mirror of
https://github.com/LongSoft/UEFITool.git
synced 2024-11-24 17:08:23 +08:00
214b768b8f
Co-authored-by: Jake Christensen <jake@privatemachines.com>
4906 lines
205 KiB
C++
4906 lines
205 KiB
C++
/* ffsengine.cpp
|
|
|
|
Copyright (c) 2015, Nikolaj Schlej. All rights reserved.
|
|
This program and the accompanying materials
|
|
are licensed and made available under the terms and conditions of the BSD License
|
|
which accompanies this distribution. The full text of the license may be found at
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
WITHWARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
*/
|
|
|
|
#include <math.h>
|
|
|
|
#include "ffsengine.h"
|
|
#include "types.h"
|
|
#include "treemodel.h"
|
|
#include "descriptor.h"
|
|
#include "ffs.h"
|
|
#include "gbe.h"
|
|
#include "me.h"
|
|
#include "Tiano/EfiTianoCompress.h"
|
|
#include "Tiano/EfiTianoDecompress.h"
|
|
#include "LZMA/LzmaCompress.h"
|
|
#include "LZMA/LzmaDecompress.h"
|
|
#include "LZMA/x86Convert.h"
|
|
|
|
#ifdef _CONSOLE
|
|
#include <iostream>
|
|
#endif
|
|
|
|
QString errorMessage(UINT8 errorCode)
|
|
{
|
|
switch (errorCode) {
|
|
case ERR_SUCCESS: return QObject::tr("Success");
|
|
case ERR_NOT_IMPLEMENTED: return QObject::tr("Not implemented");
|
|
case ERR_INVALID_PARAMETER: return QObject::tr("Function called with invalid parameter");
|
|
case ERR_BUFFER_TOO_SMALL: return QObject::tr("Buffer too small");
|
|
case ERR_OUT_OF_RESOURCES: return QObject::tr("Out of resources");
|
|
case ERR_OUT_OF_MEMORY: return QObject::tr("Out of memory");
|
|
case ERR_FILE_OPEN: return QObject::tr("File can't be opened");
|
|
case ERR_FILE_READ: return QObject::tr("File can't be read");
|
|
case ERR_FILE_WRITE: return QObject::tr("File can't be written");
|
|
case ERR_ITEM_NOT_FOUND: return QObject::tr("Item not found");
|
|
case ERR_UNKNOWN_ITEM_TYPE: return QObject::tr("Unknown item type");
|
|
case ERR_INVALID_FLASH_DESCRIPTOR: return QObject::tr("Invalid flash descriptor");
|
|
case ERR_INVALID_REGION: return QObject::tr("Invalid region");
|
|
case ERR_EMPTY_REGION: return QObject::tr("Empty region");
|
|
case ERR_BIOS_REGION_NOT_FOUND: return QObject::tr("BIOS region not found");
|
|
case ERR_VOLUMES_NOT_FOUND: return QObject::tr("UEFI volumes not found");
|
|
case ERR_INVALID_VOLUME: return QObject::tr("Invalid UEFI volume");
|
|
case ERR_VOLUME_REVISION_NOT_SUPPORTED: return QObject::tr("Volume revision not supported");
|
|
case ERR_VOLUME_GROW_FAILED: return QObject::tr("Volume grow failed");
|
|
case ERR_UNKNOWN_FFS: return QObject::tr("Unknown file system");
|
|
case ERR_INVALID_FILE: return QObject::tr("Invalid file");
|
|
case ERR_INVALID_SECTION: return QObject::tr("Invalid section");
|
|
case ERR_UNKNOWN_SECTION: return QObject::tr("Unknown section");
|
|
case ERR_STANDARD_COMPRESSION_FAILED: return QObject::tr("Standard compression failed");
|
|
case ERR_CUSTOMIZED_COMPRESSION_FAILED: return QObject::tr("Customized compression failed");
|
|
case ERR_STANDARD_DECOMPRESSION_FAILED: return QObject::tr("Standard decompression failed");
|
|
case ERR_CUSTOMIZED_DECOMPRESSION_FAILED: return QObject::tr("Customized compression failed");
|
|
case ERR_UNKNOWN_COMPRESSION_ALGORITHM: return QObject::tr("Unknown compression method");
|
|
case ERR_UNKNOWN_EXTRACT_MODE: return QObject::tr("Unknown extract mode");
|
|
case ERR_UNKNOWN_INSERT_MODE: return QObject::tr("Unknown insert mode");
|
|
case ERR_UNKNOWN_IMAGE_TYPE: return QObject::tr("Unknown executable image type");
|
|
case ERR_UNKNOWN_PE_OPTIONAL_HEADER_TYPE: return QObject::tr("Unknown PE optional header type");
|
|
case ERR_UNKNOWN_RELOCATION_TYPE: return QObject::tr("Unknown relocation type");
|
|
case ERR_GENERIC_CALL_NOT_SUPPORTED: return QObject::tr("Generic call not supported");
|
|
