg(headerSize)
.hexarg(body.size()).arg(body.size())
.hexarg2(compressionType, 2)
.hexarg(uncompressedLength).arg(uncompressedLength);
// Construct parsing data
pdata.offset += parentOffset;
pdata.section.compressed.compressionType = compressionType;
pdata.section.compressed.uncompressedSize = uncompressedLength;
// Add tree item
if (!preparse) {
index = model->addItem(Types::Section, sectionHeader->Type, name, QString(), info, header, body, FALSE, parsingDataToQByteArray(pdata), parent);
}
return ERR_SUCCESS;
}
STATUS FfsParser::parseGuidedSectionHeader(const QByteArray & section, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index, const bool preparse)
{
// Check sanity
if ((UINT32)section.size() < sizeof(EFI_GUID_DEFINED_SECTION))
return ERR_INVALID_SECTION;
// Get data from parent's parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Obtain header fields
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(section.constData());
2015-11-03 04:48:00 +08:00
const EFI_GUID_DEFINED_SECTION* guidDefinedSectionHeader = (const EFI_GUID_DEFINED_SECTION*)sectionHeader;
EFI_GUID guid = guidDefinedSectionHeader->SectionDefinitionGuid;
UINT16 dataOffset = guidDefinedSectionHeader->DataOffset;
UINT16 attributes = guidDefinedSectionHeader->Attributes;
UINT32 nextHeaderOffset = sizeof(EFI_GUID_DEFINED_SECTION);
if (pdata.ffsVersion == 3 && uint24ToUint32(sectionHeader->Size) == EFI_SECTION2_IS_USED) {
if ((UINT32)section.size() < sizeof(EFI_GUID_DEFINED_SECTION2))
return ERR_INVALID_SECTION;
const EFI_GUID_DEFINED_SECTION2* guidDefinedSectionHeader2 = (const EFI_GUID_DEFINED_SECTION2*)sectionHeader;
guid = guidDefinedSectionHeader2->SectionDefinitionGuid;
dataOffset = guidDefinedSectionHeader2->DataOffset;
attributes = guidDefinedSectionHeader2->Attributes;
nextHeaderOffset = sizeof(EFI_GUID_DEFINED_SECTION2);
}
// Check for special GUIDed sections
QByteArray additionalInfo;
QByteArray baGuid((const char*)&guid, sizeof(EFI_GUID));
bool msgSignedSectionFound = false;
bool msgNoAuthStatusAttribute = false;
bool msgNoProcessingRequiredAttributeCompressed = false;
bool msgNoProcessingRequiredAttributeSigned = false;
bool msgInvalidCrc = false;
bool msgUnknownCertType = false;
bool msgUnknownCertSubtype = false;
if (baGuid == EFI_GUIDED_SECTION_CRC32) {
if ((attributes & EFI_GUIDED_SECTION_AUTH_STATUS_VALID) == 0) { // Check that AuthStatusValid attribute is set on compressed GUIDed sections
msgNoAuthStatusAttribute = true;
}
if ((UINT32)section.size() < nextHeaderOffset + sizeof(UINT32))
return ERR_INVALID_SECTION;
UINT32 crc = *(UINT32*)(section.constData() + nextHeaderOffset);
additionalInfo += QObject::tr("\nChecksum type: CRC32");
// Calculate CRC32 of section data
UINT32 calculated = crc32(0, (const UINT8*)section.constData() + dataOffset, section.size() - dataOffset);
if (crc == calculated) {
additionalInfo += QObject::tr("\nChecksum: %1h, valid").hexarg2(crc, 8);
}
else {
additionalInfo += QObject::tr("\nChecksum: %1h, invalid, should be %2h").hexarg2(crc, 8).hexarg2(calculated, 8);
msgInvalidCrc = true;
}
// No need to change dataOffset here
}
else if (baGuid == EFI_GUIDED_SECTION_LZMA || baGuid == EFI_GUIDED_SECTION_TIANO) {
if ((attributes & EFI_GUIDED_SECTION_PROCESSING_REQUIRED) == 0) { // Check that ProcessingRequired attribute is set on compressed GUIDed sections
msgNoProcessingRequiredAttributeCompressed = true;
}
// No need to change dataOffset here
}
else if (baGuid == EFI_FIRMWARE_CONTENTS_SIGNED_GUID) {
if ((attributes & EFI_GUIDED_SECTION_PROCESSING_REQUIRED) == 0) { // Check that ProcessingRequired attribute is set on signed GUIDed sections
msgNoProcessingRequiredAttributeSigned = true;
}
// Get certificate type and length
if ((UINT32)section.size() < nextHeaderOffset + sizeof(WIN_CERTIFICATE))
return ERR_INVALID_SECTION;
const WIN_CERTIFICATE* winCertificate = (const WIN_CERTIFICATE*)(section.constData() + nextHeaderOffset);
UINT32 certLength = winCertificate->Length;
UINT16 certType = winCertificate->CertificateType;
// Adjust dataOffset
dataOffset += certLength;
// Check section size once again
if ((UINT32)section.size() < dataOffset)
return ERR_INVALID_SECTION;
// Check certificate type
if (certType == WIN_CERT_TYPE_EFI_GUID) {
additionalInfo += QObject::tr("\nCertificate type: UEFI");
// Get certificate GUID
const WIN_CERTIFICATE_UEFI_GUID* winCertificateUefiGuid = (const WIN_CERTIFICATE_UEFI_GUID*)(section.constData() + nextHeaderOffset);
QByteArray certTypeGuid((const char*)&winCertificateUefiGuid->CertType, sizeof(EFI_GUID));
if (certTypeGuid == EFI_CERT_TYPE_RSA2048_SHA256_GUID) {
additionalInfo += QObject::tr("\nCertificate subtype: RSA2048/SHA256");
}
else {
additionalInfo += QObject::tr("\nCertificate subtype: unknown, GUID %1").arg(guidToQString(winCertificateUefiGuid->CertType));
msgUnknownCertSubtype = true;
}
}
else {
additionalInfo += QObject::tr("\nCertificate type: unknown (%1h)").hexarg2(certType, 4);
msgUnknownCertType = true;
}
msgSignedSectionFound = true;
}
QByteArray header = section.left(dataOffset);
QByteArray body = section.mid(dataOffset);
// Get info
QString name = guidToQString(guid);
QString info = QObject::tr("Section GUID: %1\nType: %2h\nFull size: %3h (%4)\nHeader size: %5h (%6)\nBody size: %7h (%8)\nData offset: %9h\nAttributes: %10h")
.arg(name)
.hexarg2(sectionHeader->Type, 2)
.hexarg(section.size()).arg(section.size())
.hexarg(header.size()).arg(header.size())
.hexarg(body.size()).arg(body.size())
.hexarg(dataOffset)
.hexarg2(attributes, 4);
// Append additional info
info.append(additionalInfo);
// Construct parsing data
pdata.offset += parentOffset;
pdata.section.guidDefined.guid = guid;
// Add tree item
if (!preparse) {
index = model->addItem(Types::Section, sectionHeader->Type, name, QString(), info, header, body, FALSE, parsingDataToQByteArray(pdata), parent);
// Show messages
if (msgSignedSectionFound)
msg(QObject::tr("parseGuidedSectionHeader: section signature may become invalid after any modification"), index);
if (msgNoAuthStatusAttribute)
msg(QObject::tr("parseGuidedSectionHeader: CRC32 GUIDed section without AuthStatusValid attribute"), index);
if (msgNoProcessingRequiredAttributeCompressed)
msg(QObject::tr("parseGuidedSectionHeader: compressed GUIDed section without ProcessingRequired attribute"), index);
if (msgNoProcessingRequiredAttributeSigned)
msg(QObject::tr("parseGuidedSectionHeader: signed GUIDed section without ProcessingRequired attribute"), index);
if (msgInvalidCrc)
msg(QObject::tr("parseGuidedSectionHeader: GUID defined section with invalid CRC32"), index);
if (msgUnknownCertType)
msg(QObject::tr("parseGuidedSectionHeader: signed GUIDed section with unknown type"), index);
if (msgUnknownCertSubtype)
msg(QObject::tr("parseGuidedSectionHeader: signed GUIDed section with unknown subtype"), index);
}
return ERR_SUCCESS;
}
STATUS FfsParser::parseFreeformGuidedSectionHeader(const QByteArray & section, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index, const bool preparse)
{
// Check sanity
if ((UINT32)section.size() < sizeof(EFI_FREEFORM_SUBTYPE_GUID_SECTION))
return ERR_INVALID_SECTION;
// Get data from parent's parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Obtain header fields
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(section.constData());
const EFI_FREEFORM_SUBTYPE_GUID_SECTION* fsgHeader = (const EFI_FREEFORM_SUBTYPE_GUID_SECTION*)sectionHeader;
UINT32 headerSize = sizeof(EFI_FREEFORM_SUBTYPE_GUID_SECTION);
EFI_GUID guid = fsgHeader->SubTypeGuid;
if (pdata.ffsVersion == 3 && uint24ToUint32(sectionHeader->Size) == EFI_SECTION2_IS_USED) {
if ((UINT32)section.size() < sizeof(EFI_FREEFORM_SUBTYPE_GUID_SECTION2))
return ERR_INVALID_SECTION;
const EFI_FREEFORM_SUBTYPE_GUID_SECTION2* fsgHeader2 = (const EFI_FREEFORM_SUBTYPE_GUID_SECTION2*)sectionHeader;
headerSize = sizeof(EFI_FREEFORM_SUBTYPE_GUID_SECTION2);
guid = fsgHeader2->SubTypeGuid;
}
QByteArray header = section.left(headerSize);
QByteArray body = section.mid(headerSize);
// Get info
QString name = sectionTypeToQString(sectionHeader->Type) + QObject::tr(" section");
QString info = QObject::tr("Type: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)\nSubtype GUID: %8")
.hexarg2(fsgHeader->Type, 2)
.hexarg(section.size()).arg(section.size())
.hexarg(header.size()).arg(header.size())
.hexarg(body.size()).arg(body.size())
.arg(guidToQString(guid));
// Construct parsing data
pdata.offset += parentOffset;
pdata.section.freeformSubtypeGuid.guid = guid;
// Add tree item
if (!preparse) {
index = model->addItem(Types::Section, sectionHeader->Type, name, QString(), info, header, body, FALSE, parsingDataToQByteArray(pdata), parent);
// Rename section
model->setName(index, guidToQString(guid));
}
return ERR_SUCCESS;
}
STATUS FfsParser::parseVersionSectionHeader(const QByteArray & section, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index, const bool preparse)
{
// Check sanity
if ((UINT32)section.size() < sizeof(EFI_VERSION_SECTION))
return ERR_INVALID_SECTION;
// Get data from parent's parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Obtain header fields
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(section.constData());
const EFI_VERSION_SECTION* versionHeader = (const EFI_VERSION_SECTION*)sectionHeader;
UINT32 headerSize = sizeof(EFI_VERSION_SECTION);
UINT16 buildNumber = versionHeader->BuildNumber;
if (pdata.ffsVersion == 3 && uint24ToUint32(sectionHeader->Size) == EFI_SECTION2_IS_USED) {
if ((UINT32)section.size() < sizeof(EFI_VERSION_SECTION2))
return ERR_INVALID_SECTION;
const EFI_VERSION_SECTION2* versionHeader2 = (const EFI_VERSION_SECTION2*)sectionHeader;
headerSize = sizeof(EFI_VERSION_SECTION2);
buildNumber = versionHeader2->BuildNumber;
}
QByteArray header = section.left(headerSize);
QByteArray body = section.mid(headerSize);
// Get info
QString name = sectionTypeToQString(sectionHeader->Type) + QObject::tr(" section");
QString info = QObject::tr("Type: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)\nBuild number: %8")
.hexarg2(versionHeader->Type, 2)
.hexarg(section.size()).arg(section.size())
.hexarg(header.size()).arg(header.size())
.hexarg(body.size()).arg(body.size())
.arg(buildNumber);
// Construct parsing data
pdata.offset += parentOffset;
// Add tree item
if (!preparse) {
index = model->addItem(Types::Section, sectionHeader->Type, name, QString(), info, header, body, FALSE, parsingDataToQByteArray(pdata), parent);
}
return ERR_SUCCESS;
}
STATUS FfsParser::parsePostcodeSectionHeader(const QByteArray & section, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index, const bool preparse)
{
// Check sanity
if ((UINT32)section.size() < sizeof(POSTCODE_SECTION))
return ERR_INVALID_SECTION;
// Get data from parent's parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Obtain header fields
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(section.constData());
const POSTCODE_SECTION* postcodeHeader = (const POSTCODE_SECTION*)sectionHeader;
UINT32 headerSize = sizeof(POSTCODE_SECTION);
UINT32 postCode = postcodeHeader->Postcode;
if (pdata.ffsVersion == 3 && uint24ToUint32(sectionHeader->Size) == EFI_SECTION2_IS_USED) {
if ((UINT32)section.size() < sizeof(POSTCODE_SECTION2))
return ERR_INVALID_SECTION;
const POSTCODE_SECTION2* postcodeHeader2 = (const POSTCODE_SECTION2*)sectionHeader;
headerSize = sizeof(POSTCODE_SECTION2);
postCode = postcodeHeader2->Postcode;
}
QByteArray header = section.left(headerSize);
QByteArray body = section.mid(headerSize);
// Get info
QString name = sectionTypeToQString(sectionHeader->Type) + QObject::tr(" section");
QString info = QObject::tr("Type: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)\nPostcode: %8h")
.hexarg2(postcodeHeader->Type, 2)
.hexarg(section.size()).arg(section.size())
.hexarg(header.size()).arg(header.size())
.hexarg(body.size()).arg(body.size())
.hexarg(postCode);
// Construct parsing data
pdata.offset += parentOffset;
// Add tree item
if (!preparse) {
index = model->addItem(Types::Section, sectionHeader->Type, name, QString(), info, header, body, FALSE, parsingDataToQByteArray(pdata), parent);
}
return ERR_SUCCESS;
}
STATUS FfsParser::parseSectionBody(const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
QByteArray header = model->header(index);
2016-03-21 18:00:10 +08:00
if ((UINT32)header.size() < sizeof(EFI_COMMON_SECTION_HEADER))
return ERR_INVALID_SECTION;
