/* meparser.cpp Copyright (c) 2019, Nikolaj Schlej. All rights reserved. This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php. THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. */ #include #include #include "ffs.h" #include "me.h" #include "meparser.h" #include "parsingdata.h" #include "utility.h" #ifdef U_ENABLE_ME_PARSING_SUPPORT struct FPT_PARTITION_INFO { FPT_HEADER_ENTRY ptEntry; UINT8 type; UModelIndex index; friend bool operator< (const FPT_PARTITION_INFO & lhs, const FPT_PARTITION_INFO & rhs){ return lhs.ptEntry.Offset < rhs.ptEntry.Offset; } }; struct IFWI_PARTITION_INFO { IFWI_HEADER_ENTRY ptEntry; UINT8 type; UINT8 subtype; friend bool operator< (const IFWI_PARTITION_INFO & lhs, const IFWI_PARTITION_INFO & rhs){ return lhs.ptEntry.Offset < rhs.ptEntry.Offset; } }; USTATUS MeParser::parseMeRegionBody(const UModelIndex & index) { // Sanity check if (!index.isValid()) return U_INVALID_PARAMETER; // Obtain ME region UByteArray meRegion = model->body(index); // Check region size if ((UINT32)meRegion.size() < ME_ROM_BYPASS_VECTOR_SIZE + sizeof(UINT32)) { msg(usprintf("%s: ME region too small to fit ROM bypass vector", __FUNCTION__), index); return U_INVALID_ME_PARTITION_TABLE; } // Check ME signature to determine it's version // ME v11 and older layout if (meRegion.left(sizeof(UINT32)) == FPT_HEADER_SIGNATURE || meRegion.mid(ME_ROM_BYPASS_VECTOR_SIZE, sizeof(UINT32)) == FPT_HEADER_SIGNATURE) { UModelIndex ptIndex; return parseFptRegion(meRegion, index, ptIndex); } // IFWI 1.6 // Check region size if ((UINT32)meRegion.size() < sizeof(IFWI_16_LAYOUT_HEADER)) { msg(usprintf("%s: ME region too small to fit IFWI 1.6 layout header", __FUNCTION__), index); return U_INVALID_ME_PARTITION_TABLE; } const IFWI_16_LAYOUT_HEADER* ifwi16Header = (const IFWI_16_LAYOUT_HEADER*)meRegion.constData(); // Check region size if ((UINT32)meRegion.size() < ifwi16Header->DataPartition.Offset + sizeof(UINT32)) { msg(usprintf("%s: ME region too small to fit IFWI 1.6 data partition", __FUNCTION__), index); return U_INVALID_ME_PARTITION_TABLE; } // Data partition always points to FPT header if (meRegion.mid(ifwi16Header->DataPartition.Offset, sizeof(UINT32)) == FPT_HEADER_SIGNATURE) { UModelIndex ptIndex; return parseIfwi16Region(meRegion, index, ptIndex); } // IFWI 1.7 if ((UINT32)meRegion.size() < sizeof(IFWI_17_LAYOUT_HEADER)) { msg(usprintf("%s: ME region too small to fit IFWI 1.7 layout header", __FUNCTION__), index); return U_INVALID_ME_PARTITION_TABLE; } const IFWI_17_LAYOUT_HEADER* ifwi17Header = (const IFWI_17_LAYOUT_HEADER*)meRegion.constData(); // Check region size if ((UINT32)meRegion.size() < ifwi17Header->DataPartition.Offset + sizeof(UINT32)) { msg(usprintf("%s: ME region too small to fit IFWI 1.7 data partition", __FUNCTION__), index); return U_INVALID_ME_PARTITION_TABLE; } // Data partition always points to FPT header if (meRegion.mid(ifwi17Header->DataPartition.Offset, sizeof(UINT32)) == FPT_HEADER_SIGNATURE) { UModelIndex ptIndex; return parseIfwi17Region(meRegion, index, ptIndex); } // Something else entirely msg(usprintf("%s: unknown ME region format", __FUNCTION__), index); return U_INVALID_ME_PARTITION_TABLE; } USTATUS MeParser::parseFptRegion(const UByteArray & region, const UModelIndex & parent, UModelIndex & index) { // Check region size if ((UINT32)region.size() < sizeof(FPT_HEADER)) { msg(usprintf("%s: region too small to fit FPT header", __FUNCTION__), parent); return U_INVALID_ME_PARTITION_TABLE; } // Populate partition table header const FPT_HEADER* ptHeader = (const FPT_HEADER*)region.constData(); UINT32 romBypassVectorSize = 0; if (region.left(sizeof(UINT32)) != FPT_HEADER_SIGNATURE) { // Adjust the