mirror of
https://github.com/LongSoft/UEFITool.git
synced 2024-11-24 17:08:23 +08:00
892 lines
36 KiB
C++
892 lines
36 KiB
C++
/* utility.cpp
|
|
|
|
Copyright (c) 2016, Nikolaj Schlej. All rights reserved.
|
|
This program and the accompanying materials
|
|
are licensed and made available under the terms and conditions of the BSD License
|
|
which accompanies this distribution. The full text of the license may be found at
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
|
|
*/
|
|
|
|
#include <cstdio>
|
|
#include <cctype>
|
|
#include <cstring>
|
|
|
|
#include "treemodel.h"
|
|
#include "utility.h"
|
|
#include "peimage.h"
|
|
#include "ffs.h"
|
|
#include "basetypes.h"
|
|
#include "Tiano/EfiTianoCompress.h"
|
|
#include "Tiano/EfiTianoDecompress.h"
|
|
#include "LZMA/LzmaCompress.h"
|
|
#include "LZMA/LzmaDecompress.h"
|
|
|
|
// Returns unique name string based for tree item
|
|
UString uniqueItemName(const UModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return UString("Invalid_index");
|
|
|
|
// Get model from index
|
|
const TreeModel* model = (const TreeModel*)index.model();
|
|
|
|
// Construct the name
|
|
UString itemName = model->name(index);
|
|
UString itemText = model->text(index);
|
|
|
|
// Default name
|
|
|
|
UString name = itemName;
|
|
switch (model->type(index)) {
|
|
case Types::NvarEntry:
|
|
case Types::VssEntry:
|
|
case Types::FsysEntry:
|
|
case Types::EvsaEntry:
|
|
case Types::FlashMapEntry:
|
|
case Types::File:
|
|
name = itemText.isEmpty() ? itemName : itemName + '_' + itemText;
|
|
break;
|
|
case Types::Section: {
|
|
// Get parent file name
|
|
UModelIndex fileIndex = model->findParentOfType(index, Types::File);
|
|
UString fileText = model->text(fileIndex);
|
|
name = fileText.isEmpty() ? model->name(fileIndex) : model->name(fileIndex) + '_' + fileText;
|
|
|
|
// Special case of GUIDed sections
|
|
if (model->subtype(index) == EFI_SECTION_GUID_DEFINED || model->subtype(index) == EFI_SECTION_FREEFORM_SUBTYPE_GUID) {
|
|
name = model->name(index) +'_' + name;
|
|
}
|
|
} break;
|
|
}
|
|
|
|
// Populate subtypeString
|
|
UString subtypeString = itemSubtypeToUString(model->type(index), model->subtype(index));
|
|
|
|
// Create final name
|
|
name = itemTypeToUString(model->type(index))
|
|
+ (subtypeString.length() ? ('_' + subtypeString) : UString())
|
|
+ '_' + name;
|
|
|
|
// Replace some symbols with underscopes for better readability
|
|
name.findreplace(' ', '_');
|
|
name.findreplace('/', '_');
|
|
name.findreplace('\\', '_');
|
|
|
|
return name;
|
|
}
|
|
|
|
// Returns text representation of error code
|
|
UString errorCodeToUString(USTATUS errorCode)
|
|
{
|
|
switch (errorCode) {
|
|
case U_SUCCESS: return UString("Success");
|
|
case U_NOT_IMPLEMENTED: return UString("Not implemented");
|
|
case U_INVALID_PARAMETER: return UString("Function called with invalid parameter");
|
|
case U_BUFFER_TOO_SMALL: return UString("Buffer too small");
|
|
case U_OUT_OF_RESOURCES: return UString("Out of resources");
|
|
case U_OUT_OF_MEMORY: return UString("Out of memory");
|
|
case U_FILE_OPEN: return UString("File can't be opened");
|
|
case U_FILE_READ: return UString("File can't be read");
|
|
case U_FILE_WRITE: return UString("File can't be written");
|
|
case U_ITEM_NOT_FOUND: return UString("Item not found");
|
|
case U_UNKNOWN_ITEM_TYPE: return UString("Unknown item type");
|
|
case U_INVALID_FLASH_DESCRIPTOR: return UString("Invalid flash descriptor");
|
|
case U_INVALID_REGION: return UString("Invalid region");
|
|
case U_EMPTY_REGION: return UString("Empty region");
|
|
case U_BIOS_REGION_NOT_FOUND: return UString("BIOS region not found");
|
|
case U_VOLUMES_NOT_FOUND: return UString("UEFI volumes not found");
|
|
case U_INVALID_VOLUME: return UString("Invalid UEFI volume");
|
|
case U_VOLUME_REVISION_NOT_SUPPORTED: return UString("Volume revision not supported");
|
|
//case U_VOLUME_GROW_FAILED: return UString("Volume grow failed");
|
|
case U_UNKNOWN_FFS: return UString("Unknown file system");
|
|
case U_INVALID_FILE: return UString("Invalid file");
|
|
case U_INVALID_SECTION: return UString("Invalid section");
|
|
case U_UNKNOWN_SECTION: return UString("Unknown section");
|
|
case U_STANDARD_COMPRESSION_FAILED: return UString("Standard compression failed");
|
|
case U_CUSTOMIZED_COMPRESSION_FAILED: return UString("Customized compression failed");
|
|
case U_STANDARD_DECOMPRESSION_FAILED: return UString("Standard decompression failed");
|
|
case U_CUSTOMIZED_DECOMPRESSION_FAILED: return UString("Customized decompression failed");
|
|
case U_UNKNOWN_COMPRESSION_TYPE: return UString("Unknown compression type");
|
|
case U_UNKNOWN_EXTRACT_MODE: return UString("Unknown extract mode");
|
|
case U_UNKNOWN_REPLACE_MODE: return UString("Unknown replace mode");
|
|
//case U_UNKNOWN_INSERT_MODE: return UString("Unknown insert mode");
|
|
case U_UNKNOWN_IMAGE_TYPE: return UString("Unknown executable image type");
|
|
case U_UNKNOWN_PE_OPTIONAL_HEADER_TYPE: return UString("Unknown PE optional header type");
|
|
case U_UNKNOWN_RELOCATION_TYPE: return UString("Unknown relocation type");
|
|
//case U_GENERIC_CALL_NOT_SUPPORTED: return UString("Generic call not supported");