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(header.constData());
switch (sectionHeader->Type) {
// Encapsulation
case EFI_SECTION_COMPRESSION: return parseCompressedSectionBody(index);
case EFI_SECTION_GUID_DEFINED: return parseGuidedSectionBody(index);
case EFI_SECTION_DISPOSABLE: return parseSections(model->body(index), index);
// Leaf
case EFI_SECTION_FREEFORM_SUBTYPE_GUID: return parseRawArea(index);
case EFI_SECTION_VERSION: return parseVersionSectionBody(index);
case EFI_SECTION_DXE_DEPEX:
case EFI_SECTION_PEI_DEPEX:
case EFI_SECTION_SMM_DEPEX: return parseDepexSectionBody(index);
case EFI_SECTION_TE: return parseTeImageSectionBody(index);
case EFI_SECTION_PE32:
case EFI_SECTION_PIC: return parsePeImageSectionBody(index);
case EFI_SECTION_USER_INTERFACE: return parseUiSectionBody(index);
case EFI_SECTION_FIRMWARE_VOLUME_IMAGE: return parseRawArea(index);
case EFI_SECTION_RAW: return parseRawSectionBody(index);
// No parsing needed
case EFI_SECTION_COMPATIBILITY16:
case PHOENIX_SECTION_POSTCODE:
case INSYDE_SECTION_POSTCODE:
default:
return ERR_SUCCESS;
}
}
STATUS FfsParser::parseCompressedSectionBody(const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Get data from parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
UINT8 algorithm = pdata.section.compressed.compressionType;
// Decompress section
QByteArray decompressed;
QByteArray efiDecompressed;
STATUS result = decompress(model->body(index), algorithm, decompressed, efiDecompressed);
if (result) {
msg(QObject::tr("parseCompressedSectionBody: decompression failed with error \"%1\"").arg(errorCodeToQString(result)), index);
return ERR_SUCCESS;
}
// Check reported uncompressed size
if (pdata.section.compressed.uncompressedSize != (UINT32)decompressed.size()) {
msg(QObject::tr("parseCompressedSectionBody: decompressed size stored in header %1h (%2) differs from actual %3h (%4)")
.hexarg(pdata.section.compressed.uncompressedSize)
.arg(pdata.section.compressed.uncompressedSize)
.hexarg(decompressed.size())
.arg(decompressed.size()), index);
model->addInfo(index, QObject::tr("\nActual decompressed size: %1h (%2)").hexarg(decompressed.size()).arg(decompressed.size()));
}
// Check for undecided compression algorithm, this is a special case
if (algorithm == COMPRESSION_ALGORITHM_UNDECIDED) {
// Try preparse of sections decompressed with Tiano algorithm
if (ERR_SUCCESS == parseSections(decompressed, index, true)) {
algorithm = COMPRESSION_ALGORITHM_TIANO;
}
// Try preparse of sections decompressed with EFI 1.1 algorithm
else if (ERR_SUCCESS == parseSections(efiDecompressed, index, true)) {
algorithm = COMPRESSION_ALGORITHM_EFI11;
decompressed = efiDecompressed;
}
else {
msg(QObject::tr("parseCompressedSectionBody: can't guess the correct decompression algorithm, both preparse steps are failed"), index);
}
}
// Add info
model->addInfo(index, QObject::tr("\nCompression algorithm: %1").arg(compressionTypeToQString(algorithm)));
// Update data
pdata.section.compressed.algorithm = algorithm;
if (algorithm != COMPRESSION_ALGORITHM_NONE)
model->setCompressed(index, true);
model->setParsingData(index, parsingDataToQByteArray(pdata));
// Parse decompressed data
return parseSections(decompressed, index);
}
STATUS FfsParser::parseGuidedSectionBody(const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Get data from parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
EFI_GUID guid = pdata.section.guidDefined.guid;
// Check if section requires processing
QByteArray processed = model->body(index);
QByteArray efiDecompressed;
QString info;
bool parseCurrentSection = true;
UINT8 algorithm = COMPRESSION_ALGORITHM_NONE;
// Tiano compressed section
if (QByteArray((const char*)&guid, sizeof(EFI_GUID)) == EFI_GUIDED_SECTION_TIANO) {
algorithm = EFI_STANDARD_COMPRESSION;
STATUS result = decompress(model->body(index), algorithm, processed, efiDecompressed);
if (result) {
parseCurrentSection = false;
msg(QObject::tr("parseGuidedSectionBody: decompression failed with error \"%1\"").arg(errorCodeToQString(result)), index);
return ERR_SUCCESS;
}
// Check for undecided compression algorithm, this is a special case
if (algorithm == COMPRESSION_ALGORITHM_UNDECIDED) {
// Try preparse of sections decompressed with Tiano algorithm
if (ERR_SUCCESS == parseSections(processed, index, true)) {
algorithm = COMPRESSION_ALGORITHM_TIANO;
}
// Try preparse of sections decompressed with EFI 1.1 algorithm
else if (ERR_SUCCESS == parseSections(efiDecompressed, index, true)) {
algorithm = COMPRESSION_ALGORITHM_EFI11;
processed = efiDecompressed;
}
else {
msg(QObject::tr("parseGuidedSectionBody: can't guess the correct decompression algorithm, both preparse steps are failed"), index);
}
}
info += QObject::tr("\nCompression algorithm: %1").arg(compressionTypeToQString(algorithm));
info += QObject::tr("\nDecompressed size: %1h (%2)").hexarg(processed.length()).arg(processed.length());
}
// LZMA compressed section
else if (QByteArray((const char*)&guid, sizeof(EFI_GUID)) == EFI_GUIDED_SECTION_LZMA) {
algorithm = EFI_CUSTOMIZED_COMPRESSION;
STATUS result = decompress(model->body(index), algorithm, processed, efiDecompressed);
if (result) {
parseCurrentSection = false;
msg(QObject::tr("parseGuidedSectionBody: decompression failed with error \"%1\"").arg(errorCodeToQString(result)), index);
return ERR_SUCCESS;
}
if (algorithm == COMPRESSION_ALGORITHM_LZMA) {
info += QObject::tr("\nCompression algorithm: LZMA");
info += QObject::tr("\nDecompressed size: %1h (%2)").hexarg(processed.length()).arg(processed.length());
}
else
info += QObject::tr("\nCompression algorithm: unknown");
}
// Add info
model->addInfo(index, info);
// Update data
if (algorithm != COMPRESSION_ALGORITHM_NONE)
model->setCompressed(index, true);
model->setParsingData(index, parsingDataToQByteArray(pdata));
if (!parseCurrentSection) {
msg(QObject::tr("parseGuidedSectionBody: GUID defined section can not be processed"), index);
return ERR_SUCCESS;
}
return parseSections(processed, index);
}
STATUS FfsParser::parseVersionSectionBody(const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Add info
model->addInfo(index, QObject::tr("\nVersion string: %1").arg(QString::fromUtf16((const CHAR16*)model->body(index).constData())));
return ERR_SUCCESS;
}
STATUS FfsParser::parseDepexSectionBody(const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
QByteArray body = model->body(index);
QString parsed;
// Check data to be present
if (body.size() < 2) { // 2 is a minimal sane value, i.e TRUE + END
msg(QObject::tr("parseDepexSectionBody: DEPEX section too short"), index);
return ERR_DEPEX_PARSE_FAILED;
}
const EFI_GUID * guid;
const UINT8* current = (const UINT8*)body.constData();
// Special cases of first opcode
switch (*current) {
case EFI_DEP_BEFORE:
if (body.size() != 2 * EFI_DEP_OPCODE_SIZE + sizeof(EFI_GUID)) {
msg(QObject::tr("parseDepexSectionBody: DEPEX section too long for a section starting with BEFORE opcode"), index);
return ERR_SUCCESS;
}
guid = (const EFI_GUID*)(current + EFI_DEP_OPCODE_SIZE);
parsed += QObject::tr("\nBEFORE %1").arg(guidToQString(*guid));
current += EFI_DEP_OPCODE_SIZE + sizeof(EFI_GUID);
if (*current != EFI_DEP_END){
msg(QObject::tr("parseDepexSectionBody: DEPEX section ends with non-END opcode"), index);
return ERR_SUCCESS;
}
return ERR_SUCCESS;
case EFI_DEP_AFTER:
if (body.size() != 2 * EFI_DEP_OPCODE_SIZE + sizeof(EFI_GUID)){
msg(QObject::tr("parseDepexSectionBody: DEPEX section too long for a section starting with AFTER opcode"), index);
return ERR_SUCCESS;
}
guid = (const EFI_GUID*)(current + EFI_DEP_OPCODE_SIZE);
parsed += QObject::tr("\nAFTER %1").arg(guidToQString(*guid));
current += EFI_DEP_OPCODE_SIZE + sizeof(EFI_GUID);
if (*current != EFI_DEP_END) {
msg(QObject::tr("parseDepexSectionBody: DEPEX section ends with non-END opcode"), index);
return ERR_SUCCESS;
}
return ERR_SUCCESS;
case EFI_DEP_SOR:
if (body.size() <= 2 * EFI_DEP_OPCODE_SIZE) {
msg(QObject::tr("parseDepexSectionBody: DEPEX section too short for a section starting with SOR opcode"), index);
return ERR_SUCCESS;
}
parsed += QObject::tr("\nSOR");
current += EFI_DEP_OPCODE_SIZE;
break;
}
// Parse the rest of depex
while (current - (const UINT8*)body.constData() < body.size()) {
switch (*current) {
case EFI_DEP_BEFORE: {
msg(QObject::tr("parseDepexSectionBody: misplaced BEFORE opcode"), index);
return ERR_SUCCESS;
}
case EFI_DEP_AFTER: {
msg(QObject::tr("parseDepexSectionBody: misplaced AFTER opcode"), index);
return ERR_SUCCESS;
}
case EFI_DEP_SOR: {
msg(QObject::tr("parseDepexSectionBody: misplaced SOR opcode"), index);
return ERR_SUCCESS;
}
case EFI_DEP_PUSH:
// Check that the rest of depex has correct size
if ((UINT32)body.size() - (UINT32)(current - (const UINT8*)body.constData()) <= EFI_DEP_OPCODE_SIZE + sizeof(EFI_GUID)) {
parsed.clear();
msg(QObject::tr("parseDepexSectionBody: remains of DEPEX section too short for PUSH opcode"), index);
return ERR_SUCCESS;
}
guid = (const EFI_GUID*)(current + EFI_DEP_OPCODE_SIZE);
parsed += QObject::tr("\nPUSH %1").arg(guidToQString(*guid));
current += EFI_DEP_OPCODE_SIZE + sizeof(EFI_GUID);
break;
case EFI_DEP_AND:
parsed += QObject::tr("\nAND");
current += EFI_DEP_OPCODE_SIZE;
break;
case EFI_DEP_OR:
parsed += QObject::tr("\nOR");
current += EFI_DEP_OPCODE_SIZE;
break;
case EFI_DEP_NOT:
parsed += QObject::tr("\nNOT");
current += EFI_DEP_OPCODE_SIZE;
break;
case EFI_DEP_TRUE:
parsed += QObject::tr("\nTRUE");
current += EFI_DEP_OPCODE_SIZE;
break;
case EFI_DEP_FALSE:
parsed += QObject::tr("\nFALSE");
current += EFI_DEP_OPCODE_SIZE;
break;
case EFI_DEP_END:
parsed += QObject::tr("\nEND");
current += EFI_DEP_OPCODE_SIZE;
// Check that END is the last opcode
if (current - (const UINT8*)body.constData() < body.size()) {
parsed.clear();
msg(QObject::tr("parseDepexSectionBody: DEPEX section ends with non-END opcode"), index);
}
break;
default:
msg(QObject::tr("parseDepexSectionBody: unknown opcode"), index);
return ERR_SUCCESS;
break;
}
}
// Add info
model->addInfo(index, QObject::tr("\nParsed expression:%1").arg(parsed));
return ERR_SUCCESS;
}
STATUS FfsParser::parseUiSectionBody(const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
QString text = QString::fromUtf16((const CHAR16*)model->body(index).constData());
// Add info
model->addInfo(index, QObject::tr("\nText: %1").arg(text));
// Rename parent file
model->setText(model->findParentOfType(index, Types::File), text);
return ERR_SUCCESS;
}
STATUS FfsParser::parseAprioriRawSection(const QByteArray & body, QString & parsed)
{
// Sanity check
if (body.size() % sizeof(EFI_GUID)) {
msg(QObject::tr("parseAprioriRawSection: apriori file has size is not a multiple of 16"));
}
parsed.clear();
UINT32 count = body.size() / sizeof(EFI_GUID);
if (count > 0) {
for (UINT32 i = 0; i < count; i++) {
const EFI_GUID* guid = (const EFI_GUID*)body.constData() + i;
parsed += QObject::tr("\n%1").arg(guidToQString(*guid));
}
}
return ERR_SUCCESS;
}
STATUS FfsParser::parseRawSectionBody(const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Check for apriori file
QModelIndex parentFile = model->findParentOfType(index, Types::File);
QByteArray parentFileGuid = model->header(parentFile).left(sizeof(EFI_GUID));
if (parentFileGuid == EFI_PEI_APRIORI_FILE_GUID) { // PEI apriori file
// Parse apriori file list
QString str;
STATUS result = parseAprioriRawSection(model->body(index), str);
if (!result && !str.isEmpty())
model->addInfo(index, QObject::tr("\nFile list:%1").arg(str));
// Set parent file text
model->setText(parentFile, QObject::tr("PEI apriori file"));
return ERR_SUCCESS;
}
else if (parentFileGuid == EFI_DXE_APRIORI_FILE_GUID) { // DXE apriori file
// Parse apriori file list
QString str;
STATUS result = parseAprioriRawSection(model->body(index), str);
if (!result && !str.isEmpty())
model->addInfo(index, QObject::tr("\nFile list:%1").arg(str));
// Set parent file text
model->setText(parentFile, QObject::tr("DXE apriori file"));
return ERR_SUCCESS;
}
// Parse as raw area
return parseRawArea(index);
}
STATUS FfsParser::parsePeImageSectionBody(const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Get section body
QByteArray body = model->body(index);
if ((UINT32)body.size() < sizeof(EFI_IMAGE_DOS_HEADER)) {
msg(QObject::tr("parsePeImageSectionBody: section body size is smaller than DOS header size"), index);
return ERR_SUCCESS;
}
QByteArray info;
const EFI_IMAGE_DOS_HEADER* dosHeader = (const EFI_IMAGE_DOS_HEADER*)body.constData();