header to skip ROM bypass vector romBypassVectorSize = ME_ROM_BYPASS_VECTOR_SIZE; ptHeader = (const FPT_HEADER*)(region.constData() + romBypassVectorSize); } // Check region size again UINT32 ptBodySize = ptHeader->NumEntries * sizeof(FPT_HEADER_ENTRY); UINT32 ptSize = romBypassVectorSize + sizeof(FPT_HEADER) + ptBodySize; if ((UINT32)region.size() < ptSize) { msg(usprintf("%s: ME region too small to fit FPT partition table", __FUNCTION__), parent); return U_INVALID_ME_PARTITION_TABLE; } // Recalculate checksum UByteArray tempHeader = UByteArray((const char*)region.constData(), romBypassVectorSize + sizeof(FPT_HEADER)); FPT_HEADER* tempPtHeader = (FPT_HEADER*)(tempHeader.data() + romBypassVectorSize); tempPtHeader->Checksum = 0; UINT8 calculated = calculateChecksum8((const UINT8*)tempHeader.data(), romBypassVectorSize + sizeof(FPT_HEADER)); bool msgInvalidPtHeaderChecksum = (calculated != ptHeader->Checksum); // Get info UByteArray header = region.left(romBypassVectorSize + sizeof(FPT_HEADER)); UByteArray body = region.mid(header.size(), ptBodySize); UString name = UString("FPT partition table"); UString info = usprintf("Full size: %Xh (%u)\nHeader size: %Xh (%u)\nBody size: %Xh (%u)\nROM bypass vector: %s\nNumber of entries: %u\nHeader version: %02Xh\nEntry version: %02Xh\n" "Header length: %02Xh\nTicks to add: %04Xh\nTokens to add: %04Xh\nUMA size: %Xh\nFlash layout: %Xh\nFITC version: %u.%u.%u.%u\nChecksum: %02Xh, ", ptSize, ptSize, header.size(), header.size(), ptBodySize, ptBodySize, (romBypassVectorSize ? "present" : "absent"), ptHeader->NumEntries, ptHeader->HeaderVersion, ptHeader->EntryVersion, ptHeader->HeaderLength, ptHeader->TicksToAdd, ptHeader->TokensToAdd, ptHeader->UmaSize, ptHeader->FlashLayout, ptHeader->FitcMajor, ptHeader->FitcMinor, ptHeader->FitcHotfix, ptHeader->FitcBuild, ptHeader->Checksum) + (ptHeader->Checksum == calculated ? UString("valid\n") : usprintf("invalid, should be %02Xh\n", calculated)); // Add tree item index = model->addItem(0, Types::FptStore, 0, name, UString(), info, header, body, UByteArray(), Fixed, parent); // Show messages if (msgInvalidPtHeaderChecksum) { msg(usprintf("%s: FPT partition table header checksum is invalid", __FUNCTION__), index); } // Add partition table entries std::vector partitions; UINT32 offset = header.size(); const FPT_HEADER_ENTRY* firstPtEntry = (const FPT_HEADER_ENTRY*)(region.constData() + offset); for (UINT8 i = 0; i < ptHeader->NumEntries; i++) { // Populate entry header const FPT_HEADER_ENTRY* ptEntry = firstPtEntry + i; // Get info name = visibleAsciiOrHex((UINT8*)ptEntry->Name, 4); info = usprintf("Full size: %Xh (%u)\nPartition offset: %Xh\nPartition length: %Xh\nPartition type: %02Xh", sizeof(FPT_HEADER_ENTRY), sizeof(FPT_HEADER_ENTRY), ptEntry->Offset, ptEntry->Size, ptEntry->Type); // Add tree item const UINT8 type = (ptEntry->Offset != 0 && ptEntry->Offset != 0xFFFFFFFF && ptEntry->Size != 0 && ptEntry->EntryValid != 0xFF) ? Subtypes::ValidFptEntry : Subtypes::InvalidFptEntry; UModelIndex entryIndex = model->addItem(offset, Types::FptEntry, type, name, UString(), info, UByteArray(), UByteArray((const char*)ptEntry, sizeof(FPT_HEADER_ENTRY)), UByteArray(), Fixed, index); // Adjust offset offset += sizeof(FPT_HEADER_ENTRY); // Add valid partitions if (type == Subtypes::ValidFptEntry) { // Skip absent and invalid partitions // Add to partitions vector FPT_PARTITION_INFO partition; partition.type = Types::FptPartition; partition.ptEntry = *ptEntry; partition.index = entryIndex; partitions.push_back(partition); } } make_partition_table_consistent: // Sort partitions by offset std::sort(partitions.begin(), partitions.end()); // Check for intersections