|
|
//case U_VOLUME_BASE_NOT_FOUND: return UString("Volume base address not found");
|
|
//case U_PEI_CORE_ENTRY_POINT_NOT_FOUND: return UString("PEI core entry point not found");
|
|
case U_COMPLEX_BLOCK_MAP: return UString("Block map structure too complex for correct analysis");
|
|
case U_DIR_ALREADY_EXIST: return UString("Directory already exists");
|
|
case U_DIR_CREATE: return UString("Directory can't be created");
|
|
case U_DIR_CHANGE: return UString("Change directory failed");
|
|
//case U_UNKNOWN_PATCH_TYPE: return UString("Unknown patch type");
|
|
//case U_PATCH_OFFSET_OUT_OF_BOUNDS: return UString("Patch offset out of bounds");
|
|
//case U_INVALID_SYMBOL: return UString("Invalid symbol");
|
|
//case U_NOTHING_TO_PATCH: return UString("Nothing to patch");
|
|
case U_DEPEX_PARSE_FAILED: return UString("Dependency expression parsing failed");
|
|
case U_TRUNCATED_IMAGE: return UString("Image is truncated");
|
|
case U_INVALID_CAPSULE: return UString("Invalid capsule");
|
|
case U_STORES_NOT_FOUND: return UString("Stores not found");
|
|
case U_INVALID_STORE_SIZE: return UString("Invalid store size");
|
|
default: return usprintf("Unknown error %02X", errorCode);
|
|
}
|
|
}
|
|
|
|
// CRC32 implementation
|
|
UINT32 crc32(UINT32 initial, const UINT8* buffer, const UINT32 length)
|
|
{
|
|
static const UINT32 crcTable[256] = {
|
|
0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535,
|
|
0x9E6495A3, 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD,
|
|
0xE7B82D07, 0x90BF1D91, 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D,
|
|
0x6DDDE4EB, 0xF4D4B551, 0x83D385C7, 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC,
|
|
0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5, 0x3B6E20C8, 0x4C69105E, 0xD56041E4,
|
|
0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, 0x35B5A8FA, 0x42B2986C,
|
|
0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59, 0x26D930AC,
|
|
0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F,
|
|
0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB,
|
|
0xB6662D3D, 0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F,
|
|
0x9FBFE4A5, 0xE8B8D433, 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB,
|
|
0x086D3D2D, 0x91646C97, 0xE6635C01, 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E,
|
|
0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457, 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA,
|
|
0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65, 0x4DB26158, 0x3AB551CE,
|
|
0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB, 0x4369E96A,
|
|
0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9,
|
|
0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409,
|
|
0xCE61E49F, 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81,
|
|
0xB7BD5C3B, 0xC0BA6CAD, 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739,
|
|
0x9DD277AF, 0x04DB2615, 0x73DC1683, 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8,
|
|
0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1, 0xF00F9344, 0x8708A3D2, 0x1E01F268,
|
|
0x6906C2FE, 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7, 0xFED41B76, 0x89D32BE0,
|
|
0x10DA7A5A, 0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, 0xD6D6A3E8,
|
|
0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B,
|
|
0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF,
|
|
0x4669BE79, 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703,
|
|
0x220216B9, 0x5505262F, 0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7,
|
|
0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D, 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A,
|
|
0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713, 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE,
|
|
0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, 0x86D3D2D4, 0xF1D4E242,
|
|
0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777, 0x88085AE6,
|
|
0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45,
|
|
0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D,
|
|
0x3E6E77DB, 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5,
|
|
0x47B2CF7F, 0x30B5FFE9, 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605,
|
|
0xCDD70693, 0x54DE5729, 0x23D967BF, 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94,
|
|
0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D };
|
|
|
|
// Accumulate crc32 for buffer
|
|
UINT32 crc32 = initial ^ 0xFFFFFFFF;
|
|
for (UINT32 i = 0; i < length; i++) {
|
|
crc32 = (crc32 >> 8) ^ crcTable[(crc32 ^ buffer[i]) & 0xFF];
|
|
}
|
|
|
|
return(crc32 ^ 0xFFFFFFFF);
|
|
}
|
|
|
|
// Compression routines
|
|
USTATUS decompress(const UByteArray & compressedData, const UINT8 compressionType, UINT8 & algorithm, UByteArray & decompressedData, UByteArray & efiDecompressedData)
|
|
{
|
|
const UINT8* data;
|
|
UINT32 dataSize;
|
|
UINT8* decompressed;
|
|
UINT8* efiDecompressed;
|
|
UINT32 decompressedSize = 0;
|
|
UINT8* scratch;
|
|
UINT32 scratchSize = 0;
|
|
const EFI_TIANO_HEADER* header;
|
|
|
|
switch (compressionType)
|
|
{
|
|
case EFI_NOT_COMPRESSED:
|
|
decompressedData = compressedData;
|
|
algorithm = COMPRESSION_ALGORITHM_NONE;