if (dosHeader->e_magic != EFI_IMAGE_DOS_SIGNATURE) {
info += QObject::tr("\nDOS signature: %1h, invalid").hexarg2(dosHeader->e_magic, 4);
msg(QObject::tr("parsePeImageSectionBody: PE32 image with invalid DOS signature"), index);
model->addInfo(index, info);
return ERR_SUCCESS;
}
const EFI_IMAGE_PE_HEADER* peHeader = (EFI_IMAGE_PE_HEADER*)(body.constData() + dosHeader->e_lfanew);
if (body.size() < (UINT8*)peHeader - (UINT8*)dosHeader) {
info += QObject::tr("\nDOS header: invalid");
msg(QObject::tr("parsePeImageSectionBody: PE32 image with invalid DOS header"), index);
model->addInfo(index, info);
return ERR_SUCCESS;
}
if (peHeader->Signature != EFI_IMAGE_PE_SIGNATURE) {
info += QObject::tr("\nPE signature: %1h, invalid").hexarg2(peHeader->Signature, 8);
msg(QObject::tr("parsePeImageSectionBody: PE32 image with invalid PE signature"), index);
model->addInfo(index, info);
return ERR_SUCCESS;
}
const EFI_IMAGE_FILE_HEADER* imageFileHeader = (const EFI_IMAGE_FILE_HEADER*)(peHeader + 1);
if (body.size() < (UINT8*)imageFileHeader - (UINT8*)dosHeader) {
info += QObject::tr("\nPE header: invalid");
msg(QObject::tr("parsePeImageSectionBody: PE32 image with invalid PE header"), index);
model->addInfo(index, info);
return ERR_SUCCESS;
}
info += QObject::tr("\nDOS signature: %1h\nPE signature: %2h\nMachine type: %3\nNumber of sections: %4\nCharacteristics: %5h")
.hexarg2(dosHeader->e_magic, 4)
.hexarg2(peHeader->Signature, 8)
.arg(machineTypeToQString(imageFileHeader->Machine))
.arg(imageFileHeader->NumberOfSections)
.hexarg2(imageFileHeader->Characteristics, 4);
EFI_IMAGE_OPTIONAL_HEADER_POINTERS_UNION optionalHeader;
optionalHeader.H32 = (const EFI_IMAGE_OPTIONAL_HEADER32*)(imageFileHeader + 1);
if (body.size() < (UINT8*)optionalHeader.H32 - (UINT8*)dosHeader) {
info += QObject::tr("\nPE optional header: invalid");
msg(QObject::tr("parsePeImageSectionBody: PE32 image with invalid PE optional header"), index);
model->addInfo(index, info);
return ERR_SUCCESS;
}
if (optionalHeader.H32->Magic == EFI_IMAGE_PE_OPTIONAL_HDR32_MAGIC) {
info += QObject::tr("\nOptional header signature: %1h\nSubsystem: %2h\nAddress of entry point: %3h\nBase of code: %4h\nImage base: %5h")
.hexarg2(optionalHeader.H32->Magic, 4)
.hexarg2(optionalHeader.H32->Subsystem, 4)
.hexarg(optionalHeader.H32->AddressOfEntryPoint)
.hexarg(optionalHeader.H32->BaseOfCode)
.hexarg(optionalHeader.H32->ImageBase);
}
else if (optionalHeader.H32->Magic == EFI_IMAGE_PE_OPTIONAL_HDR64_MAGIC) {
info += QObject::tr("\nOptional header signature: %1h\nSubsystem: %2h\nAddress of entry point: %3h\nBase of code: %4h\nImage base: %5h")
.hexarg2(optionalHeader.H64->Magic, 4)
.hexarg2(optionalHeader.H64->Subsystem, 4)
.hexarg(optionalHeader.H64->AddressOfEntryPoint)
.hexarg(optionalHeader.H64->BaseOfCode)
.hexarg(optionalHeader.H64->ImageBase);
}
else {
info += QObject::tr("\nOptional header signature: %1h, unknown").hexarg2(optionalHeader.H32->Magic, 4);
msg(QObject::tr("parsePeImageSectionBody: PE32 image with invalid optional PE header signature"), index);
}
model->addInfo(index, info);
return ERR_SUCCESS;
}
STATUS FfsParser::parseTeImageSectionBody(const QModelIndex & index)
{
// Check sanity
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Get section body
QByteArray body = model->body(index);
if ((UINT32)body.size() < sizeof(EFI_IMAGE_TE_HEADER)) {
msg(QObject::tr("parsePeImageSectionBody: section body size is smaller than TE header size"), index);
return ERR_SUCCESS;
}
QByteArray info;
const EFI_IMAGE_TE_HEADER* teHeader = (const EFI_IMAGE_TE_HEADER*)body.constData();
if (teHeader->Signature != EFI_IMAGE_TE_SIGNATURE) {
info += QObject::tr("\nSignature: %1h, invalid").hexarg2(teHeader->Signature, 4);
msg(QObject::tr("parseTeImageSectionBody: TE image with invalid TE signature"), index);
}
else {
info += QObject::tr("\nSignature: %1h\nMachine type: %2\nNumber of sections: %3\nSubsystem: %4h\nStripped size: %5h (%6)\nBase of code: %7h\nAddress of entry point: %8h\nImage base: %9h\nAdjusted image base: %10h")
.hexarg2(teHeader->Signature, 4)
.arg(machineTypeToQString(teHeader->Machine))
.arg(teHeader->NumberOfSections)
.hexarg2(teHeader->Subsystem, 2)
.hexarg(teHeader->StrippedSize).arg(teHeader->StrippedSize)
.hexarg(teHeader->BaseOfCode)
.hexarg(teHeader->AddressOfEntryPoint)
.hexarg(teHeader->ImageBase)
.hexarg(teHeader->ImageBase + teHeader->StrippedSize - sizeof(EFI_IMAGE_TE_HEADER));
}
// Get data from parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
pdata.section.teImage.imageBase = teHeader->ImageBase;
pdata.section.teImage.adjustedImageBase = teHeader->ImageBase + teHeader->StrippedSize - sizeof(EFI_IMAGE_TE_HEADER);
// Update parsing data
model->setParsingData(index, parsingDataToQByteArray(pdata));
// Add TE info
model->addInfo(index, info);
return ERR_SUCCESS;
}
2015-07-05 12:20:03 +08:00
STATUS FfsParser::performSecondPass(const QModelIndex & index)
{
// Sanity check
if (!index.isValid() || !lastVtf.isValid())
return ERR_INVALID_PARAMETER;
// Check for compressed lastVtf
if (model->compressed(lastVtf)) {
msg(QObject::tr("performSecondPass: the last VTF appears inside compressed item, the image may be damaged"), lastVtf);
return ERR_SUCCESS;
}
// Get parsing data for the last VTF
PARSING_DATA pdata = parsingDataFromQModelIndex(lastVtf);
// Calculate address difference
const UINT32 vtfSize = model->header(lastVtf).size() + model->body(lastVtf).size() + (pdata.file.hasTail ? sizeof(UINT16) : 0);
const UINT32 diff = 0xFFFFFFFFUL - pdata.offset - vtfSize + 1;
// Apply address information to index and all it's child items
2015-07-05 12:20:03 +08:00
addMemoryAddressesRecursive(index, diff);
return ERR_SUCCESS;
}
STATUS FfsParser::addMemoryAddressesRecursive(const QModelIndex & index, const UINT32 diff)
{
// Sanity check
if (!index.isValid())
return ERR_SUCCESS;
// Set address value for non-compressed data
if (!model->compressed(index)) {
// Get parsing data for the current item
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
// Check address sanity
if ((const UINT64)diff + pdata.offset <= 0xFFFFFFFFUL) {
// Update info
pdata.address = diff + pdata.offset;
UINT32 headerSize = model->header(index).size();
if (headerSize) {
model->addInfo(index, QObject::tr("\nHeader memory address: %1h").hexarg2(pdata.address, 8));
model->addInfo(index, QObject::tr("\nData memory address: %1h").hexarg2(pdata.address + headerSize, 8));
}
else {
model->addInfo(index, QObject::tr("\nMemory address: %1h").hexarg2(pdata.address, 8));
}
// Special case of uncompressed TE image sections
if (model->type(index) == Types::Section && model->subtype(index) == EFI_SECTION_TE) {
// Check data memory address to be equal to either ImageBase or AdjustedImageBase
if (pdata.section.teImage.imageBase == pdata.address + headerSize) {
pdata.section.teImage.revision = 1;
}
else if (pdata.section.teImage.adjustedImageBase == pdata.address + headerSize) {
pdata.section.teImage.revision = 2;
}
else {
msg(QObject::tr("addMemoryAddressesRecursive: image base is nether original nor adjusted, it's likely a part of backup PEI volume or DXE volume, but can also be damaged"), index);
pdata.section.teImage.revision = 0;
}
}
// Set modified parsing data
model->setParsingData(index, parsingDataToQByteArray(pdata));
}
}
// Process child items
for (int i = 0; i < model->rowCount(index); i++) {
addMemoryAddressesRecursive(index.child(i, 0), diff);
}
return ERR_SUCCESS;
}
STATUS FfsParser::addOffsetsRecursive(const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Get parsing data for the current item
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
// Add current offset if the element is not compressed
// or it's compressed, but it's parent isn't
if ((!model->compressed(index)) || (index.parent().isValid() && !model->compressed(index.parent()))) {
model->addInfo(index, QObject::tr("Offset: %1h\n").hexarg(pdata.offset), false);
}
//TODO: show FIT file fixed attribute correctly
model->addInfo(index, QObject::tr("\nCompressed: %1").arg(model->compressed(index) ? QObject::tr("Yes") : QObject::tr("No")));
model->addInfo(index, QObject::tr("\nFixed: %1").arg(model->fixed(index) ? QObject::tr("Yes") : QObject::tr("No")));
// Process child items
for (int i = 0; i < model->rowCount(index); i++) {
addOffsetsRecursive(index.child(i, 0));
}
2015-07-05 12:20:03 +08:00
return ERR_SUCCESS;
}
STATUS FfsParser::parseNvarStore(const QByteArray & data, const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Get parsing data for the current item
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
UINT32 parentOffset = pdata.offset + model->header(index).size();
// Rename parent file
model->setText(model->findParentOfType(index, Types::File), QObject::tr("NVAR store"));
UINT32 offset = 0;
UINT32 guidsInStore = 0;
// Parse all entries
while (1) {
bool msgUnknownExtDataFormat = false;
bool msgExtHeaderTooLong = false;
bool msgExtDataTooShort = false;
bool isInvalid = false;
bool isDataOnly = false;
bool hasExtendedHeader = false;
bool hasChecksum = false;
bool hasTimestampAndHash = false;
2016-03-21 17:19:02 +08:00
bool hasGuidIndex = false;
2016-03-21 17:19:02 +08:00
UINT32 guidIndex = 0;
UINT8 storedChecksum = 0;
UINT8 calculatedChecksum = 0;
UINT16 extendedHeaderSize = 0;
UINT8 extendedAttributes = 0;
UINT64 timestamp = 0;
QByteArray hash;
UINT8 subtype = Subtypes::FullNvarEntry;
QString name;
QString text;
QByteArray header;
QByteArray body;
QByteArray extendedData;
UINT32 guidAreaSize = guidsInStore * sizeof(EFI_GUID);
UINT32 unparsedSize = (UINT32)data.size() - offset - guidAreaSize;
// Get entry header
const NVAR_ENTRY_HEADER* entryHeader = (const NVAR_ENTRY_HEADER*)(data.constData() + offset);
// Check header size
if (unparsedSize < sizeof(NVAR_ENTRY_HEADER) ||
unparsedSize < entryHeader->Size) {
// Check if the data left is a free space or a padding
QByteArray padding = data.mid(offset, unparsedSize);
UINT8 type;
if (padding.count(pdata.emptyByte) == padding.size()) {
// It's a free space
name = QObject::tr("Free space");
type = Types::FreeSpace;
subtype = 0;
}
else {
// Nothing is parsed yet, but the file is not empty
if (!offset) {
msg(QObject::tr("parseNvarStore: file can't be parsed as NVAR variables store"), index);
return ERR_SUCCESS;
}
// It's a padding
name = QObject::tr("Padding");
type = Types::Padding;
subtype = getPaddingType(padding);
}
// Get info
QString info = QObject::tr("Full size: %1h (%2)")
.hexarg(padding.size()).arg(padding.size());
// Construct parsing data
pdata.offset = parentOffset + offset;
// Add tree item
model->addItem(type, subtype, name, QString(), info, QByteArray(), padding, FALSE, parsingDataToQByteArray(pdata), index);
// Add GUID store area
QByteArray guidArea = data.right(guidAreaSize);
// Get info
name = QObject::tr("GUID store area");
info = QObject::tr("Full size: %1h (%2)\nGUIDs in store: %3")
.hexarg(guidArea.size()).arg(guidArea.size())
.arg(guidsInStore);
// Construct parsing data
pdata.offset = parentOffset + offset + padding.size();
// Add tree item
model->addItem(Types::Padding, getPaddingType(guidArea), name, QString(), info, QByteArray(), guidArea, FALSE, parsingDataToQByteArray(pdata), index);
return ERR_SUCCESS;
}
// Contruct generic header and body
header = data.mid(offset, sizeof(NVAR_ENTRY_HEADER));
body = data.mid(offset + sizeof(NVAR_ENTRY_HEADER), entryHeader->Size - sizeof(NVAR_ENTRY_HEADER));
UINT32 lastVariableFlag = pdata.emptyByte ? 0xFFFFFF : 0;
// Set default next to predefined last value
pdata.nvram.nvar.next = lastVariableFlag;
// Entry is marked as invalid
if ((entryHeader->Attributes & NVRAM_NVAR_ENTRY_ATTRIB_VALID) == 0) { // Valid attribute is not set
isInvalid = true;
// Do not parse further
goto parsing_done;
}
// Add next node information to parsing data
if (entryHeader->Next != lastVariableFlag) {
subtype = Subtypes::LinkNvarEntry;
pdata.nvram.nvar.next = entryHeader->Next;
}
// Exntry with extended header
if (entryHeader->Attributes & NVRAM_NVAR_ENTRY_ATTRIB_EXT_HEADER) {
hasExtendedHeader = true;
msgUnknownExtDataFormat = true;
extendedHeaderSize = *(UINT16*)(body.constData() + body.size() - sizeof(UINT16));
if (extendedHeaderSize > body.size()) {
msgExtHeaderTooLong = true;
isInvalid = true;
// Do not parse further
goto parsing_done;
}
extendedAttributes = *(UINT8*)(body.constData() + body.size() - extendedHeaderSize);
// Variable with checksum