and paddings between partitions FPT_PARTITION_INFO padding; // Check intersection with the partition table header if (partitions.front().ptEntry.Offset < ptSize) { msg(usprintf("%s: ME partition has intersection with ME partition table, skipped", __FUNCTION__), partitions.front().index); partitions.erase(partitions.begin()); goto make_partition_table_consistent; } // Check for padding between partition table and the first partition else if (partitions.front().ptEntry.Offset > ptSize) { padding.ptEntry.Offset = ptSize; padding.ptEntry.Size = partitions.front().ptEntry.Offset - ptSize; padding.type = Types::Padding; partitions.insert(partitions.begin(), padding); } // Check for intersections/paddings between partitions for (size_t i = 1; i < partitions.size(); i++) { UINT32 previousPartitionEnd = partitions[i - 1].ptEntry.Offset + partitions[i - 1].ptEntry.Size; // Check that current region is fully present in the image if ((UINT32)partitions[i].ptEntry.Offset + (UINT32)partitions[i].ptEntry.Size > (UINT32)region.size()) { if ((UINT32)partitions[i].ptEntry.Offset >= (UINT32)region.size()) { msg(usprintf("%s: FPT partition is located outside of the opened image, skipped", __FUNCTION__), partitions[i].index); partitions.erase(partitions.begin() + i); goto make_partition_table_consistent; } else { msg(usprintf("%s: FPT partition can't fit into the region, truncated", __FUNCTION__), partitions[i].index); partitions[i].ptEntry.Size = (UINT32)region.size() - (UINT32)partitions[i].ptEntry.Offset; } } // Check for intersection with previous partition if (partitions[i].ptEntry.Offset < previousPartitionEnd) { // Check if current partition is located inside previous one if (partitions[i].ptEntry.Offset + partitions[i].ptEntry.Size <= previousPartitionEnd) { msg(usprintf("%s: FPT partition is located inside another FPT partition, skipped", __FUNCTION__), partitions[i].index); partitions.erase(partitions.begin() + i); goto make_partition_table_consistent; } else { msg(usprintf("%s: FPT partition intersects with previous one, skipped", __FUNCTION__), partitions[i].index); partitions.erase(partitions.begin() + i); goto make_partition_table_consistent; } } // Check for padding between current and previous partitions else if (partitions[i].ptEntry.Offset > previousPartitionEnd) { padding.ptEntry.Offset = previousPartitionEnd; padding.ptEntry.Size = partitions[i].ptEntry.Offset - previousPartitionEnd; padding.type = Types::Padding; std::vector::iterator iter = partitions.begin(); std::advance(iter, i); partitions.insert(iter, padding); } } // Check for padding after the last region if ((UINT32)partitions.back().ptEntry.Offset + (UINT32)partitions.back().ptEntry.Size < (UINT32)region.size()) { padding.ptEntry.Offset = partitions.back().ptEntry.Offset + partitions.back().ptEntry.Size; padding.ptEntry.Size = region.size() - padding.ptEntry.Offset; padding.type = Types::Padding; partitions.push_back(padding); } // Partition map is consistent for (size_t i = 0; i < partitions.size(); i++) { UByteArray partition = region.mid(partitions[i].ptEntry.Offset, partitions[i].ptEntry.Size); if (partitions[i].type == Types::FptPartition) { UModelIndex partitionIndex; // Get info name = visibleAsciiOrHex((UINT8*) partitions[i].ptEntry.Name, 4); info = usprintf("Full size: %Xh (%u)\nPartition type: %02Xh\n", partition.size(), partition.size(), partitions[i].ptEntry.Type); // Add tree item UINT8 type = Subtypes::CodeFptPartition + partitions[i].ptEntry.Type; partitionIndex = model->addItem(partitions[i].ptEntry.Offset, Types::FptPartition, type, name, UString(), info, UByteArray(), partition, UByteArray(), Fixed, parent); if (type == Subtypes::CodeFptPartition && partition.size() >= (int) sizeof(UINT32) && readUnaligned((const UINT32*)partition.constData()) == CPD_SIGNATURE) { // Parse code partition contents UModelIndex cpdIndex; ffsParser->parseCpdRegion(partition, partitions[i].ptEntry.Offset, partitionIndex, cpdIndex); } } else if (partitions[i].type == Types::Padding) { // Get info name = UString("Padding"); info = usprintf("Full size: %Xh (%u)", partition.size(), partition.size()); // Add tree item model->addItem(partitions[i].ptEntry.Offset, Types::Padding, getPaddingType(partition), name, UString(), info, UByteArray(), partition, UByteArray(), Fixed, parent); } } return U_SUCCESS; } USTATUS MeParser::parseIfwi16Region(const UByteArray & region, const UModelIndex & parent, UModelIndex & index) { // Check region size again if ((UINT32)region.size() < sizeof(IFWI_16_LAYOUT_HEADER)) { msg(usprintf("%s: ME region too small to fit IFWI 1.6 layout header", __FUNCTION__), parent); return U_INVALID_ME_PARTITION_TABLE; } const IFWI_16_LAYOUT_HEADER* ifwiHeader = (const IFWI_16_LAYOUT_HEADER*)region.constData(); // Add header UINT32 ptSize = sizeof(IFWI_16_LAYOUT_HEADER); UByteArray header = region.left(ptSize); UString name = UString("IFWI 1.6 header"); UString info = usprintf("Full size: %Xh (%u)\n" "Data partition offset: %Xh\nData partition size: %Xh\n" "Boot1 partition offset: %Xh\nBoot1 partition size: %Xh\n" "Boot2 partition offset: %Xh\nBoot2 partition size: %Xh\n" "Boot3 partition offset: %Xh\nBoot3 partition size: %Xh\n" "Boot4 partition offset: %Xh\nBoot4 partition size: %Xh\n" "Boot5 partition offset: %Xh\nBoot5 partition size: %Xh\n" "Checksum: %Xh", header.size(), header.size(), ifwiHeader->DataPartition.Offset, ifwiHeader->DataPartition.Size, ifwiHeader->BootPartition[0].Offset, ifwiHeader->BootPartition[0].Size, ifwiHeader->BootPartition[1].Offset, ifwiHeader->BootPartition[1].Size, ifwiHeader->BootPartition[2].Offset, ifwiHeader->BootPartition[2].Size, ifwiHeader->BootPartition[3].Offset, ifwiHeader->BootPartition[3].Size, ifwiHeader->BootPartition[4].Offset, ifwiHeader->BootPartition[4].Size, ifwiHeader->Checksum); // Add tree item index = model->addItem(0, Types::IfwiHeader, 0, name, UString(), info, UByteArray(), header, UByteArray(), Fixed, parent); std::vector partitions; // Add data partition { IFWI_PARTITION_INFO partition; partition.type = Types::IfwiPartition; partition.subtype = Subtypes::DataIfwiPartition; partition.ptEntry = ifwiHeader->DataPartition; partitions.push_back(partition); } // Add boot partitions for (UINT8 i = 0 ; i < 4; i++) { if (ifwiHeader->BootPartition[i].Offset != 0 && ifwiHeader->BootPartition[i].Offset != 0xFFFFFFFF) { IFWI_PARTITION_INFO partition; partition.type = Types::IfwiPartition; partition.subtype = Subtypes::BootIfwiPartition; partition.ptEntry = ifwiHeader->BootPartition[i]; partitions.push_back(partition); } } make_partition_table_consistent: // Sort partitions by offset std::sort(partitions.begin(), partitions.end()); // Check for intersections and paddings between partitions IFWI_PARTITION_INFO padding; // Check intersection with the partition table header if (partitions.front().ptEntry.Offset < ptSize) { msg(usprintf("%s: IFWI partition has intersection with IFWI layout header, skipped", __FUNCTION__), index); partitions.erase(partitions.begin()); goto make_partition_table_consistent; } // Check for padding between partition table and the first partition else if (partitions.front().ptEntry.Offset > ptSize) { padding.ptEntry.Offset = ptSize; padding.ptEntry.Size = partitions.front().ptEntry.Offset - ptSize; padding.type = Types::Padding; partitions.insert(partitions.begin(), padding); } // Check for