UEFITool/common/kaitai/kaitaistream.h
Nikolaj Schlej 934ce1f3f8 Kaitai-based Intel ACM and BootGuard parsers
As the first step towards automated parsing, this change set replaces outdated BootGuard-related parsers with shiny new KaitaiStruct-based ones.
It also does the following:
- improves Intel FIT definitions by using the relevant specification
- adds sha1, sha384, sha512 and sm3 digest implementations
- updates LZMA SDK to v22.01
- moves GUIDs out of include files to prevent multiple instantiations
- enforces C++11
- adds Kaitai-based parsers for Intel FIT, BootGuard v1 and BootGuard v2 structures
- makes many small refactorings here, there and everywhere
2022-09-10 13:14:29 +02:00

296 lines
9.2 KiB
C++

#ifndef KAITAI_STREAM_H
#define KAITAI_STREAM_H
// Kaitai Struct runtime API version: x.y.z = 'xxxyyyzzz' decimal
#define KAITAI_STRUCT_VERSION 10000L
#include <istream>
#include <sstream>
#include <stdint.h>
#include <sys/types.h>
#include <limits>
namespace kaitai {
/**
* Kaitai Stream class (kaitai::kstream) is an implementation of
* <a href="https://doc.kaitai.io/stream_api.html">Kaitai Struct stream API</a>
* for C++/STL. It's implemented as a wrapper over generic STL std::istream.
*
* It provides a wide variety of simple methods to read (parse) binary
* representations of primitive types, such as integer and floating
* point numbers, byte arrays and strings, and also provides stream
* positioning / navigation methods with unified cross-language and
* cross-toolkit semantics.
*
* Typically, end users won't access Kaitai Stream class manually, but would
* describe a binary structure format using .ksy language and then would use
* Kaitai Struct compiler to generate source code in desired target language.
* That code, in turn, would use this class and API to do the actual parsing
* job.
*/
class kstream {
public:
/**
* Constructs new Kaitai Stream object, wrapping a given std::istream.
* \param io istream object to use for this Kaitai Stream
*/
kstream(std::istream* io);
/**
* Constructs new Kaitai Stream object, wrapping a given in-memory data
* buffer.
* \param data data buffer to use for this Kaitai Stream
*/
kstream(const std::string& data);
void close();
/** @name Stream positioning */
//@{
/**
* Check if stream pointer is at the end of stream. Note that the semantics
* are different from traditional STL semantics: one does *not* need to do a
* read (which will fail) after the actual end of the stream to trigger EOF
* flag, which can be accessed after that read. It is sufficient to just be
* at the end of the stream for this method to return true.
* \return "true" if we are located at the end of the stream.
*/
bool is_eof() const;
/**
* Set stream pointer to designated position.
* \param pos new position (offset in bytes from the beginning of the stream)
*/
void seek(uint64_t pos);
/**
* Get current position of a stream pointer.
* \return pointer position, number of bytes from the beginning of the stream
*/
uint64_t pos();
/**
* Get total size of the stream in bytes.
* \return size of the stream in bytes
*/
uint64_t size();
//@}
/** @name Integer numbers */
//@{
// ------------------------------------------------------------------------
// Signed
// ------------------------------------------------------------------------
int8_t read_s1();
// ........................................................................
// Big-endian
// ........................................................................
int16_t read_s2be();
int32_t read_s4be();
int64_t read_s8be();
// ........................................................................
// Little-endian
// ........................................................................
int16_t read_s2le();
int32_t read_s4le();
int64_t read_s8le();
// ------------------------------------------------------------------------
// Unsigned
// ------------------------------------------------------------------------
uint8_t read_u1();
// ........................................................................
// Big-endian
// ........................................................................
uint16_t read_u2be();
uint32_t read_u4be();
uint64_t read_u8be();
// ........................................................................
// Little-endian
// ........................................................................
uint16_t read_u2le();
uint32_t read_u4le();
uint64_t read_u8le();
//@}
/** @name Floating point numbers */
//@{
// ........................................................................
// Big-endian
// ........................................................................
float read_f4be();
double read_f8be();
// ........................................................................