if (extendedAttributes & NVRAM_NVAR_ENTRY_EXT_ATTRIB_CHECKSUM) {
// Get stored checksum
storedChecksum = *(UINT8*)(body.constData() + body.size() - sizeof(UINT16) - sizeof(UINT8));
// Recalculate checksum for the variable
calculatedChecksum = 0;
// Include entry data
UINT8* start = (UINT8*)(entryHeader + 1);
for (UINT8* p = start; p < start + entryHeader->Size - sizeof(NVAR_ENTRY_HEADER); p++) {
calculatedChecksum += *p;
}
// Include entry size and flags
start = (UINT8*)&entryHeader->Size;
for (UINT8*p = start; p < start + sizeof(UINT16); p++) {
calculatedChecksum += *p;
}
// Include entry attributes
calculatedChecksum += entryHeader->Attributes;
hasChecksum = true;
msgUnknownExtDataFormat = false;
}
extendedData = body.mid(body.size() - extendedHeaderSize + sizeof(UINT8), extendedHeaderSize - sizeof(UINT16) - sizeof(UINT8) - (hasChecksum ? 1 : 0));
body = body.left(body.size() - extendedHeaderSize);
// Entry with authenticated write (for SecureBoot)
if (entryHeader->Attributes & NVRAM_NVAR_ENTRY_ATTRIB_AUTH_WRITE) {
if (extendedData.size() < sizeof(UINT64) + SHA256_HASH_SIZE) {
msgExtDataTooShort = true;
isInvalid = true;
// Do not parse further
goto parsing_done;
}
timestamp = *(UINT64*)(extendedData.constData());
hash = extendedData.mid(sizeof(UINT64), SHA256_HASH_SIZE);
hasTimestampAndHash = true;
msgUnknownExtDataFormat = false;
}
}
// Entry is data-only (nameless and GUIDless entry or link)
if (entryHeader->Attributes & NVRAM_NVAR_ENTRY_ATTRIB_DATA_ONLY) { // Data-only attribute is set
isInvalid = true;
QModelIndex nvarIndex;
// Search prevously added entries for a link to this variable //TODO:replace with linked lists
for (int i = 0; i < model->rowCount(index); i++) {
nvarIndex = index.child(i, 0);
PARSING_DATA nvarPdata = parsingDataFromQModelIndex(nvarIndex);
if (nvarPdata.nvram.nvar.next + nvarPdata.offset - parentOffset == offset) { // Previous link is present and valid
isInvalid = false;
break;
}
}
// Check if the link is valid
if (!isInvalid) {
// Use the name and text of the previous link
name = model->name(nvarIndex);
text = model->text(nvarIndex);
if (entryHeader->Next == lastVariableFlag)
subtype = Subtypes::DataNvarEntry;
}
isDataOnly = true;
// Do not parse further
goto parsing_done;
}
// Get entry name
2016-03-21 18:00:10 +08:00
{
UINT32 nameOffset = (entryHeader->Attributes & NVRAM_NVAR_ENTRY_ATTRIB_GUID) ? sizeof(EFI_GUID) : 1; // GUID can be stored with the variable or in a separate store, so there will only be an index of it
CHAR8* namePtr = (CHAR8*)(entryHeader + 1) + nameOffset;
2016-03-21 18:00:10 +08:00
UINT32 nameSize = 0;
if (entryHeader->Attributes & NVRAM_NVAR_ENTRY_ATTRIB_ASCII_NAME) { // Name is stored as ASCII string of CHAR8s
2016-03-21 18:00:10 +08:00
text = QString(namePtr);
nameSize = text.length() + 1;
}
else { // Name is stored as UCS2 string of CHAR16s
text = QString::fromUtf16((CHAR16*)namePtr);
nameSize = (text.length() + 1) * 2;
}
// Get entry GUID
if (entryHeader->Attributes & NVRAM_NVAR_ENTRY_ATTRIB_GUID) { // GUID is strored in the variable itself
name = guidToQString(*(EFI_GUID*)(entryHeader + 1));
2016-03-21 18:00:10 +08:00
}
// GUID is stored in GUID list at the end of the store
2016-03-21 18:00:10 +08:00
else {
guidIndex = *(UINT8*)(entryHeader + 1);
if (guidsInStore < guidIndex + 1)
guidsInStore = guidIndex + 1;
2016-03-21 18:00:10 +08:00
// The list begins at the end of the store and goes backwards
2016-03-21 18:00:10 +08:00
const EFI_GUID* guidPtr = (const EFI_GUID*)(data.constData() + data.size()) - 1 - guidIndex;
name = guidToQString(*guidPtr);
hasGuidIndex = true;
}
// Include name and GUID into the header and remove them from body
header = data.mid(offset, sizeof(NVAR_ENTRY_HEADER) + nameOffset + nameSize);
2016-03-21 18:00:10 +08:00
body = body.mid(nameOffset + nameSize);
}
parsing_done:
QString info;
// Rename invalid entries according to their types
if (isInvalid) {
if (entryHeader->Next != lastVariableFlag) {
name = QObject::tr("Invalid link");
subtype = Subtypes::InvalidLinkNvarEntry;
}
else {
name = QObject::tr("Invalid");
subtype = Subtypes::InvalidNvarEntry;
}
}
else // Add GUID info for valid entries
info += QObject::tr("Variable GUID: %1\n").arg(name);
2016-03-21 17:19:02 +08:00
// Add GUID index information
if (hasGuidIndex)
info += QObject::tr("GUID index: %1\n").arg(guidIndex);
// Add header, body and extended data info
info += QObject::tr("Full size: %1h (%2)\nHeader size %3h (%4)\nBody size: %5h (%6)")
.hexarg(entryHeader->Size).arg(entryHeader->Size)
.hexarg(header.size()).arg(header.size())
.hexarg(body.size()).arg(body.size());
// Add attributes info
info += QObject::tr("\nAttributes: %1h").hexarg2(entryHeader->Attributes, 2);
// Translate attributes to text
if (entryHeader->Attributes)
info += QObject::tr("\nAttributes as text: %1").arg(nvarAttributesToQString(entryHeader->Attributes));
pdata.nvram.nvar.attributes = entryHeader->Attributes;
// Add next node info
if (!isInvalid && entryHeader->Next != lastVariableFlag)
info += QObject::tr("\nNext node at offset: %1h").hexarg(parentOffset + offset + entryHeader->Next);
// Add extended header info
if (hasExtendedHeader) {
info += QObject::tr("\nExtended header size: %1h (%2)\nExtended attributes: %3h")
.hexarg(extendedHeaderSize).arg(extendedHeaderSize)
.hexarg2(extendedAttributes, 2);
pdata.nvram.nvar.extendedAttributes = extendedAttributes;
// Checksum
if (hasChecksum)
info += QObject::tr("\nChecksum: %1h%2").hexarg2(storedChecksum, 2)
.arg(calculatedChecksum ? QObject::tr(", invalid, should be %1h").hexarg2(0x100 - calculatedChecksum, 2) : QObject::tr(", valid"));
// Extended data
if (!extendedData.isEmpty())
info += QObject::tr("\nExtended data size: %1h (%2)")
.hexarg(extendedData.size()).arg(extendedData.size());
// Authentication data
if (hasTimestampAndHash) {
info += QObject::tr("\nTimestamp: %1h\nHash: %2")
.hexarg2(timestamp, 16).arg(QString(hash.toHex()));
pdata.nvram.nvar.timestamp = timestamp;
memcpy(pdata.nvram.nvar.hash, hash.constData(), 0x20);
}
}
// Add correct offset to parsing data
pdata.offset = parentOffset + offset;
// Add tree item
QModelIndex varIndex = model->addItem(Types::NvarEntry, subtype, name, text, info, header, body, FALSE, parsingDataToQByteArray(pdata), index);
// Show messages
if (msgUnknownExtDataFormat) msg(QObject::tr("parseNvarStore: unknown extended data format"), varIndex);
if (msgExtHeaderTooLong) msg(QObject::tr("parseNvarStore: extended header size (%1h) is greater than body size (%2h)")
.hexarg(extendedHeaderSize).hexarg(body.size()), varIndex);
if (msgExtDataTooShort) msg(QObject::tr("parseNvarStore: extended data size (%1h) is smaller than required for timestamp and hash (0x28)")
.hexarg(extendedData.size()), varIndex);
// Try parsing the entry data as NVAR storage if it begins with NVAR signature
if ((subtype == Subtypes::DataNvarEntry || subtype == Subtypes::FullNvarEntry)
&& *(const UINT32*)body.constData() == NVRAM_NVAR_ENTRY_SIGNATURE)
parseNvarStore(body, varIndex);
// Move to next exntry
offset += entryHeader->Size;
}
return ERR_SUCCESS;
2016-03-21 18:00:10 +08:00
}
STATUS FfsParser::parseNvramVolumeBody(const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Get parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
UINT32 parentOffset = pdata.offset + model->header(index).size();
// Get item data
QByteArray data = model->body(index);
// Search for first volume
STATUS result;
UINT32 prevStoreOffset;
result = findNextStore(index, data, parentOffset, 0, prevStoreOffset);
if (result)
return result;
// First store is not at the beginning of volume body
QString name;
QString info;
if (prevStoreOffset > 0) {
// Get info
QByteArray padding = data.left(prevStoreOffset);
name = QObject::tr("Padding");
info = QObject::tr("Full size: %1h (%2)")
.hexarg(padding.size()).arg(padding.size());
// Construct parsing data
pdata.offset = parentOffset;
// Add tree item
model->addItem(Types::Padding, getPaddingType(padding), name, QString(), info, QByteArray(), padding, TRUE, parsingDataToQByteArray(pdata), index);
}
// Search for and parse all stores
UINT32 storeOffset = prevStoreOffset;
UINT32 prevStoreSize = 0;
while (!result)
{
// Padding between stores
if (storeOffset > prevStoreOffset + prevStoreSize) {
UINT32 paddingOffset = prevStoreOffset + prevStoreSize;
UINT32 paddingSize = storeOffset - paddingOffset;
QByteArray padding = data.mid(paddingOffset, paddingSize);
// Get info
name = QObject::tr("Padding");
info = QObject::tr("Full size: %1h (%2)")
.hexarg(padding.size()).arg(padding.size());
// Construct parsing data
pdata.offset = parentOffset + paddingOffset;
// Add tree item
model->addItem(Types::Padding, getPaddingType(padding), name, QString(), info, QByteArray(), padding, TRUE, parsingDataToQByteArray(pdata), index);
}
// Get store size
UINT32 storeSize = 0;
result = getStoreSize(data, storeOffset, storeSize);
if (result) {
msg(QObject::tr("parseNvramVolumeBody: getStoreSize failed with error \"%1\"").arg(errorCodeToQString(result)), index);
return result;
}
// Check that current store is fully present in input
if (storeSize > (UINT32)data.size() || storeOffset + storeSize > (UINT32)data.size()) {
// Mark the rest as padding and finish the parsing
QByteArray padding = data.mid(storeOffset);
// Get info
name = QObject::tr("Padding");
info = QObject::tr("Full size: %1h (%2)")
.hexarg(padding.size()).arg(padding.size());
// Construct parsing data
pdata.offset = parentOffset + storeOffset;
// Add tree item
QModelIndex paddingIndex = model->addItem(Types::Padding, getPaddingType(padding), name, QString(), info, QByteArray(), padding, TRUE, parsingDataToQByteArray(pdata), index);
msg(QObject::tr("parseNvramVolumeBody: one of stores inside overlaps the end of data"), paddingIndex);
// Update variables
prevStoreOffset = storeOffset;
prevStoreSize = padding.size();
break;
}
QByteArray store = data.mid(storeOffset, storeSize);
// Parse current volume's header
QModelIndex storeIndex;
result = parseStoreHeader(store, parentOffset + storeOffset, index, storeIndex);
if (result) {
msg(QObject::tr("parseNvramVolumeBody: store header parsing failed with error \"%1\"").arg(errorCodeToQString(result)), index);
}
// Go to next volume
prevStoreOffset = storeOffset;
prevStoreSize = storeSize;
result = findNextStore(index, data, parentOffset, storeOffset + prevStoreSize, storeOffset);
}
// Padding/free space at the end of volume
storeOffset = prevStoreOffset + prevStoreSize;
if ((UINT32)data.size() > storeOffset) {
QByteArray padding = data.mid(storeOffset);
UINT8 type;
UINT8 subtype;
if (padding.count(pdata.emptyByte) == padding.size()) {
// It's a free space
name = QObject::tr("Free space");
type = Types::FreeSpace;
subtype = 0;
}
else {
// Nothing is parsed yet, but the file is not empty
if (!storeOffset) {
msg(QObject::tr("parseNvramVolumeBody: can't be parsed as NVRAM volume"), index);
return ERR_SUCCESS;
}
// It's a padding
name = QObject::tr("Padding");
type = Types::Padding;
subtype = getPaddingType(padding);
}
// Add info
info = QObject::tr("Full size: %1h (%2)")
.hexarg(padding.size()).arg(padding.size());
// Construct parsing data
pdata.offset = parentOffset + storeOffset;
// Add tree item
model->addItem(Types::Padding, getPaddingType(padding), name, QString(), info, QByteArray(), padding, TRUE, parsingDataToQByteArray(pdata), index);
}
// Parse bodies
for (int i = 0; i < model->rowCount(index); i++) {
QModelIndex current = index.child(i, 0);
switch (model->type(current)) {
case Types::VssStore:
case Types::FdcStore: parseVssStoreBody(current); break;
case Types::FsysStore: parseFsysStoreBody(current); break;
case Types::EvsaStore: parseEvsaStoreBody(current); break;
case Types::FlashMapStore: parseFlashMapBody(current); break;
}
}
return ERR_SUCCESS;
}
STATUS FfsParser::findNextStore(const QModelIndex & index, const QByteArray & volume, const UINT32 parentOffset, const UINT32 storeOffset, UINT32 & nextStoreOffset)
{
UINT32 dataSize = volume.size();
if (dataSize < sizeof(UINT32))
return ERR_STORES_NOT_FOUND;
UINT32 offset = storeOffset;
for (; offset < dataSize - sizeof(UINT32); offset++) {
const UINT32* currentPos = (const UINT32*)(volume.constData() + offset);
if (*currentPos == NVRAM_VSS_STORE_SIGNATURE || *currentPos == NVRAM_APPLE_SVS_STORE_SIGNATURE) { //$VSS or $SVS signatures found, perform checks
const VSS_VARIABLE_STORE_HEADER* vssHeader = (const VSS_VARIABLE_STORE_HEADER*)currentPos;