intersections/paddings between partitions for (size_t i = 1; i < partitions.size(); i++) { UINT32 previousPartitionEnd = partitions[i - 1].ptEntry.Offset + partitions[i - 1].ptEntry.Size; // Check that current region is fully present in the image if ((UINT32)partitions[i].ptEntry.Offset + (UINT32)partitions[i].ptEntry.Size > (UINT32)region.size()) { if ((UINT32)partitions[i].ptEntry.Offset >= (UINT32)region.size()) { msg(usprintf("%s: IFWI partition is located outside of the opened image, skipped", __FUNCTION__), index); partitions.erase(partitions.begin() + i); goto make_partition_table_consistent; } else { msg(usprintf("%s: IFWI partition can't fit into the region, truncated", __FUNCTION__), index); partitions[i].ptEntry.Size = (UINT32)region.size() - (UINT32)partitions[i].ptEntry.Offset; } } // Check for intersection with previous partition if (partitions[i].ptEntry.Offset < previousPartitionEnd) { // Check if current partition is located inside previous one if (partitions[i].ptEntry.Offset + partitions[i].ptEntry.Size <= previousPartitionEnd) { msg(usprintf("%s: IFWI partition is located inside another IFWI partition, skipped", __FUNCTION__), index); partitions.erase(partitions.begin() + i); goto make_partition_table_consistent; } else { msg(usprintf("%s: IFWI partition intersects with previous one, skipped", __FUNCTION__), index); partitions.erase(partitions.begin() + i); goto make_partition_table_consistent; } } // Check for padding between current and previous partitions else if (partitions[i].ptEntry.Offset > previousPartitionEnd) { padding.ptEntry.Offset = previousPartitionEnd; padding.ptEntry.Size = partitions[i].ptEntry.Offset - previousPartitionEnd; padding.type = Types::Padding; std::vector::iterator iter = partitions.begin(); std::advance(iter, i); partitions.insert(iter, padding); } } // Check for padding after the last region if ((UINT32)partitions.back().ptEntry.Offset + (UINT32)partitions.back().ptEntry.Size < (UINT32)region.size()) { padding.ptEntry.Offset = partitions.back().ptEntry.Offset + partitions.back().ptEntry.Size; padding.ptEntry.Size = region.size() - padding.ptEntry.Offset; padding.type = Types::Padding; partitions.push_back(padding); } // Partition map is consistent for (size_t i = 0; i < partitions.size(); i++) { UByteArray partition = region.mid(partitions[i].ptEntry.Offset, partitions[i].ptEntry.Size); if (partitions[i].type == Types::IfwiPartition) { UModelIndex partitionIndex; if (partitions[i].subtype == Subtypes::DataIfwiPartition) { name = "Data partition"; } else if (partitions[i].subtype == Subtypes::BootIfwiPartition) { name = "Boot partition"; } // Get info info = usprintf("Full size: %Xh (%u)\n", partition.size(), partition.size()); // Add tree item partitionIndex = model->addItem(partitions[i].ptEntry.Offset, partitions[i].type, partitions[i].subtype, name, UString(), info, UByteArray(), partition, UByteArray(), Fixed, parent); // Parse partition further if (partitions[i].subtype == Subtypes::DataIfwiPartition) { UModelIndex dataPartitionFptRegionIndex; parseFptRegion(partition, partitionIndex, dataPartitionFptRegionIndex); } else if (partitions[i].subtype == Subtypes::BootIfwiPartition) { // Parse code partition contents UModelIndex bootPartitionBpdtRegionIndex; ffsParser->parseBpdtRegion(partition, 0, 0, partitionIndex, bootPartitionBpdtRegionIndex); } } else if (partitions[i].type == Types::Padding) { // Get info name = UString("Padding"); info = usprintf("Full size: %Xh (%u)", partition.size(), partition.size()); // Add tree item model->addItem(partitions[i].ptEntry.Offset, Types::Padding, getPaddingType(partition), name, UString(), info, UByteArray(), partition, UByteArray(), Fixed, parent); } } return