case ERR_VOLUME_BASE_NOT_FOUND: return QObject::tr("Volume base address not found");
|
|
case ERR_PEI_CORE_ENTRY_POINT_NOT_FOUND: return QObject::tr("PEI core entry point not found");
|
|
case ERR_COMPLEX_BLOCK_MAP: return QObject::tr("Block map structure too complex for correct analysis");
|
|
case ERR_DIR_ALREADY_EXIST: return QObject::tr("Directory already exists");
|
|
case ERR_DIR_CREATE: return QObject::tr("Directory can't be created");
|
|
case ERR_UNKNOWN_PATCH_TYPE: return QObject::tr("Unknown patch type");
|
|
case ERR_PATCH_OFFSET_OUT_OF_BOUNDS: return QObject::tr("Patch offset out of bounds");
|
|
case ERR_INVALID_SYMBOL: return QObject::tr("Invalid symbol");
|
|
case ERR_NOTHING_TO_PATCH: return QObject::tr("Nothing to patch");
|
|
case ERR_DEPEX_PARSE_FAILED: return QObject::tr("Dependency expression parsing failed");
|
|
case ERR_TRUNCATED_IMAGE: return QObject::tr("Image is truncated");
|
|
case ERR_BAD_RELOCATION_ENTRY: return QObject::tr("Bad image relocation entry");
|
|
default: return QObject::tr("Unknown error %1").arg(errorCode);
|
|
}
|
|
}
|
|
|
|
FfsEngine::FfsEngine(QObject *parent)
|
|
: QObject(parent)
|
|
{
|
|
model = new TreeModel();
|
|
oldPeiCoreEntryPoint = 0;
|
|
newPeiCoreEntryPoint = 0;
|
|
dumped = false;
|
|
}
|
|
|
|
FfsEngine::~FfsEngine(void)
|
|
{
|
|
delete model;
|
|
}
|
|
|
|
TreeModel* FfsEngine::treeModel() const
|
|
{
|
|
return model;
|
|
}
|
|
|
|
void FfsEngine::msg(const QString & message, const QModelIndex & index)
|
|
{
|
|
#ifndef _DISABLE_ENGINE_MESSAGES
|
|
#ifndef _CONSOLE
|
|
messageItems.enqueue(MessageListItem(message, NULL, 0, index));
|
|
#else
|
|
(void) index;
|
|
std::cout << message.toLatin1().constData() << std::endl;
|
|
#endif
|
|
#else
|
|
(void)message;
|
|
(void)index;
|
|
#endif
|
|
}
|
|
|
|
#ifndef _CONSOLE
|
|
QQueue<MessageListItem> FfsEngine::messages() const
|
|
{
|
|
return messageItems;
|
|
}
|
|
|
|
void FfsEngine::clearMessages()
|
|
{
|
|
messageItems.clear();
|
|
}
|
|
#endif
|
|
|
|
bool FfsEngine::hasIntersection(const UINT32 begin1, const UINT32 end1, const UINT32 begin2, const UINT32 end2)
|
|
{
|
|
if (begin1 < begin2 && begin2 < end1)
|
|
return true;
|
|
if (begin1 < end2 && end2 < end1)
|
|
return true;
|
|
if (begin2 < begin1 && begin1 < end2)
|
|
return true;
|
|
if (begin2 < end1 && end1 < end2)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Firmware image parsing
|
|
UINT8 FfsEngine::parseImageFile(const QByteArray & buffer)
|
|
{
|
|
oldPeiCoreEntryPoint = 0;
|
|
newPeiCoreEntryPoint = 0;
|
|
|
|
// Check buffer size to be more then or equal to size of EFI_CAPSULE_HEADER
|
|
if ((UINT32)buffer.size() <= sizeof(EFI_CAPSULE_HEADER)) {
|
|
msg(tr("parseImageFile: image file is smaller then minimum size of %1h (%2) bytes").hexarg(sizeof(EFI_CAPSULE_HEADER)).arg(sizeof(EFI_CAPSULE_HEADER)));
|
|
return ERR_INVALID_PARAMETER;
|
|
}
|
|
|
|
// Check buffer for being normal EFI capsule header
|
|
UINT32 capsuleHeaderSize = 0;
|
|
QModelIndex index;
|
|
if (buffer.startsWith(EFI_CAPSULE_GUID)
|
|
|| buffer.startsWith(INTEL_CAPSULE_GUID)) {
|
|
// Get info
|
|
const EFI_CAPSULE_HEADER* capsuleHeader = (const EFI_CAPSULE_HEADER*)buffer.constData();
|
|
capsuleHeaderSize = capsuleHeader->HeaderSize;
|
|
QByteArray header = buffer.left(capsuleHeaderSize);
|
|
QByteArray body = buffer.right(buffer.size() - capsuleHeaderSize);
|
|
QString name = tr("UEFI capsule");
|
|
QString info = tr("Capsule GUID: %1\nFull size: %2h (%3)\nHeader size: %4h (%5)\nImage size: %6h (%7)\nFlags: %8h")
|
|
.arg(guidToQString(capsuleHeader->CapsuleGuid))
|
|
.hexarg(buffer.size()).arg(buffer.size())
|
|
.hexarg(capsuleHeader->HeaderSize).arg(capsuleHeader->HeaderSize)
|
|
.hexarg(capsuleHeader->CapsuleImageSize).arg(capsuleHeader->CapsuleImageSize)
|
|
.hexarg2(capsuleHeader->Flags, 8);