if (vssHeader->Format != NVRAM_VSS_VARIABLE_STORE_FORMATTED) {
msg(QObject::tr("findNextStore: VSS store candidate at offset %1h skipped, has invalid format %2h").hexarg(parentOffset + offset).hexarg2(vssHeader->Format, 2), index);
continue;
}
if (vssHeader->Size == 0 || vssHeader->Size == 0xFFFFFFFF) {
msg(QObject::tr("findNextStore: VSS store candidate at offset %1h skipped, has invalid size %2h").hexarg(parentOffset + offset).hexarg2(vssHeader->Size, 8), index);
continue;
}
// All checks passed, store found
break;
}
else if (*currentPos == NVRAM_FDC_VOLUME_SIGNATURE) { //FDC signature found
const FDC_VOLUME_HEADER* fdcHeader = (const FDC_VOLUME_HEADER*)currentPos;
if (fdcHeader->Size == 0 || fdcHeader->Size == 0xFFFFFFFF) {
msg(QObject::tr("findNextStore: FDC store candidate at offset %1h skipped, has invalid size %2h").hexarg(parentOffset + offset).hexarg2(fdcHeader->Size, 8), index);
continue;
}
// All checks passed, store found
break;
}
else if (*currentPos == NVRAM_APPLE_FSYS_STORE_SIGNATURE || *currentPos == NVRAM_APPLE_GAID_STORE_SIGNATURE) { //Fsys or Gaid signature found
const APPLE_FSYS_STORE_HEADER* fsysHeader = (const APPLE_FSYS_STORE_HEADER*)currentPos;
if (fsysHeader->Size == 0 || fsysHeader->Size == 0xFFFF) {
msg(QObject::tr("findNextStore: Fsys store candidate at offset %1h skipped, has invalid size %2h").hexarg(parentOffset + offset).hexarg2(fsysHeader->Size, 4), index);
continue;
}
// All checks passed, store found
break;
}
else if (*currentPos == NVRAM_EVSA_STORE_SIGNATURE) { //EVSA signature found
if (offset < sizeof(UINT32))
continue;
const EVSA_STORE_ENTRY* evsaHeader = (const EVSA_STORE_ENTRY*)(currentPos - 1);
if (evsaHeader->Header.Type != NVRAM_EVSA_ENTRY_TYPE_STORE) {
msg(QObject::tr("findNextStore: EVSA store candidate at offset %1h skipped, has invalid type %2h").hexarg(parentOffset + offset - 4).hexarg2(evsaHeader->Header.Type, 2), index);
continue;
}
if (evsaHeader->StoreSize == 0 || evsaHeader->StoreSize == 0xFFFFFFFF) {
msg(QObject::tr("findNextStore: EVSA store candidate at offset %1h skipped, has invalid size %2h").hexarg(parentOffset + offset).hexarg2(evsaHeader->StoreSize, 8), index);
continue;
}
// All checks passed, store found
offset -= sizeof(UINT32);
break;
}
else if (*currentPos == NVRAM_MAIN_STORE_VOLUME_GUID_DATA1 || *currentPos == EDKII_WORKING_BLOCK_SIGNATURE_GUID_DATA1) { //Possible FTW block signature found
QByteArray guid = QByteArray(volume.constData() + offset, sizeof(EFI_GUID));
if (guid != NVRAM_MAIN_STORE_VOLUME_GUID && guid != EDKII_WORKING_BLOCK_SIGNATURE_GUID) // Check the whole signature
continue;
// Detect header variant based on WriteQueueSize
const EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER32* ftwHeader = (const EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER32*)currentPos;
if (ftwHeader->WriteQueueSize % 0x10 == 0x04) { // Header with 32 bit WriteQueueSize
if (ftwHeader->WriteQueueSize == 0 || ftwHeader->WriteQueueSize == 0xFFFFFFFF) {
msg(QObject::tr("findNextStore: FTW block candidate at offset %1h skipped, has invalid body size %2h").hexarg(parentOffset + offset).hexarg2(ftwHeader->WriteQueueSize, 8), index);
continue;
}
}
else if (ftwHeader->WriteQueueSize % 0x10 == 0x00) { // Header with 64 bit WriteQueueSize
const EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER64* ftw64Header = (const EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER64*)currentPos;
if (ftw64Header->WriteQueueSize == 0 || ftw64Header->WriteQueueSize >= 0xFFFFFFFF) {
msg(QObject::tr("findNextStore: FTW block candidate at offset %1h skipped, has invalid body size %2h").hexarg(parentOffset + offset).hexarg2(ftw64Header->WriteQueueSize, 16), index);
continue;
}
}
else // Unknown header
continue;
// All checks passed, store found
break;
}
else if (*currentPos == NVRAM_PHOENIX_FLASH_MAP_SIGNATURE_PART1) {// Phoenix SCT flash map
QByteArray signature = QByteArray(volume.constData() + offset, NVRAM_PHOENIX_FLASH_MAP_SIGNATURE_LENGTH);
if (signature != NVRAM_PHOENIX_FLASH_MAP_SIGNATURE) // Check the whole signature
continue;
// All checks passed, store found
break;
}
else if (*currentPos == NVRAM_PHOENIX_CMDB_HEADER_SIGNATURE) { // Phoenix SCT CMDB store
const PHOENIX_CMDB_HEADER* cmdbHeader = (const PHOENIX_CMDB_HEADER*)currentPos;
// Check size
if (cmdbHeader->HeaderSize != sizeof(PHOENIX_CMDB_HEADER))
continue;
// All checks passed, store found
break;
}
else if (*currentPos == INTEL_MICROCODE_HEADER_VERSION) {// Intel microcode
if (!INTEL_MICROCODE_HEADER_SIZES_VALID(currentPos)) // Check header sizes
continue;
// Check reserved bytes
const INTEL_MICROCODE_HEADER* ucodeHeader = (const INTEL_MICROCODE_HEADER*)currentPos;
bool reservedBytesValid = true;
2016-04-15 03:02:17 +08:00
for (UINT32 i = 0; i < sizeof(ucodeHeader->Reserved); i++)
if (ucodeHeader->Reserved[i] != INTEL_MICROCODE_HEADER_RESERVED_BYTE) {
reservedBytesValid = false;
break;
}
if (!reservedBytesValid)
continue;
// All checks passed, store found
break;
}
else if (*currentPos == OEM_ACTIVATION_PUBKEY_MAGIC) { // SLIC pubkey
if (offset < 4 * sizeof(UINT32))
continue;
const OEM_ACTIVATION_PUBKEY* pubkeyHeader = (const OEM_ACTIVATION_PUBKEY*)(currentPos - 4);
// Check type
if (pubkeyHeader->Type != OEM_ACTIVATION_PUBKEY_TYPE)
continue;
// All checks passed, store found
offset -= 4 * sizeof(UINT32);
break;
}
else if (*currentPos == OEM_ACTIVATION_MARKER_WINDOWS_FLAG_PART1) { // SLIC marker
if (offset >= dataSize - sizeof(UINT64) ||
*(const UINT64*)currentPos != OEM_ACTIVATION_MARKER_WINDOWS_FLAG ||
offset < 26) // Check full windows flag and structure size
continue;
const OEM_ACTIVATION_MARKER* markerHeader = (const OEM_ACTIVATION_MARKER*)(volume.constData() + offset - 26);
// Check reserved bytes
bool reservedBytesValid = true;
2016-04-15 03:02:17 +08:00
for (UINT32 i = 0; i < sizeof(markerHeader->Reserved); i++)
if (markerHeader->Reserved[i] != OEM_ACTIVATION_MARKER_RESERVED_BYTE) {
reservedBytesValid = false;
break;
}
if (!reservedBytesValid)
continue;
// All checks passed, store found
offset -= 26;
break;
}
}
// No more stores found
if (offset >= dataSize - sizeof(UINT32))
return ERR_STORES_NOT_FOUND;
nextStoreOffset = offset;
return ERR_SUCCESS;
}
STATUS FfsParser::getStoreSize(const QByteArray & data, const UINT32 storeOffset, UINT32 & storeSize)
{
const UINT32* signature = (const UINT32*)(data.constData() + storeOffset);
if (*signature == NVRAM_VSS_STORE_SIGNATURE || *signature == NVRAM_APPLE_SVS_STORE_SIGNATURE) {
const VSS_VARIABLE_STORE_HEADER* vssHeader = (const VSS_VARIABLE_STORE_HEADER*)signature;
storeSize = vssHeader->Size;
}
else if (*signature == NVRAM_FDC_VOLUME_SIGNATURE) {
const FDC_VOLUME_HEADER* fdcHeader = (const FDC_VOLUME_HEADER*)signature;
storeSize = fdcHeader->Size;
}
else if (*signature == NVRAM_APPLE_FSYS_STORE_SIGNATURE || *signature == NVRAM_APPLE_GAID_STORE_SIGNATURE) {
const APPLE_FSYS_STORE_HEADER* fsysHeader = (const APPLE_FSYS_STORE_HEADER*)signature;
storeSize = fsysHeader->Size;
}
else if (*(signature + 1) == NVRAM_EVSA_STORE_SIGNATURE) {
const EVSA_STORE_ENTRY* evsaHeader = (const EVSA_STORE_ENTRY*)signature;
storeSize = evsaHeader->StoreSize;
}
else if (*signature == NVRAM_MAIN_STORE_VOLUME_GUID_DATA1 || *signature == EDKII_WORKING_BLOCK_SIGNATURE_GUID_DATA1) {
const EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER32* ftwHeader = (const EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER32*)signature;
if (ftwHeader->WriteQueueSize % 0x10 == 0x04) { // Header with 32 bit WriteQueueSize
storeSize = sizeof(EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER32) + ftwHeader->WriteQueueSize;
}
else { // Header with 64 bit WriteQueueSize
const EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER64* ftw64Header = (const EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER64*)signature;
storeSize = sizeof(EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER64) + ftw64Header->WriteQueueSize;
}
}
else if (*signature == NVRAM_PHOENIX_FLASH_MAP_SIGNATURE_PART1) { // Phoenix SCT flash map
const PHOENIX_FLASH_MAP_HEADER* flashMapHeader = (const PHOENIX_FLASH_MAP_HEADER*)signature;
storeSize = sizeof(PHOENIX_FLASH_MAP_HEADER) + sizeof(PHOENIX_FLASH_MAP_ENTRY) * flashMapHeader->NumEntries;
}
else if (*signature == NVRAM_PHOENIX_CMDB_HEADER_SIGNATURE) { // Phoenix SCT CMDB store
storeSize = NVRAM_PHOENIX_CMDB_SIZE; // It's a predefined max size, no need to calculate
}
else if (*(signature + 4) == OEM_ACTIVATION_PUBKEY_MAGIC) { // SLIC pubkey
const OEM_ACTIVATION_PUBKEY* pubkeyHeader = (const OEM_ACTIVATION_PUBKEY*)signature;
storeSize = pubkeyHeader->Size;
}
else if (*(const UINT64*)(data.constData() + storeOffset + 26) == OEM_ACTIVATION_MARKER_WINDOWS_FLAG) { // SLIC marker
const OEM_ACTIVATION_MARKER* markerHeader = (const OEM_ACTIVATION_MARKER*)signature;
storeSize = markerHeader->Size;
}
else if (*signature == INTEL_MICROCODE_HEADER_VERSION) { // Intel microcode, must be checked after SLIC marker because of the same *signature values
const INTEL_MICROCODE_HEADER* ucodeHeader = (const INTEL_MICROCODE_HEADER*)signature;
storeSize = ucodeHeader->TotalSize;
}
return ERR_SUCCESS;
}
STATUS FfsParser::parseStoreHeader(const QByteArray & store, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
{
const UINT32 dataSize = (UINT32)store.size();
const UINT32* signature = (const UINT32*)store.constData();
if (dataSize < sizeof(UINT32)) {
msg(QObject::tr("parseStoreHeader: volume body is too small even for store signature"), parent);
return ERR_SUCCESS;
}
// VSS variable stores
if (*signature == NVRAM_VSS_STORE_SIGNATURE || *signature == NVRAM_APPLE_SVS_STORE_SIGNATURE) {
// Check dataSize
if (dataSize < sizeof(VSS_VARIABLE_STORE_HEADER)) {
msg(QObject::tr("parseStoreHeader: volume body is too small even for VSS store header"), parent);
return ERR_SUCCESS;
}
// Get VSS store header
const VSS_VARIABLE_STORE_HEADER* vssStoreHeader = (const VSS_VARIABLE_STORE_HEADER*)signature;
// Check store size
if (dataSize < vssStoreHeader->Size) {
msg(QObject::tr("parseStoreHeader: VSS store size %1h (%2) is greater than volume body size %3h (%4)")
.hexarg(vssStoreHeader->Size).arg(vssStoreHeader->Size)
.hexarg(dataSize).arg(dataSize), parent);
return ERR_SUCCESS;
}
// Get parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Construct header and body
QByteArray header = store.left(sizeof(VSS_VARIABLE_STORE_HEADER));
QByteArray body = store.mid(sizeof(VSS_VARIABLE_STORE_HEADER), vssStoreHeader->Size - sizeof(VSS_VARIABLE_STORE_HEADER));
// Add info
QString name = (*signature == NVRAM_APPLE_SVS_STORE_SIGNATURE) ? QObject::tr("SVS store") : QObject::tr("VSS store");
QString info = QObject::tr("Signature: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)\nFormat: %8h\nState: %9h\nUnknown: %10h")
.hexarg2(vssStoreHeader->Signature, 8)
.hexarg(vssStoreHeader->Size).arg(vssStoreHeader->Size)
.hexarg(header.size()).arg(header.size())
.hexarg(body.size()).arg(body.size())
.hexarg2(vssStoreHeader->Format, 2)
.hexarg2(vssStoreHeader->State, 2)
.hexarg2(vssStoreHeader->Unknown, 4);
// Add correct offset
pdata.offset = parentOffset;
// Add tree item
index = model->addItem(Types::VssStore, 0, name, QString(), info, header, body, TRUE, parsingDataToQByteArray(pdata), parent);
}
else if (*signature == NVRAM_FDC_VOLUME_SIGNATURE) {
// Check dataSize
if (dataSize < sizeof(FDC_VOLUME_HEADER)) {
msg(QObject::tr("parseStoreHeader: volume body is too small even for FDC store header"), parent);
return ERR_SUCCESS;
}
// Get VSS store header
const FDC_VOLUME_HEADER* fdcStoreHeader = (const FDC_VOLUME_HEADER*)signature;
// Check store size
if (dataSize < fdcStoreHeader->Size) {
msg(QObject::tr("parseStoreHeader: FDC store size %1h (%2) is greater than volume body size %3h (%4)")
.hexarg(fdcStoreHeader->Size).arg(fdcStoreHeader->Size)
.hexarg(dataSize).arg(dataSize), parent);
return ERR_SUCCESS;
}
// Determine internal volume header size
const EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (const EFI_FIRMWARE_VOLUME_HEADER*)(fdcStoreHeader + 1);
UINT32 headerSize;
if (volumeHeader->Revision > 1 && volumeHeader->ExtHeaderOffset) {
const EFI_FIRMWARE_VOLUME_EXT_HEADER* extendedHeader = (const EFI_FIRMWARE_VOLUME_EXT_HEADER*)((const UINT8*)volumeHeader + volumeHeader->ExtHeaderOffset);
headerSize = volumeHeader->ExtHeaderOffset + extendedHeader->ExtHeaderSize;
}
else
headerSize = volumeHeader->HeaderLength;