|
|
return U_SUCCESS;
|
|
case EFI_STANDARD_COMPRESSION: {
|
|
// Set default algorithm to unknown
|
|
algorithm = COMPRESSION_ALGORITHM_UNKNOWN;
|
|
|
|
// Get buffer sizes
|
|
data = (UINT8*)compressedData.data();
|
|
dataSize = compressedData.size();
|
|
|
|
// Check header to be valid
|
|
header = (const EFI_TIANO_HEADER*)data;
|
|
if (header->CompSize + sizeof(EFI_TIANO_HEADER) != dataSize)
|
|
return U_STANDARD_DECOMPRESSION_FAILED;
|
|
|
|
// Get info function is the same for both algorithms
|
|
if (U_SUCCESS != EfiTianoGetInfo(data, dataSize, &decompressedSize, &scratchSize))
|
|
return U_STANDARD_DECOMPRESSION_FAILED;
|
|
|
|
// Allocate memory
|
|
decompressed = (UINT8*)malloc(decompressedSize);
|
|
efiDecompressed = (UINT8*)malloc(decompressedSize);
|
|
scratch = (UINT8*)malloc(scratchSize);
|
|
if (!decompressed || !efiDecompressed || !scratch) {
|
|
free(decompressed);
|
|
free(efiDecompressed);
|
|
free(scratch);
|
|
return U_STANDARD_DECOMPRESSION_FAILED;
|
|
}
|
|
|
|
// Decompress section data using both algorithms
|
|
USTATUS result = U_SUCCESS;
|
|
// Try Tiano
|
|
USTATUS TianoResult = TianoDecompress(data, dataSize, decompressed, decompressedSize, scratch, scratchSize);
|
|
// Try EFI 1.1
|
|
USTATUS EfiResult = EfiDecompress(data, dataSize, efiDecompressed, decompressedSize, scratch, scratchSize);
|
|
|
|
if (decompressedSize > INT32_MAX) {
|
|
free(decompressed);
|
|
free(efiDecompressed);
|
|
free(scratch);
|
|
return U_STANDARD_DECOMPRESSION_FAILED;
|
|
}
|
|
|
|
if (EfiResult == U_SUCCESS && TianoResult == U_SUCCESS) { // Both decompressions are OK
|
|
algorithm = COMPRESSION_ALGORITHM_UNDECIDED;
|
|
decompressedData = UByteArray((const char*)decompressed, (int)decompressedSize);
|
|
efiDecompressedData = UByteArray((const char*)efiDecompressed, (int)decompressedSize);
|
|
}
|
|
else if (TianoResult == U_SUCCESS) { // Only Tiano is OK
|
|
algorithm = COMPRESSION_ALGORITHM_TIANO;
|
|
decompressedData = UByteArray((const char*)decompressed, (int)decompressedSize);
|
|
}
|
|
else if (EfiResult == U_SUCCESS) { // Only EFI 1.1 is OK
|
|
algorithm = COMPRESSION_ALGORITHM_EFI11;
|
|
decompressedData = UByteArray((const char*)efiDecompressed, (int)decompressedSize);
|
|
}
|
|
else { // Both decompressions failed
|
|
result = U_STANDARD_DECOMPRESSION_FAILED;
|
|
}
|
|
|
|
free(decompressed);
|
|
free(efiDecompressed);
|
|
free(scratch);
|
|
return result;
|
|
}
|
|
case EFI_CUSTOMIZED_COMPRESSION:
|
|
// Set default algorithm to unknown
|
|
algorithm = COMPRESSION_ALGORITHM_UNKNOWN;
|
|
|
|
// Get buffer sizes
|
|
data = (const UINT8*)compressedData.constData();
|
|
dataSize = compressedData.size();
|
|
|
|
// Get info
|
|
if (U_SUCCESS != LzmaGetInfo(data, dataSize, &decompressedSize))
|
|
return U_CUSTOMIZED_DECOMPRESSION_FAILED;
|
|
|
|
// Allocate memory
|
|
decompressed = (UINT8*)malloc(decompressedSize);
|
|
if (!decompressed) {
|
|
return U_STANDARD_DECOMPRESSION_FAILED;
|
|
}
|
|
|
|
// Decompress section data
|
|
if (U_SUCCESS != LzmaDecompress(data, dataSize, decompressed)) {
|
|
// Intel modified LZMA workaround
|
|
// Decompress section data once again
|
|
data += sizeof(UINT32);
|
|
|
|
// Get info again
|
|
if (U_SUCCESS != LzmaGetInfo(data, dataSize, &decompressedSize)) {
|
|
free(decompressed);
|
|
return U_CUSTOMIZED_DECOMPRESSION_FAILED;
|
|
}
|
|
|
|
// Decompress section data again
|
|
if (U_SUCCESS != LzmaDecompress(data, dataSize, decompressed)) {
|
|
free(decompressed);
|
|
return U_CUSTOMIZED_DECOMPRESSION_FAILED;
|
|
}
|
|
else {
|
|
if (decompressedSize > INT32_MAX) {
|
|
free(decompressed);
|
|
return U_CUSTOMIZED_DECOMPRESSION_FAILED;
|
|
}
|
|
algorithm = COMPRESSION_ALGORITHM_IMLZMA;
|
|
decompressedData = UByteArray((const char*)decompressed, (int)decompressedSize);
|
|
}
|
|
}
|
|
else {
|
|
if (decompressedSize > INT32_MAX) {
|
|
free(decompressed);
|
|
return U_CUSTOMIZED_DECOMPRESSION_FAILED;
|
|
}
|
|
algorithm = COMPRESSION_ALGORITHM_LZMA;
|
|
decompressedData = UByteArray((const char*)decompressed, (int)decompressedSize);
|
|
}
|
|
|
|
free(decompressed);
|
|
return U_SUCCESS;
|
|
default:
|
|
algorithm = COMPRESSION_ALGORITHM_UNKNOWN;
|
|
return U_UNKNOWN_COMPRESSION_TYPE;
|
|
}
|
|
}
|
|
|
|
USTATUS compress(const UByteArray & data, const UINT8 algorithm, UByteArray & compressedData)
|
|
{
|
|
UINT8* compressed;
|
|
|
|
switch (algorithm) {
|
|
case COMPRESSION_ALGORITHM_NONE:
|
|
{
|
|
compressedData = data;
|
|
return U_SUCCESS;
|
|
}
|
|
break;
|
|
case COMPRESSION_ALGORITHM_EFI11:
|
|
{
|
|
// Try legacy function first
|
|
UINT32 compressedSize = 0;
|
|
if (EfiCompressLegacy(data.constData(), data.size(), NULL, &compressedSize) != U_BUFFER_TOO_SMALL)
|
|
return U_STANDARD_COMPRESSION_FAILED;
|
|
compressed = new UINT8[compressedSize];
|
|
if (EfiCompressLegacy(data.constData(), data.size(), compressed, &compressedSize) != U_SUCCESS) {
|
|
delete[] compressed;
|
|
return U_STANDARD_COMPRESSION_FAILED;
|
|
}
|
|
compressedData = UByteArray((const char*)compressed, compressedSize);
|
|
|
|
// Check that compressed data can be decompressed normally
|
|
UByteArray decompressed;
|
|
UByteArray efiDecompressed;
|
|
UINT8 alg = 0; // TODO !!