// Little-endian
// ........................................................................
float read_f4le();
double read_f8le();
//@}
/** @name Unaligned bit values */
//@{
void align_to_byte();
uint64_t read_bits_int_be(int n);
uint64_t read_bits_int(int n);
uint64_t read_bits_int_le(int n);
//@}
/** @name Byte arrays */
//@{
std::string read_bytes(std::streamsize len);
std::string read_bytes_full();
std::string read_bytes_term(char term, bool include, bool consume, bool eos_error);
std::string ensure_fixed_contents(std::string expected);
static std::string bytes_strip_right(std::string src, char pad_byte);
static std::string bytes_terminate(std::string src, char term, bool include);
static std::string bytes_to_str(std::string src, std::string src_enc);
//@}
/** @name Byte array processing */
//@{
/**
* Performs a XOR processing with given data, XORing every byte of input with a single
* given value.
* @param data data to process
* @param key value to XOR with
* @return processed data
*/
static std::string process_xor_one(std::string data, uint8_t key);
/**
* Performs a XOR processing with given data, XORing every byte of input with a key
* array, repeating key array many times, if necessary (i.e. if data array is longer
* than key array).
* @param data data to process
* @param key array of bytes to XOR with
* @return processed data
*/
static std::string process_xor_many(std::string data, std::string key);
/**
* Performs a circular left rotation shift for a given buffer by a given amount of bits,
* using groups of 1 bytes each time. Right circular rotation should be performed
* using this procedure with corrected amount.
* @param data source data to process
* @param amount number of bits to shift by
* @return copy of source array with requested shift applied
*/
static std::string process_rotate_left(std::string data, int amount);
#ifdef KS_ZLIB
/**
* Performs an unpacking ("inflation") of zlib-compressed data with usual zlib headers.
* @param data data to unpack
* @return unpacked data
* @throws IOException
*/
static std::string process_zlib(std::string data);
#endif
//@}
/**
* Performs modulo operation between two integers: dividend `a`
* and divisor `b`. Divisor `b` is expected to be positive. The
* result is always 0 <= x <= b - 1.
*/
static int mod(int a, int b);
/**
* Converts given integer `val` to a decimal string representation.
* Should be used in place of std::to_string() (which is available only
* since C++11) in older C++ implementations.
*/
template<typename I>
// check for C++11 support - https://stackoverflow.com/a/40512515
#if __cplusplus >= 201103L || (defined(_MSC_VER) && _MSC_VER >= 1900)
// https://stackoverflow.com/a/27913885
typename std::enable_if<
std::is_integral<I>::value &&
// check if we don't have something too large like GCC's `__int128_t`
std::numeric_limits<I>::max() >= 0 &&
std::numeric_limits<I>::max() <= std::numeric_limits<uint64_t>::max(),
std::string
>::type
#else
std::string
#endif
static to_string(I val) {
// in theory, `digits10 + 3` would be enough (minus sign + leading digit
// + null terminator), but let's add a little more to be safe
char buf[std::numeric_limits<I>::digits10 + 5];
if (val < 0) {
buf[0] = '-';
// get absolute value without undefined behavior (https://stackoverflow.com/a/12231604)
unsigned_to_decimal(-static_cast<uint64_t>(val), &buf[1]);
} else {
unsigned_to_decimal(val, buf);
}
return std::string(buf);
}
/**
* Reverses given string `val`, so that the first character becomes the
* last and the last one becomes the first. This should be used to avoid
* the need of local variables at the caller.
*/
static std::string reverse(std::string val);
/**
* Finds the minimal byte in a byte array, treating bytes as
* unsigned values.
* @param val byte array to scan
* @return minimal byte in byte array as integer
*/
static uint8_t byte_array_min(const std::string val);
/**
* Finds the maximal byte in a byte array, treating bytes as
* unsigned values.
* @param val byte array to scan
* @return maximal byte in byte array as integer
*/
static uint8_t byte_array_max(const std::string val);
private:
std::istream* m_io;
std::istringstream m_io_str;
int m_bits_left;
uint64_t m_bits;
void init();
void exceptions_enable() const;
static void unsigned_to_decimal(uint64_t number, char *buffer);
static const int ZLIB_BUF_SIZE = 128 * 1024;
};
}
#endif