// Extended header end can be unaligned
headerSize = ALIGN8(headerSize);
// Add VSS store header
headerSize += sizeof(VSS_VARIABLE_STORE_HEADER);
// Add FDC header
headerSize += sizeof(FDC_VOLUME_HEADER);
// Check sanity of combined header size
if (dataSize < headerSize) {
msg(QObject::tr("parseStoreHeader: FDC store header size %1h (%2) is greater than volume body size %3h (%4)")
.hexarg2(fdcStoreHeader->Size, 8).arg(fdcStoreHeader->Size)
.hexarg2(dataSize, 8).arg(dataSize), parent);
return ERR_SUCCESS;
}
// Get parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Construct header and body
QByteArray header = store.left(headerSize);
QByteArray body = store.mid(headerSize, fdcStoreHeader->Size - headerSize);
// Add info
QString name = QObject::tr("FDC store");
QString info = QObject::tr("Signature: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)")
.hexarg2(fdcStoreHeader->Signature, 8)
.hexarg(fdcStoreHeader->Size).arg(fdcStoreHeader->Size)
.hexarg(header.size()).arg(header.size())
.hexarg(body.size()).arg(body.size());
// TODO: add internal headers info
// Add correct offset
pdata.offset = parentOffset;
// Add tree item
index = model->addItem(Types::FdcStore, 0, name, QString(), info, header, body, TRUE, parsingDataToQByteArray(pdata), parent);
}
else if (*signature == NVRAM_APPLE_FSYS_STORE_SIGNATURE || *signature == NVRAM_APPLE_GAID_STORE_SIGNATURE) {
// Check dataSize
if (dataSize < sizeof(APPLE_FSYS_STORE_HEADER)) {
msg(QObject::tr("parseStoreHeader: volume body is too small even for Fsys store header"), parent);
return ERR_SUCCESS;
}
// Get Fsys store header
const APPLE_FSYS_STORE_HEADER* fsysStoreHeader = (const APPLE_FSYS_STORE_HEADER*)signature;
// Check store size
if (dataSize < fsysStoreHeader->Size) {
msg(QObject::tr("parseStoreHeader: Fsys store size %1h (%2) is greater than volume body size %3h (%4)")
.hexarg(fsysStoreHeader->Size).arg(fsysStoreHeader->Size)
.hexarg(dataSize).arg(dataSize), parent);
return ERR_SUCCESS;
}
// Get parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Construct header and body
QByteArray header = store.left(sizeof(APPLE_FSYS_STORE_HEADER));
QByteArray body = store.mid(sizeof(APPLE_FSYS_STORE_HEADER), fsysStoreHeader->Size - sizeof(APPLE_FSYS_STORE_HEADER) - sizeof(UINT32));
// Check store checksum
UINT32 storedCrc = *(UINT32*)store.right(sizeof(UINT32)).constBegin();
UINT32 calculatedCrc = calculatedCrc = crc32(0, (const UINT8*)store.constData(), (const UINT32)store.size() - sizeof(UINT32));
// Add info
QString name = (*signature == NVRAM_APPLE_GAID_STORE_SIGNATURE) ? QObject::tr("Gaid store") : QObject::tr("Fsys store");
QString info = QObject::tr("Signature: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)\nUnknown: %9 %10 %11 %12 %13\nCRC32: %14")
.hexarg2(fsysStoreHeader->Signature, 8)
.hexarg(fsysStoreHeader->Size).arg(fsysStoreHeader->Size)
.hexarg(header.size()).arg(header.size())
.hexarg(body.size()).arg(body.size())
.hexarg2(fsysStoreHeader->Unknown[0], 2)
.hexarg2(fsysStoreHeader->Unknown[1], 2)
.hexarg2(fsysStoreHeader->Unknown[2], 2)
.hexarg2(fsysStoreHeader->Unknown[3], 2)
.hexarg2(fsysStoreHeader->Unknown[4], 2)
.arg(storedCrc == calculatedCrc ? QObject::tr("%1h, valid").hexarg2(storedCrc, 8) : QObject::tr("%1h, invalid, should be %2h").hexarg2(storedCrc, 8).hexarg2(calculatedCrc, 8));
// Add correct offset
pdata.offset = parentOffset;
// Add tree item
index = model->addItem(Types::FsysStore, 0, name, QString(), info, header, body, TRUE, parsingDataToQByteArray(pdata), parent);
}
else if (*(signature + 1) == NVRAM_EVSA_STORE_SIGNATURE) {
// Check dataSize
if (dataSize < sizeof(EVSA_STORE_ENTRY)) {
msg(QObject::tr("parseStoreHeader: volume body is too small even for EVSA store header"), parent);
return ERR_SUCCESS;
}
// Get EVSA store header
const EVSA_STORE_ENTRY* evsaStoreHeader = (const EVSA_STORE_ENTRY*)signature;
// Check store size
if (dataSize < evsaStoreHeader->StoreSize) {
msg(QObject::tr("parseStoreHeader: EVSA store size %1h (%2) is greater than volume body size %3h (%4)")
.hexarg(evsaStoreHeader->StoreSize).arg(evsaStoreHeader->StoreSize)
.hexarg(dataSize).arg(dataSize), parent);
return ERR_SUCCESS;
}
// Get parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Construct header and body
QByteArray header = store.left(evsaStoreHeader->Header.Size);
QByteArray body = store.mid(evsaStoreHeader->Header.Size, evsaStoreHeader->StoreSize - evsaStoreHeader->Header.Size);
// Recalculate checksum
UINT8 calculated = calculateChecksum8(((const UINT8*)evsaStoreHeader) + 2, evsaStoreHeader->Header.Size - 2);
// Add info
QString name = QObject::tr("EVSA store");
QString info = QObject::tr("Signature: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)\nType: %9h\nChecksum: %10\nAttributes: %11h")
.hexarg2(evsaStoreHeader->Signature, 8)
.hexarg(evsaStoreHeader->StoreSize).arg(evsaStoreHeader->StoreSize)
.hexarg(header.size()).arg(header.size())
.hexarg(body.size()).arg(body.size())
.hexarg2(evsaStoreHeader->Header.Type, 2)
.arg(evsaStoreHeader->Header.Checksum == calculated ?
QObject::tr("%1h, valid").hexarg2(calculated,2) :
QObject::tr("%1h, invalid, should be %2h").hexarg2(evsaStoreHeader->Header.Checksum, 2).hexarg2(calculated,2))
.hexarg2(evsaStoreHeader->Attributes, 8);
// Add correct offset
pdata.offset = parentOffset;
// Add tree item
index = model->addItem(Types::EvsaStore, 0, name, QString(), info, header, body, TRUE, parsingDataToQByteArray(pdata), parent);
}
else if (*signature == NVRAM_MAIN_STORE_VOLUME_GUID_DATA1 || *signature == EDKII_WORKING_BLOCK_SIGNATURE_GUID_DATA1) {
// Check dataSize
if (dataSize < sizeof(EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER64)) {
msg(QObject::tr("parseStoreHeader: volume body is too small even for FTW block header"), parent);
return ERR_SUCCESS;
}
// Get FTW block headers
const EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER32* ftw32BlockHeader = (const EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER32*)signature;
const EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER64* ftw64BlockHeader = (const EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER64*)signature;
// Check store size
UINT32 ftwBlockSize;
bool has32bitHeader;
if (ftw32BlockHeader->WriteQueueSize % 0x10 == 0x04) { // Header with 32 bit WriteQueueSize
ftwBlockSize = sizeof(EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER32) + ftw32BlockHeader->WriteQueueSize;
has32bitHeader = true;
}
else { // Header with 64 bit WriteQueueSize
ftwBlockSize = sizeof(EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER64) + ftw64BlockHeader->WriteQueueSize;
has32bitHeader = false;
}
if (dataSize < ftwBlockSize) {
msg(QObject::tr("parseStoreHeader: FTW block size %1h (%2) is greater than volume body size %3h (%4)")
.hexarg(ftwBlockSize).arg(ftwBlockSize)
.hexarg(dataSize).arg(dataSize), parent);
return ERR_SUCCESS;
}
// Get parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Construct header and body
UINT32 headerSize = has32bitHeader ? sizeof(EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER32) : sizeof(EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER64);
QByteArray header = store.left(headerSize);
QByteArray body = store.mid(headerSize, ftwBlockSize - headerSize);
// Check block header checksum
QByteArray crcHeader = header;
EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER32* crcFtwBlockHeader = (EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER32*)header.data();
crcFtwBlockHeader->Crc = pdata.emptyByte ? 0xFFFFFFFF : 0;
crcFtwBlockHeader->State = pdata.emptyByte ? 0xFF : 0;
UINT32 calculatedCrc = crc32(0, (const UINT8*)crcFtwBlockHeader, headerSize);
// Add info
QString name = QObject::tr("FTW block");
QString info = QObject::tr("Signature: %1\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)\nState: %8h\nHeader CRC32: %9")
.arg(guidToQString(ftw32BlockHeader->Signature))
.hexarg(ftwBlockSize).arg(ftwBlockSize)
.hexarg(headerSize).arg(headerSize)
.hexarg(body.size()).arg(body.size())
.hexarg2(ftw32BlockHeader->State, 2)
.arg(ftw32BlockHeader->Crc == calculatedCrc ?
QObject::tr("%1h, valid").hexarg2(ftw32BlockHeader->Crc, 8) :
QObject::tr("%1h, invalid, should be %2h").hexarg2(ftw32BlockHeader->Crc, 8).hexarg2(calculatedCrc, 8));
// Add correct offset
pdata.offset = parentOffset;
// Add tree item
index = model->addItem(Types::FtwStore, 0, name, QString(), info, header, body, TRUE, parsingDataToQByteArray(pdata), parent);
}
else if (*signature == NVRAM_PHOENIX_FLASH_MAP_SIGNATURE_PART1) { // Phoenix SCT flash map
if (dataSize < sizeof(PHOENIX_FLASH_MAP_HEADER)) {
msg(QObject::tr("parseStoreHeader: volume body is too small even for FlashMap block header"), parent);
return ERR_SUCCESS;
}
// Get FlashMap block header
const PHOENIX_FLASH_MAP_HEADER* flashMapHeader = (const PHOENIX_FLASH_MAP_HEADER*)signature;
// Check store size
UINT32 flashMapSize = sizeof(PHOENIX_FLASH_MAP_HEADER) + flashMapHeader->NumEntries * sizeof(PHOENIX_FLASH_MAP_ENTRY);
if (dataSize < flashMapSize) {
msg(QObject::tr("parseStoreHeader: FlashMap block size %1h (%2) is greater than volume body size %3h (%4)")
.hexarg(flashMapSize).arg(flashMapSize)
.hexarg(dataSize).arg(dataSize), parent);
return ERR_SUCCESS;
}
// Get parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Construct header and body
QByteArray header = store.left(sizeof(PHOENIX_FLASH_MAP_HEADER));
QByteArray body = store.mid(sizeof(PHOENIX_FLASH_MAP_HEADER), flashMapSize - sizeof(PHOENIX_FLASH_MAP_HEADER));
// Add info
QString name = QObject::tr("Phoenix SCT flash map");
QString info = QObject::tr("Signature: _FLASH_MAP\nFull size: %1h (%2)\nHeader size: %3h (%4)\nBody size: %5h (%6)\nNumber of entries: %7")
.hexarg(flashMapSize).arg(flashMapSize)
.hexarg(header.size()).arg(header.size())
.hexarg(body.size()).arg(body.size())
.arg(flashMapHeader->NumEntries);
// Add correct offset
pdata.offset = parentOffset;
// Add tree item
index = model->addItem(Types::FlashMapStore, 0, name, QString(), info, header, body, TRUE, parsingDataToQByteArray(pdata), parent);
}
else if (*signature == NVRAM_PHOENIX_CMDB_HEADER_SIGNATURE) { // Phoenix SCT CMDB store
if (dataSize < sizeof(PHOENIX_CMDB_HEADER)) {
msg(QObject::tr("parseStoreHeader: volume body is too small even for CMDB store header"), parent);
return ERR_SUCCESS;
}
// Check store size
UINT32 cmdbSize = NVRAM_PHOENIX_CMDB_SIZE;
if (dataSize < cmdbSize) {
msg(QObject::tr("parseStoreHeader: CMDB store size %1h (%2) is greater than volume body size %3h (%4)")
.hexarg(cmdbSize).arg(cmdbSize)
.hexarg(dataSize).arg(dataSize), parent);
return ERR_SUCCESS;
}
// Get CMBD store header
const PHOENIX_CMDB_HEADER* cmdbHeader = (const PHOENIX_CMDB_HEADER*)signature;
// Get parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Construct header and body
QByteArray header = store.left(cmdbHeader->TotalSize);
QByteArray body = store.mid(cmdbHeader->TotalSize, cmdbSize - cmdbHeader->TotalSize);
// Add info
QString name = QObject::tr("CMDB store");
QString info = QObject::tr("Signature: CMDB\nFull size: %1h (%2)\nHeader size: %3h (%4)\nBody size: %5h (%6)")
.hexarg(cmdbSize).arg(cmdbSize)
.hexarg(header.size()).arg(header.size())
.hexarg(body.size()).arg(body.size());
// Add correct offset
pdata.offset = parentOffset;
// Add tree item
index = model->addItem(Types::CmdbStore, 0, name, QString(), info, header, body, TRUE, parsingDataToQByteArray(pdata), parent);
}
else if (*(signature + 4) == OEM_ACTIVATION_PUBKEY_MAGIC) { // SLIC pubkey
if (dataSize < sizeof(OEM_ACTIVATION_PUBKEY)) {
msg(QObject::tr("parseStoreHeader: volume body is too small even for SLIC pubkey header"), parent);
return ERR_SUCCESS;
}
// Get SLIC pubkey header
const OEM_ACTIVATION_PUBKEY* pubkeyHeader = (const OEM_ACTIVATION_PUBKEY*)signature;
// Check store size
if (dataSize < pubkeyHeader->Size) {
msg(QObject::tr("parseStoreHeader: SLIC pubkey size %1h (%2) is greater than volume body size %3h (%4)")
.hexarg(pubkeyHeader->Size).arg(pubkeyHeader->Size)
.hexarg(dataSize).arg(dataSize), parent);
return ERR_SUCCESS;
}
// Get parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Construct header and body
QByteArray header = store.left(sizeof(OEM_ACTIVATION_PUBKEY));
// Add info
QString name = QObject::tr("SLIC pubkey");
QString info = QObject::tr("Type: 0h\nFull size: %1h (%2)\nHeader size: %3h (%4)\nBody size: 0h (0)\n"
"Key type :%5h\nVersion: %6h\nAlgorithm: %7h\nMagic: RSA1\nBit length: %8h\nExponent:%9h")