|
|
if (decompress(compressedData, EFI_STANDARD_COMPRESSION, alg, decompressed, efiDecompressed) == U_SUCCESS
|
|
&& decompressed == data) {
|
|
delete[] compressed;
|
|
return U_SUCCESS;
|
|
}
|
|
delete[] compressed;
|
|
|
|
// Legacy function failed, use current one
|
|
compressedSize = 0;
|
|
if (EfiCompress(data.constData(), data.size(), NULL, &compressedSize) != U_BUFFER_TOO_SMALL)
|
|
return U_STANDARD_COMPRESSION_FAILED;
|
|
compressed = new UINT8[compressedSize];
|
|
if (EfiCompress(data.constData(), data.size(), compressed, &compressedSize) != U_SUCCESS) {
|
|
delete[] compressed;
|
|
return U_STANDARD_COMPRESSION_FAILED;
|
|
}
|
|
compressedData = UByteArray((const char*)compressed, compressedSize);
|
|
|
|
// New functions will be trusted here, because another check will reduce performance
|
|
delete[] compressed;
|
|
return U_SUCCESS;
|
|
}
|
|
break;
|
|
case COMPRESSION_ALGORITHM_TIANO:
|
|
{
|
|
// Try legacy function first
|
|
UINT32 compressedSize = 0;
|
|
if (TianoCompressLegacy(data.constData(), data.size(), NULL, &compressedSize) != U_BUFFER_TOO_SMALL)
|
|
return U_STANDARD_COMPRESSION_FAILED;
|
|
compressed = new UINT8[compressedSize];
|
|
if (TianoCompressLegacy(data.constData(), data.size(), compressed, &compressedSize) != U_SUCCESS) {
|
|
delete[] compressed;
|
|
return U_STANDARD_COMPRESSION_FAILED;
|
|
}
|
|
compressedData = UByteArray((const char*)compressed, compressedSize);
|
|
|
|
// Check that compressed data can be decompressed normally
|
|
UByteArray decompressed;
|
|
UByteArray efiDecompressed;
|
|
UINT8 alg = 0; // TODO !!
|
|
if (decompress(compressedData, EFI_STANDARD_COMPRESSION, alg, decompressed, efiDecompressed) == U_SUCCESS
|
|
&& decompressed == data) {
|
|
delete[] compressed;
|
|
return U_SUCCESS;
|
|
}
|
|
delete[] compressed;
|
|
|
|
// Legacy function failed, use current one
|
|
compressedSize = 0;
|
|
if (TianoCompress(data.constData(), data.size(), NULL, &compressedSize) != U_BUFFER_TOO_SMALL)
|
|
return U_STANDARD_COMPRESSION_FAILED;
|
|
compressed = new UINT8[compressedSize];
|
|
if (TianoCompress(data.constData(), data.size(), compressed, &compressedSize) != U_SUCCESS) {
|
|
delete[] compressed;
|
|
return U_STANDARD_COMPRESSION_FAILED;
|
|
}
|
|
compressedData = UByteArray((const char*)compressed, compressedSize);
|
|
|
|
// New functions will be trusted here, because another check will reduce performance
|
|
delete[] compressed;
|
|
return U_SUCCESS;
|
|
}
|
|
break;
|
|
case COMPRESSION_ALGORITHM_LZMA:
|
|
{
|
|
UINT32 compressedSize = 0;
|
|
if (LzmaCompress((const UINT8*)data.constData(), data.size(), NULL, &compressedSize) != U_BUFFER_TOO_SMALL)
|
|
return U_CUSTOMIZED_COMPRESSION_FAILED;
|
|
compressed = new UINT8[compressedSize];
|
|
if (LzmaCompress((const UINT8*)data.constData(), data.size(), compressed, &compressedSize) != U_SUCCESS) {
|
|
delete[] compressed;
|
|
return U_CUSTOMIZED_COMPRESSION_FAILED;
|
|
}
|
|
compressedData = UByteArray((const char*)compressed, compressedSize);
|
|
delete[] compressed;
|
|
return U_SUCCESS;
|
|
}
|
|
break;
|
|
case COMPRESSION_ALGORITHM_IMLZMA:
|
|
{
|
|
UINT32 compressedSize = 0;
|
|
UByteArray header = data.left(sizeof(EFI_COMMON_SECTION_HEADER));
|
|
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)header.constData();
|
|
UINT32 headerSize = sizeOfSectionHeader(sectionHeader);
|
|
header = data.left(headerSize);
|
|
UByteArray newData = data.mid(headerSize);
|
|
if (LzmaCompress((const UINT8*)newData.constData(), newData.size(), NULL, &compressedSize) != U_BUFFER_TOO_SMALL)
|
|
return U_CUSTOMIZED_COMPRESSION_FAILED;
|
|
compressed = new UINT8[compressedSize];
|
|
if (LzmaCompress((const UINT8*)newData.constData(), newData.size(), compressed, &compressedSize) != U_SUCCESS) {