U_SUCCESS; } USTATUS MeParser::parseIfwi17Region(const UByteArray & region, const UModelIndex & parent, UModelIndex & index) { // Check region size again if ((UINT32)region.size() < sizeof(IFWI_17_LAYOUT_HEADER)) { msg(usprintf("%s: ME region too small to fit IFWI 1.7 layout header", __FUNCTION__), parent); return U_INVALID_ME_PARTITION_TABLE; } const IFWI_17_LAYOUT_HEADER* ifwiHeader = (const IFWI_17_LAYOUT_HEADER*)region.constData(); // TODO: add check for HeaderSize to be 0x40 // Add header UINT32 ptSize = sizeof(IFWI_17_LAYOUT_HEADER); UByteArray header = region.left(ptSize); UString name = UString("IFWI 1.7 header"); UString info = usprintf("Full size: %Xh (%u)\n" "Flags: %02Xh\n" "Reserved: %02Xh\n" "Checksum: %Xh\n" "Data partition offset: %Xh\nData partition size: %Xh\n" "Boot1 partition offset: %Xh\nBoot1 partition size: %Xh\n" "Boot2 partition offset: %Xh\nBoot2 partition size: %Xh\n" "Boot3 partition offset: %Xh\nBoot3 partition size: %Xh\n" "Boot4 partition offset: %Xh\nBoot4 partition size: %Xh\n" "Boot5 partition offset: %Xh\nBoot5 partition size: %Xh\n" "Temp page offset: %Xh\nTemp page size: %Xh\n", header.size(), header.size(), ifwiHeader->Flags, ifwiHeader->Reserved, ifwiHeader->Checksum, ifwiHeader->DataPartition.Offset, ifwiHeader->DataPartition.Size, ifwiHeader->BootPartition[0].Offset, ifwiHeader->BootPartition[0].Size, ifwiHeader->BootPartition[1].Offset, ifwiHeader->BootPartition[1].Size, ifwiHeader->BootPartition[2].Offset, ifwiHeader->BootPartition[2].Size, ifwiHeader->BootPartition[3].Offset, ifwiHeader->BootPartition[3].Size, ifwiHeader->BootPartition[4].Offset, ifwiHeader->BootPartition[4].Size, ifwiHeader->TempPage.Offset, ifwiHeader->TempPage.Size); // Add tree item index = model->addItem(0, Types::IfwiHeader, 0, name, UString(), info, UByteArray(), header, UByteArray(), Fixed, parent); std::vector partitions; // Add data partition { IFWI_PARTITION_INFO partition; partition.type = Types::IfwiPartition; partition.subtype = Subtypes::DataIfwiPartition; partition.ptEntry = ifwiHeader->DataPartition; partitions.push_back(partition); } // Add boot partitions for (UINT8 i = 0 ; i < 4; i++) { if (ifwiHeader->BootPartition[i].Offset != 0 && ifwiHeader->BootPartition[i].Offset != 0xFFFFFFFF) { IFWI_PARTITION_INFO partition; partition.type = Types::IfwiPartition; partition.subtype = Subtypes::BootIfwiPartition; partition.ptEntry = ifwiHeader->BootPartition[i]; partitions.push_back(partition); } } // Add temp page if (ifwiHeader->TempPage.Offset != 0 && ifwiHeader->TempPage.Offset != 0xFFFFFFFF) { IFWI_PARTITION_INFO partition; partition.type = Types::IfwiPartition; partition.subtype = Subtypes::DataPadding; partition.ptEntry = ifwiHeader->TempPage; partitions.push_back(partition); } make_partition_table_consistent: // Sort partitions by offset std::sort(partitions.begin(), partitions.end()); // Check for intersections and paddings between partitions IFWI_PARTITION_INFO padding; // Check intersection with the partition table header if (partitions.front().ptEntry.Offset < ptSize) { msg(usprintf("%s: IFWI partition has intersection with IFWI layout header, skipped", __FUNCTION__), index); partitions.erase(partitions.begin()); goto make_partition_table_consistent; } // Check for padding between partition table and the first partition else if (partitions.front().ptEntry.Offset > ptSize) { padding.ptEntry.Offset = ptSize; padding.ptEntry.Size = partitions.front().ptEntry.Offset - ptSize; padding.type = Types::Padding; partitions.insert(partitions.begin(), padding); } // Check for intersections/paddings between partitions for (size_t i = 1; i < partitions.size(); i++) { UINT32 previousPartitionEnd = partitions[i - 1].ptEntry.Offset + partitions[i - 1].ptEntry.Size; // Check that current region is fully present in the image if ((UINT32)partitions[i].ptEntry.Offset + (UINT32)partitions[i].ptEntry.Size > (UINT32)region.size()) { if ((UINT32)partitions[i].ptEntry.Offset >= (UINT32)region.size()) { msg(usprintf("%s: IFWI partition is located outside of the opened image, skipped", __FUNCTION__), index); partitions.erase(partitions.begin() + i); goto make_partition_table_consistent; } else { msg(usprintf("%s: IFWI partition can't fit into the region, truncated", __FUNCTION__), index); partitions[i].ptEntry.Size = (UINT32)region.size() - (UINT32)partitions[i].ptEntry.Offset; } } // Check for intersection with previous partition if (partitions[i].ptEntry.Offset < previousPartitionEnd) { // Check if current partition is located inside previous one if (partitions[i].ptEntry.Offset + partitions[i].ptEntry.Size <= previousPartitionEnd) { msg(usprintf("%s: IFWI partition is located inside another IFWI partition, skipped", __FUNCTION__), index); partitions.erase(partitions.begin() + i); goto make_partition_table_consistent; } else { msg(usprintf("%s: IFWI partition intersects with previous one, skipped", __FUNCTION__), index); partitions.erase(partitions.begin() + i); goto make_partition_table_consistent; } } // Check for padding between current and previous partitions else if (partitions[i].ptEntry.Offset > previousPartitionEnd) { padding.ptEntry.Offset = previousPartitionEnd; padding.ptEntry.Size = partitions[i].ptEntry.Offset - previousPartitionEnd; padding.type = Types::Padding; std::vector::iterator iter = partitions.begin(); std::advance(iter, i); partitions.insert(iter, padding); } } // Check for padding after the last region if ((UINT32)partitions.back().ptEntry.Offset + (UINT32)partitions.back().ptEntry.Size < (UINT32)region.size()) { padding.ptEntry.Offset = partitions.back().ptEntry.Offset + partitions.back().ptEntry.Size; padding.ptEntry.Size = region.size() - padding.ptEntry.Offset; padding.type = Types::Padding; partitions.push_back(padding); } // Partition map is consistent for (size_t i = 0; i < partitions.size(); i++) { UByteArray partition = region.mid(partitions[i].ptEntry.Offset, partitions[i].ptEntry.Size); if (partitions[i].type == Types::IfwiPartition) { UModelIndex partitionIndex; if (partitions[i].subtype == Subtypes::DataIfwiPartition) { name = "Data partition"; } else if (partitions[i].subtype == Subtypes::BootIfwiPartition){ name = "Boot partition"; } else { name = "Temp page"; } // Get info info = usprintf("Full size: %Xh (%u)\n", partition.size(), partition.size()); // Add tree item partitionIndex = model->addItem(partitions[i].ptEntry.Offset, partitions[i].type, partitions[i].subtype, name, UString(), info, UByteArray(), partition, UByteArray(), Fixed, parent); // Parse partition further if (partitions[i].subtype == Subtypes::DataIfwiPartition) { UModelIndex dataPartitionFptRegionIndex; parseFptRegion(partition, partitionIndex, dataPartitionFptRegionIndex); } else if (partitions[i].subtype == Subtypes::BootIfwiPartition) { // Parse code partition contents UModelIndex bootPartitionBpdtRegionIndex; ffsParser->parseBpdtRegion(partition, 0, 0, partitionIndex, bootPartitionBpdtRegionIndex); } } else if (partitions[i].type == Types::Padding) { // Get info name = UString("Padding"); info = usprintf("Full size: %Xh (%u)", partition.size(), partition.size()); // Add tree item model->addItem(partitions[i].ptEntry.Offset, Types::Padding, getPaddingType(partition), name, UString(), info, UByteArray(), partition, UByteArray(), Fixed, parent); } } return U_SUCCESS; } #endif // U_ENABLE_ME_PARSING_SUPPORT