.hexarg(pubkeyHeader->Size).arg(pubkeyHeader->Size)
.hexarg(header.size()).arg(header.size())
.hexarg2(pubkeyHeader->KeyType, 2)
.hexarg2(pubkeyHeader->Version, 2)
.hexarg2(pubkeyHeader->Algorithm, 8)
.hexarg2(pubkeyHeader->BitLength, 8)
.hexarg2(pubkeyHeader->Exponent, 8);
// Add correct offset
pdata.offset = parentOffset;
// Add tree item
index = model->addItem(Types::SlicData, Subtypes::PubkeySlicData, name, QString(), info, header, QByteArray(), TRUE, parsingDataToQByteArray(pdata), parent);
}
else if (*(const UINT64*)(store.constData() + 26) == OEM_ACTIVATION_MARKER_WINDOWS_FLAG) { // SLIC marker
if (dataSize < sizeof(OEM_ACTIVATION_MARKER)) {
msg(QObject::tr("parseStoreHeader: volume body is too small even for SLIC marker header"), parent);
return ERR_SUCCESS;
}
// Get SLIC marker header
const OEM_ACTIVATION_MARKER* markerHeader = (const OEM_ACTIVATION_MARKER*)signature;
// Check store size
if (dataSize < markerHeader->Size) {
msg(QObject::tr("parseStoreHeader: SLIC marker size %1h (%2) is greater than volume body size %3h (%4)")
.hexarg(markerHeader->Size).arg(markerHeader->Size)
.hexarg(dataSize).arg(dataSize), parent);
return ERR_SUCCESS;
}
// Get parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Construct header and body
QByteArray header = store.left(sizeof(OEM_ACTIVATION_MARKER));
// Add info
QString name = QObject::tr("SLIC marker");
QString info = QObject::tr("Type: 1h\nFull size: %1h (%2)\nHeader size: %3h (%4)\nBody size: 0h (0)\n"
"Version :%5h\nOEM ID: %6\nOEM table ID: %7\nWindows flag: WINDOWS\nSLIC version: %8h")
.hexarg(markerHeader->Size).arg(markerHeader->Size)
.hexarg(header.size()).arg(header.size())
.hexarg2(markerHeader->Version, 8)
.arg(QLatin1String((const char*)&(markerHeader->OemId), sizeof(markerHeader->OemId)))
.arg(QLatin1String((const char*)&(markerHeader->OemTableId), sizeof(markerHeader->OemTableId)))
.hexarg2(markerHeader->SlicVersion, 8);
// Add correct offset
pdata.offset = parentOffset;
// Add tree item
index = model->addItem(Types::SlicData, Subtypes::MarkerSlicData, name, QString(), info, header, QByteArray(), TRUE, parsingDataToQByteArray(pdata), parent);
}
else if (*signature == INTEL_MICROCODE_HEADER_VERSION) { // Intel microcode, , must be checked after SLIC marker because of the same *signature values
if (dataSize < sizeof(INTEL_MICROCODE_HEADER)) {
msg(QObject::tr("parseStoreHeader: volume body is too small even for Intel microcode header"), parent);
return ERR_SUCCESS;
}
// Get Intel microcode header
const INTEL_MICROCODE_HEADER* ucodeHeader = (const INTEL_MICROCODE_HEADER*)signature;
// Check store size
if (dataSize < ucodeHeader->TotalSize) {
msg(QObject::tr("parseStoreHeader: Intel microcode size %1h (%2) is greater than volume body size %3h (%4)")
.hexarg(ucodeHeader->TotalSize).arg(ucodeHeader->TotalSize)
.hexarg(dataSize).arg(dataSize), parent);
return ERR_SUCCESS;
}
// Get parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Construct header and body
QByteArray header = store.left(sizeof(INTEL_MICROCODE_HEADER));
QByteArray body = store.mid(sizeof(INTEL_MICROCODE_HEADER), ucodeHeader->DataSize);
// Add info
QString name = QObject::tr("Intel microcode");
QString info = QObject::tr("Revision: 1h\nFull size: %1h (%2)\nHeader size: %3h (%4)\nBody size: %5h (%6)\n"
"Date: %7\nCPU signature: %8h\nChecksum: %9h\nLoader revision: %10h\nCPU flags: %11h")
.hexarg(ucodeHeader->TotalSize).arg(ucodeHeader->TotalSize)
.hexarg(header.size()).arg(header.size())
.hexarg(body.size()).arg(body.size())
.hexarg2(ucodeHeader->Date, 8)
.hexarg2(ucodeHeader->CpuSignature, 8)
.hexarg2(ucodeHeader->Checksum, 8)
.hexarg2(ucodeHeader->LoaderRevision, 8)
.hexarg2(ucodeHeader->CpuFlags, 8);
// Add correct offset
pdata.offset = parentOffset;
// Add tree item
index = model->addItem(Types::Microcode, Subtypes::IntelMicrocode, name, QString(), info, header, body, TRUE, parsingDataToQByteArray(pdata), parent);
}
return ERR_SUCCESS;
}
STATUS FfsParser::parseVssStoreBody(const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Get parsing data for the current item
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
UINT32 parentOffset = pdata.offset + model->header(index).size();
const QByteArray data = model->body(index);
// Check that the is enough space for variable header
const UINT32 dataSize = (UINT32)data.size();
if (dataSize < sizeof(VSS_VARIABLE_HEADER)) {
msg(QObject::tr("parseVssStoreBody: store body is too small even for VSS variable header"), index);
return ERR_SUCCESS;
}
UINT32 offset = 0;
// Parse all variables
while (1) {
bool isInvalid = false;
bool isAuthenticated = false;
bool isAppleCrc32 = false;
UINT32 storedCrc32 = 0;
UINT32 calculatedCrc32 = 0;
UINT64 monotonicCounter = 0;
2016-03-30 00:10:30 +08:00
EFI_TIME timestamp = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
UINT32 pubKeyIndex = 0;
UINT8 subtype = 0;
QString name;
QString text;
EFI_GUID* variableGuid;
CHAR16* variableName;
QByteArray header;
QByteArray body;
UINT32 unparsedSize = dataSize - offset;
// Get variable header
const VSS_VARIABLE_HEADER* variableHeader = (const VSS_VARIABLE_HEADER*)(data.constData() + offset);
// Check variable header to fit in still unparsed data
UINT32 variableSize = 0;
if (unparsedSize >= sizeof(VSS_VARIABLE_HEADER)
&& variableHeader->StartId == NVRAM_VSS_VARIABLE_START_ID) {
// Apple VSS variable with CRC32 of the data
if (variableHeader->Attributes & NVRAM_VSS_VARIABLE_APPLE_DATA_CHECKSUM) {
isAppleCrc32 = true;
if (unparsedSize < sizeof(VSS_APPLE_VARIABLE_HEADER)) {
variableSize = 0;
}
else {
const VSS_APPLE_VARIABLE_HEADER* appleVariableHeader = (const VSS_APPLE_VARIABLE_HEADER*)variableHeader;
variableSize = sizeof(VSS_APPLE_VARIABLE_HEADER) + appleVariableHeader->NameSize + appleVariableHeader->DataSize;
variableGuid = (EFI_GUID*)&appleVariableHeader->VendorGuid;
variableName = (CHAR16*)(appleVariableHeader + 1);
header = data.mid(offset, sizeof(VSS_APPLE_VARIABLE_HEADER) + appleVariableHeader->NameSize);
body = data.mid(offset + header.size(), appleVariableHeader->DataSize);
// Calculate CRC32 of the variable data
storedCrc32 = appleVariableHeader->DataCrc32;
calculatedCrc32 = crc32(0, (const UINT8*)body.constData(), body.size());
}
}
// Authenticated variable
else if ((variableHeader->Attributes & NVRAM_VSS_VARIABLE_AUTHENTICATED_WRITE_ACCESS)
|| (variableHeader->Attributes & NVRAM_VSS_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS)
|| (variableHeader->Attributes & NVRAM_VSS_VARIABLE_APPEND_WRITE)
|| (variableHeader->NameSize == 0 && variableHeader->DataSize == 0)) { // If both NameSize and DataSize are zeros, it's auth variable with zero montonic counter
isAuthenticated = true;
if (unparsedSize < sizeof(VSS_AUTH_VARIABLE_HEADER)) {
variableSize = 0;
}
else {
const VSS_AUTH_VARIABLE_HEADER* authVariableHeader = (const VSS_AUTH_VARIABLE_HEADER*)variableHeader;
variableSize = sizeof(VSS_AUTH_VARIABLE_HEADER) + authVariableHeader->NameSize + authVariableHeader->DataSize;
variableGuid = (EFI_GUID*)&authVariableHeader->VendorGuid;
variableName = (CHAR16*)(authVariableHeader + 1);
header = data.mid(offset, sizeof(VSS_AUTH_VARIABLE_HEADER) + authVariableHeader->NameSize);
body = data.mid(offset + header.size(), authVariableHeader->DataSize);
monotonicCounter = authVariableHeader->MonotonicCounter;
timestamp = authVariableHeader->Timestamp;
pubKeyIndex = authVariableHeader->PubKeyIndex;
}
}
// Normal VSS variable
if (!isAuthenticated && !isAppleCrc32) {
variableSize = sizeof(VSS_VARIABLE_HEADER) + variableHeader->NameSize + variableHeader->DataSize;
variableGuid = (EFI_GUID*)&variableHeader->VendorGuid;
variableName = (CHAR16*)(variableHeader + 1);
header = data.mid(offset, sizeof(VSS_VARIABLE_HEADER) + variableHeader->NameSize);
body = data.mid(offset + header.size(), variableHeader->DataSize);
}
// There is also a case of authenticated Apple variables, but I haven't seen one yet
// Check variable state
if (variableHeader->State != NVRAM_VSS_VARIABLE_ADDED && variableHeader->State != NVRAM_VSS_VARIABLE_HEADER_VALID) {
isInvalid = true;
}
}
// Can't parse further, add the last element and break the loop
if (!variableSize) {
// Check if the data left is a free space or a padding
QByteArray padding = data.mid(offset, unparsedSize);
UINT8 type;
if (padding.count(pdata.emptyByte) == padding.size()) {
// It's a free space
name = QObject::tr("Free space");
type = Types::FreeSpace;
subtype = 0;
}
else {
// Nothing is parsed yet, but the store is not empty
if (!offset) {
msg(QObject::tr("parseVssStoreBody: store can't be parsed as VSS store"), index);
return ERR_SUCCESS;
}
// It's a padding
name = QObject::tr("Padding");
type = Types::Padding;
subtype = getPaddingType(padding);
}
// Get info
QString info = QObject::tr("Full size: %1h (%2)")
.hexarg(padding.size()).arg(padding.size());
// Construct parsing data
pdata.offset = parentOffset + offset;
// Add tree item
model->addItem(type, subtype, name, QString(), info, QByteArray(), padding, FALSE, parsingDataToQByteArray(pdata), index);
return ERR_SUCCESS;
}
QString info;
// Rename invalid variables
if (isInvalid) {
name = QObject::tr("Invalid");
}
else { // Add GUID and text for valid variables
name = guidToQString(*variableGuid);
info += QObject::tr("Variable GUID: %1\n").arg(name);
text = QString::fromUtf16(variableName);
}
// Add header, body and extended data info
info += QObject::tr("Full size: %1h (%2)\nHeader size %3h (%4)\nBody size: %5h (%6)")
.hexarg(variableSize).arg(variableSize)
.hexarg(header.size()).arg(header.size())
.hexarg(body.size()).arg(body.size());
// Add state info
info += QObject::tr("\nState: %1h").hexarg2(variableHeader->State, 2);
// Add attributes info
info += QObject::tr("\nAttributes: %1h").hexarg2(variableHeader->Attributes, 8);
// Set subtype and add related info
if (isInvalid)
subtype = Subtypes::InvalidVssEntry;
else if (isAuthenticated) {
subtype = Subtypes::AuthVssEntry;
info += QObject::tr("\nMonotonic counter: %1h\nTimestamp: %2\nPubKey index: %3")
.hexarg(monotonicCounter).arg(efiTimeToQString(timestamp)).arg(pubKeyIndex);
}
else if (isAppleCrc32) {
subtype = Subtypes::AppleVssEntry;
info += QObject::tr("\nCRC32: %1h%2").hexarg2(storedCrc32, 8)
.arg(storedCrc32 == calculatedCrc32 ? QObject::tr(", valid") : QObject::tr(", invalid, should be %1h").hexarg2(calculatedCrc32,8));
}
else
subtype = Subtypes::StandardVssEntry;
// Add correct offset to parsing data
pdata.offset = parentOffset + offset;
// Add tree item
model->addItem(Types::VssEntry, subtype, name, text, info, header, body, FALSE, parsingDataToQByteArray(pdata), index);
// Move to next variable
offset += variableSize;
}
return ERR_SUCCESS;
2016-03-30 00:10:30 +08:00
}
STATUS FfsParser::parseFsysStoreBody(const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Get parsing data for the current item
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
UINT32 parentOffset = pdata.offset + model->header(index).size();
const QByteArray data = model->body(index);
// Check that the is enough space for variable header
const UINT32 dataSize = (UINT32)data.size();
UINT32 offset = 0;
// Parse all variables
while (1) {
UINT32 unparsedSize = dataSize - offset;
UINT32 variableSize = 0;
// Get nameSize and name of the variable
const UINT8 nameSize = *(UINT8*)(data.constData() + offset);
// Check sanity
if (unparsedSize >= nameSize + sizeof(UINT8)) {
variableSize = nameSize + sizeof(UINT8);
}
QByteArray name;
if (variableSize) {
name = data.mid(offset + sizeof(UINT8), nameSize);
// Check for EOF variable
if (nameSize == 3 && name[0] == 'E' && name[1] == 'O' && name[2] == 'F') {
// There is no data afterward, add EOF variable and free space and return
QByteArray header = data.mid(offset, sizeof(UINT8) + nameSize);
QString info = QObject::tr("Full size: %1h (%2)")
.hexarg(header.size()).arg(header.size());
// Add correct offset to parsing data
pdata.offset = parentOffset + offset;
// Add EOF tree item
model->addItem(Types::FsysEntry, 0, name, QString(), info, header, QByteArray(), FALSE, parsingDataToQByteArray(pdata), index);
// Add free space
offset += header.size();
unparsedSize = dataSize - offset;
QByteArray body = data.mid(offset);
info = QObject::tr("Full size: %1h (%2)")
.hexarg(body.size()).arg(body.size());
// Add correct offset to parsing data
pdata.offset = parentOffset + offset;
// Add free space tree item