|
|
delete[] compressed;
|
|
return U_CUSTOMIZED_COMPRESSION_FAILED;
|
|
}
|
|
compressedData = header + UByteArray((const char*)compressed, compressedSize);
|
|
delete[] compressed;
|
|
return U_SUCCESS;
|
|
}
|
|
break;
|
|
default:
|
|
//msg(usprintf("compress: unknown compression algorithm %1").arg(algorithm));
|
|
return U_UNKNOWN_COMPRESSION_ALGORITHM;
|
|
}
|
|
}
|
|
|
|
// 8bit sum calculation routine
|
|
UINT8 calculateSum8(const UINT8* buffer, UINT32 bufferSize)
|
|
{
|
|
if (!buffer)
|
|
return 0;
|
|
|
|
UINT8 counter = 0;
|
|
|
|
while (bufferSize--)
|
|
counter += buffer[bufferSize];
|
|
|
|
return counter;
|
|
}
|
|
|
|
// 8bit checksum calculation routine
|
|
UINT8 calculateChecksum8(const UINT8* buffer, UINT32 bufferSize)
|
|
{
|
|
if (!buffer)
|
|
return 0;
|
|
|
|
return (UINT8)(0x100U - calculateSum8(buffer, bufferSize));
|
|
}
|
|
|
|
// 16bit checksum calculation routine
|
|
UINT16 calculateChecksum16(const UINT16* buffer, UINT32 bufferSize)
|
|
{
|
|
if (!buffer)
|
|
return 0;
|
|
|
|
UINT16 counter = 0;
|
|
UINT32 index = 0;
|
|
|
|
bufferSize /= sizeof(UINT16);
|
|
|
|
for (; index < bufferSize; index++) {
|
|
counter = (UINT16)(counter + buffer[index]);
|
|
}
|
|
|
|
return (UINT16)(0x10000 - counter);
|
|
}
|
|
|
|
// Get padding type for a given padding
|
|
UINT8 getPaddingType(const UByteArray & padding)
|
|
{
|
|
if (padding.count('\x00') == padding.size())
|
|
return Subtypes::ZeroPadding;
|
|
if (padding.count('\xFF') == padding.size())
|
|
return Subtypes::OnePadding;
|
|
return Subtypes::DataPadding;
|
|
}
|
|
|
|
static inline int char2hex(char c) {
|
|
if (c >= '0' && c <= '9')
|
|
return c - '0';
|
|
if (c >= 'A' && c <= 'F')
|
|
return c - 'A';
|
|
if (c == '.')
|
|
return -2;
|
|
return -1;
|
|
}
|
|
|
|
INTN findPattern(const UINT8 *pattern, const UINT8 *patternMask, UINTN patternSize,
|
|
const UINT8 *data, UINTN dataSize, UINTN dataOff) {
|
|
if (patternSize == 0 || dataSize == 0 || dataOff >= dataSize || dataSize - dataOff < patternSize)
|
|
return -1;
|
|
|
|
while (dataOff + patternSize < dataSize) {
|
|
BOOLEAN matches = TRUE;
|
|
for (UINTN i = 0; i < patternSize; i++) {
|
|
if ((data[dataOff + i] & patternMask[i]) != pattern[i]) {
|
|
matches = FALSE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (matches)
|
|
return static_cast<INTN>(dataOff);
|
|
|
|
dataOff++;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
BOOLEAN makePattern(const CHAR8 *textPattern, std::vector<UINT8> &pattern, std::vector<UINT8> &patternMask) {
|
|
UINTN len = strlen(textPattern);
|
|
|
|
if (len == 0 || len % 2 != 0)
|
|
return FALSE;
|
|
|
|
len /= 2;
|
|
|
|
pattern.resize(len);
|
|
patternMask.resize(len);
|
|
|
|
for (UINTN i = 0; i < len; i++) {
|
|
int v1 = char2hex(std::toupper(textPattern[i * 2]));
|
|
int v2 = char2hex(std::toupper(textPattern[i * 2 + 1]));
|
|
|
|
if (v1 == -1 || v2 == -1)
|
|
return FALSE;
|
|
|
|
if (v1 != -2) {
|
|
patternMask[i] = 0xF0;
|
|
pattern[i] = static_cast<UINT8>(v1) << 4;
|
|
}
|
|
|
|
if (v2 != -2) {
|
|
patternMask[i] |= 0x0F;
|
|
pattern[i] |= static_cast<UINT8>(v2);
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
USTATUS getEntryPoint(const UByteArray &file, UINT32& entryPoint)
|
|
{
|
|
if (file.isEmpty())
|
|
return U_INVALID_FILE;
|
|
|
|
// Populate DOS header
|
|
if ((UINT32)file.size() < sizeof(EFI_IMAGE_DOS_HEADER))
|
|
return U_INVALID_FILE;
|
|
const EFI_IMAGE_DOS_HEADER* dosHeader = (const EFI_IMAGE_DOS_HEADER*)file.constData();
|
|
|
|
// Check signature
|
|
if (dosHeader->e_magic == EFI_IMAGE_DOS_SIGNATURE){
|
|
UINT32 offset = dosHeader->e_lfanew;
|
|
if ((UINT32)file.size() < offset + sizeof(EFI_IMAGE_PE_HEADER))
|
|
return U_UNKNOWN_IMAGE_TYPE;
|
|
const EFI_IMAGE_PE_HEADER* peHeader = (const EFI_IMAGE_PE_HEADER*)(file.constData() + offset);
|
|
if (peHeader->Signature != EFI_IMAGE_PE_SIGNATURE)
|
|
return U_UNKNOWN_IMAGE_TYPE;
|
|
offset += sizeof(EFI_IMAGE_PE_HEADER);
|
|
|
|
// Skip file header
|
|
offset += sizeof(EFI_IMAGE_FILE_HEADER);
|
|
|
|
// Check optional header magic
|
|
const UINT16 magic = *(const UINT16*)(file.constData() + offset);
|
|
if (magic == EFI_IMAGE_PE_OPTIONAL_HDR32_MAGIC) {
|
|
if ((UINT32)file.size() < offset + sizeof(EFI_IMAGE_OPTIONAL_HEADER32))
|
|
return U_UNKNOWN_PE_OPTIONAL_HEADER_TYPE;
|
|
const EFI_IMAGE_OPTIONAL_HEADER32* optHeader = (const EFI_IMAGE_OPTIONAL_HEADER32*)(file.constData() + offset);
|
|
entryPoint = optHeader->ImageBase + optHeader->AddressOfEntryPoint;
|
|
}
|
|
else if (magic == EFI_IMAGE_PE_OPTIONAL_HDR64_MAGIC) {
|
|
if ((UINT32)file.size() < offset + sizeof(EFI_IMAGE_OPTIONAL_HEADER64))
|
|
return U_UNKNOWN_PE_OPTIONAL_HEADER_TYPE;
|
|
const EFI_IMAGE_OPTIONAL_HEADER64* optHeader = (const EFI_IMAGE_OPTIONAL_HEADER64*)(file.constData() + offset);
|
|
entryPoint = optHeader->ImageBase + optHeader->AddressOfEntryPoint;
|
|
}
|
|
else
|
|
return U_UNKNOWN_PE_OPTIONAL_HEADER_TYPE;
|
|
}
|
|
else if (dosHeader->e_magic == EFI_IMAGE_TE_SIGNATURE){
|
|
// Populate TE header
|
|
if ((UINT32)file.size() < sizeof(EFI_IMAGE_TE_HEADER))
|
|
return U_INVALID_FILE;
|
|
const EFI_IMAGE_TE_HEADER* teHeader = (const EFI_IMAGE_TE_HEADER*)file.constData();
|
|
UINT32 teFixup = teHeader->StrippedSize - sizeof(EFI_IMAGE_TE_HEADER);
|
|
entryPoint = teHeader->ImageBase + teHeader->AddressOfEntryPoint - teFixup;
|
|
}
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS getBase(const UByteArray& file, UINT32& base)
|
|
{
|
|
if (file.isEmpty())
|
|
return U_INVALID_FILE;
|
|
|
|
// Populate DOS header
|
|
if ((UINT32)file.size() < sizeof(EFI_IMAGE_DOS_HEADER))
|
|
return U_INVALID_FILE;
|
|
const EFI_IMAGE_DOS_HEADER* dosHeader = (const EFI_IMAGE_DOS_HEADER*)file.constData();
|
|
|
|
// Check signature
|
|
if (dosHeader->e_magic == EFI_IMAGE_DOS_SIGNATURE){
|
|
UINT32 offset = dosHeader->e_lfanew;
|
|
if ((UINT32)file.size() < offset + sizeof(EFI_IMAGE_PE_HEADER))
|
|
return U_UNKNOWN_IMAGE_TYPE;
|
|
const EFI_IMAGE_PE_HEADER* peHeader = (const EFI_IMAGE_PE_HEADER*)(file.constData() + offset);
|
|
if (peHeader->Signature != EFI_IMAGE_PE_SIGNATURE)
|
|
return U_UNKNOWN_IMAGE_TYPE;
|
|
offset += sizeof(EFI_IMAGE_PE_HEADER);
|
|
|
|
// Skip file header
|
|
offset += sizeof(EFI_IMAGE_FILE_HEADER);
|
|
|
|
// Check optional header magic
|
|
const UINT16 magic = *(const UINT16*)(file.constData() + offset);
|
|
if (magic == EFI_IMAGE_PE_OPTIONAL_HDR32_MAGIC) {
|
|
if ((UINT32)file.size() < offset + sizeof(EFI_IMAGE_OPTIONAL_HEADER32))
|
|
return U_UNKNOWN_PE_OPTIONAL_HEADER_TYPE;
|
|
const EFI_IMAGE_OPTIONAL_HEADER32* optHeader = (const EFI_IMAGE_OPTIONAL_HEADER32*)(file.constData() + offset);
|
|
base = optHeader->ImageBase;
|
|
}
|
|
else if (magic == EFI_IMAGE_PE_OPTIONAL_HDR64_MAGIC) {
|
|
if ((UINT32)file.size() < offset + sizeof(EFI_IMAGE_OPTIONAL_HEADER64))
|
|
return U_UNKNOWN_PE_OPTIONAL_HEADER_TYPE;
|
|
const EFI_IMAGE_OPTIONAL_HEADER64* optHeader = (const EFI_IMAGE_OPTIONAL_HEADER64*)(file.constData() + offset);
|
|
base = optHeader->ImageBase;
|
|
}
|
|
else
|
|
return U_UNKNOWN_PE_OPTIONAL_HEADER_TYPE;
|
|
}
|
|
else if (dosHeader->e_magic == EFI_IMAGE_TE_SIGNATURE){
|
|
// Populate TE header
|
|
if ((UINT32)file.size() < sizeof(EFI_IMAGE_TE_HEADER))
|
|
return U_INVALID_FILE;
|
|
const EFI_IMAGE_TE_HEADER* teHeader = (const EFI_IMAGE_TE_HEADER*)file.constData();
|
|
//!TODO: add handling