model->addItem(Types::FreeSpace, 0, QObject::tr("Free space"), QString(), info, QByteArray(), body, FALSE, parsingDataToQByteArray(pdata), index);
return ERR_SUCCESS;
}
}
// Get dataSize and data of the variable
const UINT16 dataSize = *(UINT16*)(data.constData() + offset + sizeof(UINT8) + nameSize);
if (unparsedSize >= sizeof(UINT8) + nameSize + sizeof(UINT16) + dataSize) {
variableSize = sizeof(UINT8) + nameSize + sizeof(UINT16) + dataSize;
}
else {
// Last variable is bad, add the rest as padding and return
QByteArray body = data.mid(offset);
QString info = QObject::tr("Full size: %1h (%2)")
.hexarg(body.size()).arg(body.size());
// Add correct offset to parsing data
pdata.offset = parentOffset + offset;
// Add free space tree item
model->addItem(Types::Padding, getPaddingType(body), QObject::tr("Padding"), QString(), info, QByteArray(), body, FALSE, parsingDataToQByteArray(pdata), index);
// Show message
msg(QObject::tr("parseFsysStoreBody: next variable appears too big, added as padding"), index);
return ERR_SUCCESS;
}
// Construct header and body
QByteArray header = data.mid(offset, sizeof(UINT8) + nameSize + sizeof(UINT16));
QByteArray body = data.mid(offset + sizeof(UINT8) + nameSize + sizeof(UINT16), dataSize);
// Add info
QString info = QObject::tr("Full size: %1h (%2)\nHeader size %3h (%4)\nBody size: %5h (%6)")
.hexarg(variableSize).arg(variableSize)
.hexarg(header.size()).arg(header.size())
.hexarg(body.size()).arg(body.size());
// Add correct offset to parsing data
pdata.offset = parentOffset + offset;
// Add tree item
model->addItem(Types::FsysEntry, 0, name, QString(), info, header, body, FALSE, parsingDataToQByteArray(pdata), index);
// Move to next variable
offset += variableSize;
}
return ERR_SUCCESS;
}
STATUS FfsParser::parseEvsaStoreBody(const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Get parsing data for the current item
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
UINT32 parentOffset = pdata.offset + model->header(index).size();
const QByteArray data = model->body(index);
// Check that the is enough space for variable header
const UINT32 dataSize = (UINT32)data.size();
UINT32 offset = 0;
std::map<UINT16, EFI_GUID> guidMap;
std::map<UINT16, QString> nameMap;
// Parse all variables
UINT32 unparsedSize = dataSize;
while (unparsedSize) {
UINT32 variableSize = 0;
QString name;
QString info;
QByteArray header;
QByteArray body;
UINT8 subtype;
UINT8 calculated;
const EVSA_ENTRY_HEADER* entryHeader = (const EVSA_ENTRY_HEADER*)(data.constData() + offset);
// Check variable size
variableSize = sizeof(EVSA_ENTRY_HEADER);
if (unparsedSize < variableSize || unparsedSize < entryHeader->Size) {
QByteArray body = data.mid(offset);
QString info = QObject::tr("Full size: %1h (%2)")
.hexarg(body.size()).arg(body.size());
// Check type
QString name = QObject::tr("Free space");
UINT8 type = Types::FreeSpace;
UINT8 subtype = 0;
if (getPaddingType(body) == Subtypes::DataPadding) {
name = QObject::tr("Padding");
type = Types::Padding;
subtype = Subtypes::DataPadding;
}
// Add correct offset to parsing data
pdata.offset = parentOffset + offset;
// Add free space tree item
QModelIndex itemIndex = model->addItem(type, subtype, name, QString(), info, QByteArray(), body, FALSE, parsingDataToQByteArray(pdata), index);
// Show message
if (type == Types::Padding)
msg(QObject::tr("parseEvsaStoreBody: variable parsing failed, rest of unparsed store added as padding"), itemIndex);
break;
}
variableSize = entryHeader->Size;
// Recalculate entry checksum
calculated = calculateChecksum8(((const UINT8*)entryHeader) + 2, entryHeader->Size - 2);
// GUID entry
if (entryHeader->Type == NVRAM_EVSA_ENTRY_TYPE_GUID1 ||
entryHeader->Type == NVRAM_EVSA_ENTRY_TYPE_GUID2) {
const EVSA_GUID_ENTRY* guidHeader = (const EVSA_GUID_ENTRY*)entryHeader;
header = data.mid(offset, sizeof(EVSA_GUID_ENTRY));
body = data.mid(offset + sizeof(EVSA_GUID_ENTRY), guidHeader->Header.Size - sizeof(EVSA_GUID_ENTRY));
EFI_GUID guid = *(EFI_GUID*)body.constData();
name = guidToQString(guid);
info = QObject::tr("Full size: %1h (%2)\nHeader size %3h (%4)\nBody size: %5h (%6)\nType: %7h\nChecksum: %8\nGuidId: %9h")
.hexarg(variableSize).arg(variableSize)
.hexarg(header.size()).arg(header.size())
.hexarg(body.size()).arg(body.size())
.hexarg2(guidHeader->Header.Type, 2)
.arg(guidHeader->Header.Checksum == calculated ?
QObject::tr("%1h, valid").hexarg2(calculated, 2) :
QObject::tr("%1h, invalid, should be %2h").hexarg2(guidHeader->Header.Checksum, 2).hexarg2(calculated, 2))
.hexarg2(guidHeader->GuidId, 4);
subtype = Subtypes::GuidEvsaEntry;
guidMap.insert(std::pair<UINT16, EFI_GUID>(guidHeader->GuidId, guid));
}
// Name entry
else if (entryHeader->Type == NVRAM_EVSA_ENTRY_TYPE_NAME1 ||
entryHeader->Type == NVRAM_EVSA_ENTRY_TYPE_NAME2) {
const EVSA_NAME_ENTRY* nameHeader = (const EVSA_NAME_ENTRY*)entryHeader;
header = data.mid(offset, sizeof(EVSA_NAME_ENTRY));
body = data.mid(offset + sizeof(EVSA_NAME_ENTRY), nameHeader->Header.Size - sizeof(EVSA_NAME_ENTRY));
name = QString::fromUtf16((const CHAR16*)body.constData());
info = QObject::tr("Full size: %1h (%2)\nHeader size %3h (%4)\nBody size: %5h (%6)\nType: %7h\nChecksum: %8\nVarId: %9h")
.hexarg(variableSize).arg(variableSize)
.hexarg(header.size()).arg(header.size())
.hexarg(body.size()).arg(body.size())
.hexarg2(nameHeader->Header.Type, 2)
.arg(nameHeader->Header.Checksum == calculated ?
QObject::tr("%1h, valid").hexarg2(calculated, 2) :
QObject::tr("%1h, invalid, should be %2h").hexarg2(nameHeader->Header.Checksum, 2).hexarg2(calculated, 2))
.hexarg2(nameHeader->VarId, 4);
subtype = Subtypes::NameEvsaEntry;
nameMap.insert(std::pair<UINT16, QString>(nameHeader->VarId, name));
}
// Data entry
else if (entryHeader->Type == NVRAM_EVSA_ENTRY_TYPE_DATA1 ||
entryHeader->Type == NVRAM_EVSA_ENTRY_TYPE_DATA2 ||
entryHeader->Type == NVRAM_EVSA_ENTRY_TYPE_DATA_INVALID) {
const EVSA_DATA_ENTRY* dataHeader = (const EVSA_DATA_ENTRY*)entryHeader;
// Check for extended header
UINT32 headerSize = sizeof(EVSA_DATA_ENTRY);
UINT32 dataSize = dataHeader->Header.Size - sizeof(EVSA_DATA_ENTRY);
if (dataHeader->Attributes & NVRAM_EVSA_DATA_ATTRIBUTE_EXTENDED_HEADER) {
const EVSA_DATA_ENTRY_EXTENDED* dataHeaderExtended = (const EVSA_DATA_ENTRY_EXTENDED*)entryHeader;
headerSize = sizeof(EVSA_DATA_ENTRY_EXTENDED);
dataSize = dataHeaderExtended->DataSize;
variableSize = headerSize + dataSize;
}
header = data.mid(offset, headerSize);
body = data.mid(offset + headerSize, dataSize);
name = QObject::tr("Data");
info = QObject::tr("Full size: %1h (%2)\nHeader size %3h (%4)\nBody size: %5h (%6)\nType: %7h\nChecksum: %8\nVarId: %9h\nGuidId: %10h\nAttributes: %11h")
.hexarg(variableSize).arg(variableSize)
.hexarg(headerSize).arg(headerSize)
.hexarg(dataSize).arg(dataSize)
.hexarg2(dataHeader->Header.Type, 2)
.arg(dataHeader->Header.Checksum == calculated ?
QObject::tr("%1h, valid").hexarg2(calculated, 2) :
QObject::tr("%1h, invalid, should be %2h").hexarg2(dataHeader->Header.Checksum, 2).hexarg2(calculated, 2))
.hexarg2(dataHeader->VarId, 4)
.hexarg2(dataHeader->GuidId, 4)
.hexarg2(dataHeader->Attributes, 8);
subtype = Subtypes::DataEvsaEntry;
}
// Unknown entry or free space
else {
QByteArray body = data.mid(offset);
QString info = QObject::tr("Full size: %1h (%2)")
.hexarg(body.size()).arg(body.size());
// Check type
QString name = QObject::tr("Free space");
UINT8 type = Types::FreeSpace;
UINT8 subtype = 0;
if (getPaddingType(body) == Subtypes::DataPadding) {
name = QObject::tr("Padding");
type = Types::Padding;
subtype = Subtypes::DataPadding;
}
// Add correct offset to parsing data
pdata.offset = parentOffset + offset;
// Add free space tree item
QModelIndex itemIndex = model->addItem(type, subtype, name, QString(), info, QByteArray(), body, FALSE, parsingDataToQByteArray(pdata), index);
// Show message
if (type == Types::Padding)
msg(QObject::tr("parseEvsaStoreBody: unknown variable of type %1h found at offset %2h, the rest of unparsed store added as padding").hexarg2(entryHeader->Type, 2).hexarg(offset), itemIndex);
break;
}
// Add correct offset to parsing data
pdata.offset = parentOffset + offset;
// Add tree item
model->addItem(Types::EvsaEntry, subtype, name, QString(), info, header, body, FALSE, parsingDataToQByteArray(pdata), index);
// Move to next variable
offset += variableSize;
unparsedSize = dataSize - offset;
}
// Reparse all data variables to detect invalid ones and assign name and test to valid ones
for (int i = 0; i < model->rowCount(index); i++) {
QModelIndex current = index.child(i, 0);
if (model->subtype(current) == Subtypes::DataEvsaEntry) {
QByteArray header = model->header(current);
const EVSA_DATA_ENTRY* dataHeader = (const EVSA_DATA_ENTRY*)header.constData();
QString guid;
if (guidMap.count(dataHeader->GuidId))
guid = guidToQString(guidMap[dataHeader->GuidId]);
QString name;
if (nameMap.count(dataHeader->VarId))
name = nameMap[dataHeader->VarId];
// Check for variable validity
if (guid.isEmpty() && name.isEmpty()) { // Both name and guid aren't found
model->setSubtype(current, Subtypes::InvalidEvsaEntry);
model->setName(current, QObject::tr("Invalid"));
msg(QObject::tr("parseEvsaStoreBody: data variable with invalid GuidId and invalid VarId"), current);
}
else if (guid.isEmpty()) { // Guid not found
model->setSubtype(current, Subtypes::InvalidEvsaEntry);
model->setName(current, QObject::tr("Invalid"));
msg(QObject::tr("parseEvsaStoreBody: data variable with invalid GuidId"), current);
}
else if (name.isEmpty()) { // Name not found
model->setSubtype(current, Subtypes::InvalidEvsaEntry);
model->setName(current, QObject::tr("Invalid"));
msg(QObject::tr("parseEvsaStoreBody: data variable with invalid VarId"), current);
}
else { // Variable is OK, rename it
if (dataHeader->Header.Type == NVRAM_EVSA_ENTRY_TYPE_DATA_INVALID) {
model->setSubtype(current, Subtypes::InvalidEvsaEntry);
model->setName(current, QObject::tr("Invalid"));
}
else {
model->setName(current, guid);
}
model->setText(current, name);
}
}
}
return ERR_SUCCESS;
}
STATUS FfsParser::parseFlashMapBody(const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Get parsing data for the current item
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
UINT32 parentOffset = pdata.offset + model->header(index).size();
const QByteArray data = model->body(index);
const UINT32 dataSize = (UINT32)data.size();
UINT32 offset = 0;
UINT32 unparsedSize = dataSize;
// Parse all entries
while (unparsedSize) {
const PHOENIX_FLASH_MAP_ENTRY* entryHeader = (const PHOENIX_FLASH_MAP_ENTRY*)(data.constData() + offset);
// Check entry size
if (unparsedSize < sizeof(PHOENIX_FLASH_MAP_ENTRY)) {
// Last variable is bad, add the rest as padding and return
QByteArray body = data.mid(offset);
QString info = QObject::tr("Full size: %1h (%2)")
.hexarg(body.size()).arg(body.size());
// Add correct offset to parsing data
pdata.offset = parentOffset + offset;
// Add free space tree item
model->addItem(Types::Padding, getPaddingType(body), QObject::tr("Padding"), QString(), info, QByteArray(), body, FALSE, parsingDataToQByteArray(pdata), index);
// Show message
if (unparsedSize < entryHeader->Size)
msg(QObject::tr("parseFlashMapBody: next entry appears too big, added as padding"), index);
break;
}
QString name = guidToQString(entryHeader->Guid);
// Construct header
QByteArray header = data.mid(offset, sizeof(PHOENIX_FLASH_MAP_ENTRY));
// Add info
QString info = QObject::tr("Entry GUID: %1\nFull size: 24h (36)\nHeader size: 24h (36)\nBody size: 0h (0)\nEntry type: %2h\nData type: %3h\nMemory address: %4h\nSize: %5h\nOffset: %6h")
.arg(name)
.hexarg2(entryHeader->EntryType, 4)
.hexarg2(entryHeader->DataType, 4)
.hexarg2(entryHeader->PhysicalAddress, 8)
.hexarg2(entryHeader->Size, 8)
.hexarg2(entryHeader->Offset, 8);
// Add correct offset to parsing data
pdata.offset = parentOffset + offset;
// Determine subtype
UINT8 subtype = 0;
switch (entryHeader->DataType) {
case NVRAM_PHOENIX_FLASH_MAP_ENTRY_TYPE_VOLUME:
subtype = Subtypes::VolumeFlashMapEntry;
break;
case NVRAM_PHOENIX_FLASH_MAP_ENTRY_TYPE_DATA_BLOCK:
subtype = Subtypes::DataFlashMapEntry;
break;
}
// Add tree item
model->addItem(Types::FlashMapEntry, subtype, name, flashMapGuidToQString(entryHeader->Guid), info, header, QByteArray(), TRUE, parsingDataToQByteArray(pdata), index);
// Move to next variable
offset += sizeof(PHOENIX_FLASH_MAP_ENTRY);
unparsedSize = dataSize - offset;
}
return ERR_SUCCESS;
}