|
|
base = teHeader->ImageBase;
|
|
}
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS growVolume(UByteArray & header, const UINT32 size, UINT32 & newSize)
|
|
{
|
|
// Check sanity
|
|
if ((UINT32)header.size() < sizeof(EFI_FIRMWARE_VOLUME_HEADER))
|
|
return U_INVALID_VOLUME;
|
|
|
|
// Adjust new size to be representable by current FvBlockMap
|
|
EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (EFI_FIRMWARE_VOLUME_HEADER*)header.data();
|
|
EFI_FV_BLOCK_MAP_ENTRY* blockMap = (EFI_FV_BLOCK_MAP_ENTRY*)(header.data() + sizeof(EFI_FIRMWARE_VOLUME_HEADER));
|
|
|
|
// Get block map size
|
|
UINT32 blockMapSize = volumeHeader->HeaderLength - sizeof(EFI_FIRMWARE_VOLUME_HEADER);
|
|
if (blockMapSize % sizeof(EFI_FV_BLOCK_MAP_ENTRY))
|
|
return U_INVALID_VOLUME;
|
|
UINT32 blockMapCount = blockMapSize / sizeof(EFI_FV_BLOCK_MAP_ENTRY);
|
|
|
|
// Check blockMap validity
|
|
if (blockMap[blockMapCount - 1].NumBlocks != 0 || blockMap[blockMapCount - 1].Length != 0)
|
|
return U_INVALID_VOLUME;
|
|
|
|
// Case of complex blockMap
|
|
if (blockMapCount > 2)
|
|
return U_COMPLEX_BLOCK_MAP;
|
|
|
|
// Calculate new size
|
|
if (newSize <= size)
|
|
return U_INVALID_PARAMETER;
|
|
|
|
newSize += blockMap[0].Length - newSize % blockMap[0].Length;
|
|
|
|
// Recalculate number of blocks
|
|
blockMap[0].NumBlocks = newSize / blockMap[0].Length;
|
|
|
|
// Set new volume size
|
|
volumeHeader->FvLength = 0;
|
|
for (UINT8 i = 0; i < blockMapCount; i++) {
|
|
volumeHeader->FvLength += blockMap[i].NumBlocks * blockMap[i].Length;
|
|
}
|
|
|
|
// Recalculate volume header checksum
|
|
volumeHeader->Checksum = 0;
|
|
volumeHeader->Checksum = calculateChecksum16((const UINT16*)volumeHeader, volumeHeader->HeaderLength);
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS rebase(UByteArray &executable, const UINT32 base)
|
|
{
|
|
UINT32 delta; // Difference between old and new base addresses
|
|
UINT32 relocOffset; // Offset of relocation region
|
|
UINT32 relocSize; // Size of relocation region
|
|
UINT32 teFixup = 0; // Bytes removed form PE header for TE images
|
|
|
|
// Copy input data to local storage
|
|
UByteArray file = executable;
|
|
|
|
// Populate DOS header
|
|
if ((UINT32)file.size() < sizeof(EFI_IMAGE_DOS_HEADER))
|
|
return U_INVALID_FILE;
|
|
EFI_IMAGE_DOS_HEADER* dosHeader = (EFI_IMAGE_DOS_HEADER*)file.data();
|
|
|
|
// Check signature
|
|
if (dosHeader->e_magic == EFI_IMAGE_DOS_SIGNATURE){
|
|
UINT32 offset = dosHeader->e_lfanew;
|
|
if ((UINT32)file.size() < offset + sizeof(EFI_IMAGE_PE_HEADER))
|
|
return U_UNKNOWN_IMAGE_TYPE;
|
|
EFI_IMAGE_PE_HEADER* peHeader = (EFI_IMAGE_PE_HEADER*)(file.data() + offset);
|
|
if (peHeader->Signature != EFI_IMAGE_PE_SIGNATURE)
|
|
return U_UNKNOWN_IMAGE_TYPE;
|
|
offset += sizeof(EFI_IMAGE_PE_HEADER);
|
|
// Skip file header
|
|
offset += sizeof(EFI_IMAGE_FILE_HEADER);
|
|
// Check optional header magic
|
|
if ((UINT32)file.size() < offset + sizeof(UINT16))
|
|
return U_UNKNOWN_IMAGE_TYPE;
|
|
UINT16 magic = *(UINT16*)(file.data() + offset);
|
|
if (magic == EFI_IMAGE_PE_OPTIONAL_HDR32_MAGIC) {
|
|
if ((UINT32)file.size() < offset + sizeof(EFI_IMAGE_OPTIONAL_HEADER32))
|
|
return U_UNKNOWN_PE_OPTIONAL_HEADER_TYPE;
|
|
EFI_IMAGE_OPTIONAL_HEADER32* optHeader = (EFI_IMAGE_OPTIONAL_HEADER32*)(file.data() + offset);
|
|
delta = base - optHeader->ImageBase;
|
|
if (!delta)
|
|
// No need to rebase
|
|
return U_SUCCESS;
|
|
relocOffset = optHeader->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress;
|
|
relocSize = optHeader->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].Size;
|
|
// Set new base
|
|
optHeader->ImageBase = base;
|
|
}
|
|
else if (magic == EFI_IMAGE_PE_OPTIONAL_HDR64_MAGIC) {
|
|
if ((UINT32)file.size() < offset + sizeof(EFI_IMAGE_OPTIONAL_HEADER64))
|
|
return U_UNKNOWN_PE_OPTIONAL_HEADER_TYPE;
|
|
EFI_IMAGE_OPTIONAL_HEADER64* optHeader = (EFI_IMAGE_OPTIONAL_HEADER64*)(file.data() + offset);
|
|
delta = base - optHeader->ImageBase;
|
|
if (!delta)
|
|
// No need to rebase
|
|
return U_SUCCESS;
|
|
relocOffset = optHeader->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress;
|
|
relocSize = optHeader->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].Size;
|
|
// Set new base
|
|
optHeader->ImageBase = base;
|
|
}
|
|
else
|
|
return U_UNKNOWN_PE_OPTIONAL_HEADER_TYPE;
|
|
}
|
|
else if (dosHeader->e_magic == EFI_IMAGE_TE_SIGNATURE){
|
|
// Populate TE header
|
|
if ((UINT32)file.size() < sizeof(EFI_IMAGE_TE_HEADER))
|
|
return U_INVALID_FILE;
|
|
EFI_IMAGE_TE_HEADER* teHeader = (EFI_IMAGE_TE_HEADER*)file.data();
|
|
delta = base - teHeader->ImageBase;
|
|
if (!delta)
|
|
// No need to rebase
|
|
return U_SUCCESS;
|
|
relocOffset = teHeader->DataDirectory[EFI_IMAGE_TE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress;
|
|
teFixup = teHeader->StrippedSize - sizeof(EFI_IMAGE_TE_HEADER);
|
|
relocSize = teHeader->DataDirectory[EFI_IMAGE_TE_DIRECTORY_ENTRY_BASERELOC].Size;
|
|
// Set new base
|
|
teHeader->ImageBase = base;
|
|
|
|
// Warn the user about possible outcome of incorrect rebase of TE image
|
|
//msg(tr("rebase: can't determine if TE image base is adjusted or not, rebased TE image may stop working"), index);
|
|
}
|
|
else
|
|
return U_UNKNOWN_IMAGE_TYPE;
|
|
|
|
// No relocations
|
|
if (relocOffset == 0) {
|
|
// No need to fix relocations
|
|
executable = file;
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
EFI_IMAGE_BASE_RELOCATION *RelocBase;
|
|
EFI_IMAGE_BASE_RELOCATION *RelocBaseEnd;
|
|
UINT16 *Reloc;
|
|
UINT16 *RelocEnd;
|
|
UINT16 *F16;
|
|
UINT32 *F32;
|
|
UINT64 *F64;
|
|
|
|
// Run the whole relocation block
|
|
RelocBase = (EFI_IMAGE_BASE_RELOCATION*)(file.data() + relocOffset - teFixup);
|
|
RelocBaseEnd = (EFI_IMAGE_BASE_RELOCATION*)(file.data() + relocOffset - teFixup + relocSize);
|
|
|
|
while (RelocBase < RelocBaseEnd) {
|
|
Reloc = (UINT16*)((UINT8*)RelocBase + sizeof(EFI_IMAGE_BASE_RELOCATION));
|
|
RelocEnd = (UINT16*)((UINT8*)RelocBase + RelocBase->SizeOfBlock);
|
|
|
|
// Run this relocation record
|
|
while (Reloc < RelocEnd) {
|
|
if (*Reloc == 0x0000) {
|
|
// Skip last emtpy reloc entry
|
|
Reloc += 1;
|
|
continue;
|
|
}
|
|
|
|
UINT32 RelocLocation = RelocBase->VirtualAddress - teFixup + (*Reloc & 0x0FFF);
|
|
if ((UINT32)file.size() < RelocLocation)
|
|
//return U_BAD_RELOCATION_ENTRY;
|
|
return U_UNKNOWN_RELOCATION_TYPE;
|
|
UINT8* data = (UINT8*)(file.data() + RelocLocation);
|
|
switch ((*Reloc) >> 12) {
|
|
case EFI_IMAGE_REL_BASED_ABSOLUTE:
|
|
// Do nothing
|
|
break;
|
|
|
|
case EFI_IMAGE_REL_BASED_HIGH:
|
|
// Add second 16 bits of delta
|
|
F16 = (UINT16*)data;
|
|
*F16 = (UINT16)(*F16 + (UINT16)(((UINT32)delta) >> 16));
|
|
break;
|
|
|
|
case EFI_IMAGE_REL_BASED_LOW:
|
|
// Add first 16 bits of delta
|
|
F16 = (UINT16*)data;
|
|
*F16 = (UINT16)(*F16 + (UINT16)delta);
|
|
break;
|
|
|
|
case EFI_IMAGE_REL_BASED_HIGHLOW:
|
|
// Add first 32 bits of delta
|
|
F32 = (UINT32*)data;
|
|
*F32 = *F32 + (UINT32)delta;
|
|
break;
|
|
|
|
case EFI_IMAGE_REL_BASED_DIR64:
|
|
// Add all 64 bits of delta
|
|
F64 = (UINT64*)data;
|
|
*F64 = *F64 + (UINT64)delta;
|
|
break;
|
|
|
|
default:
|
|
return U_UNKNOWN_RELOCATION_TYPE;
|
|
}
|
|
|
|
// Next relocation record
|
|
Reloc += 1;
|
|
}
|
|
|
|
// Next relocation block
|
|
RelocBase = (EFI_IMAGE_BASE_RELOCATION*)RelocEnd;
|
|
}
|
|
|
|
executable = file;
|
|
return U_SUCCESS;
|
|
}
|