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Capsule, Subtypes::UefiCapsule, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body);
|
|
}
|
|
// Check buffer for being Toshiba capsule header
|
|
else if (buffer.startsWith(TOSHIBA_CAPSULE_GUID)) {
|
|
// Get info
|
|
const TOSHIBA_CAPSULE_HEADER* capsuleHeader = (const TOSHIBA_CAPSULE_HEADER*)buffer.constData();
|
|
capsuleHeaderSize = capsuleHeader->HeaderSize;
|
|
QByteArray header = buffer.left(capsuleHeaderSize);
|
|
QByteArray body = buffer.right(buffer.size() - capsuleHeaderSize);
|
|
QString name = tr("UEFI capsule");
|
|
QString info = tr("Capsule GUID: %1\nFull size: %2h (%3)\nHeader size: %4h (%5)\nImage size: %6h (%7)\nFlags: %8h")
|
|
.arg(guidToQString(capsuleHeader->CapsuleGuid))
|
|
.hexarg(buffer.size()).arg(buffer.size())
|
|
.hexarg(capsuleHeader->HeaderSize).arg(capsuleHeader->HeaderSize)
|
|
.hexarg(capsuleHeader->FullSize - capsuleHeader->HeaderSize).arg(capsuleHeader->FullSize - capsuleHeader->HeaderSize)
|
|
.hexarg2(capsuleHeader->Flags, 8);
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Capsule, Subtypes::ToshibaCapsule, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body);
|
|
}
|
|
// Check buffer for being extended Aptio signed capsule header
|
|
else if (buffer.startsWith(APTIO_SIGNED_CAPSULE_GUID) || buffer.startsWith(APTIO_UNSIGNED_CAPSULE_GUID)) {
|
|
// Get info
|
|
bool signedCapsule = buffer.startsWith(APTIO_SIGNED_CAPSULE_GUID);
|
|
|
|
const APTIO_CAPSULE_HEADER* capsuleHeader = (const APTIO_CAPSULE_HEADER*)buffer.constData();
|
|
capsuleHeaderSize = capsuleHeader->RomImageOffset;
|
|
QByteArray header = buffer.left(capsuleHeaderSize);
|
|
QByteArray body = buffer.right(buffer.size() - capsuleHeaderSize);
|
|
QString name = tr("AMI Aptio capsule");
|
|
QString info = tr("Capsule GUID: %1\nFull size: %2h (%3)\nHeader size: %4h (%5)\nImage size: %6h (%7)\nFlags: %8h")
|
|
.arg(guidToQString(capsuleHeader->CapsuleHeader.CapsuleGuid))
|
|
.hexarg(buffer.size()).arg(buffer.size())
|
|
.hexarg(capsuleHeaderSize).arg(capsuleHeaderSize)
|
|
.hexarg(capsuleHeader->CapsuleHeader.CapsuleImageSize - capsuleHeaderSize).arg(capsuleHeader->CapsuleHeader.CapsuleImageSize - capsuleHeaderSize)
|
|
.hexarg2(capsuleHeader->CapsuleHeader.Flags, 8);
|
|
|
|
//!TODO: more info about Aptio capsule
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Capsule, signedCapsule ? Subtypes::AptioSignedCapsule : Subtypes::AptioUnsignedCapsule, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body);
|
|
|
|
// Show message about possible Aptio signature break
|
|
if (signedCapsule) {
|
|
msg(tr("parseImageFile: Aptio capsule signature may become invalid after image modifications"), index);
|
|
}
|
|
}
|
|
|
|
// Skip capsule header to have flash chip image
|
|
QByteArray flashImage = buffer.right(buffer.size() - capsuleHeaderSize);
|
|
|
|
// Check for Intel flash descriptor presence
|
|
const FLASH_DESCRIPTOR_HEADER* descriptorHeader = (const FLASH_DESCRIPTOR_HEADER*)flashImage.constData();
|
|
|
|
// Check descriptor signature
|
|
UINT8 result;
|
|
if (descriptorHeader->Signature == FLASH_DESCRIPTOR_SIGNATURE) {
|
|
// Parse as Intel image
|
|
QModelIndex imageIndex;
|
|
result = parseIntelImage(flashImage, imageIndex, index);
|
|
if (result != ERR_INVALID_FLASH_DESCRIPTOR)
|
|
return result;
|
|
}
|
|
|
|
// Get info
|
|
QString name = tr("UEFI image");
|
|
QString info = tr("Full size: %1h (%2)")
|
|
.hexarg(flashImage.size()).arg(flashImage.size());
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Image, Subtypes::UefiImage, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), flashImage, index);
|
|
return parseBios(flashImage, index);
|
|
}
|
|
|
|
UINT8 FfsEngine::parseIntelImage(const QByteArray & intelImage, QModelIndex & index, const QModelIndex & parent)
|
|
{
|
|
// Sanity check
|
|
if (intelImage.isEmpty())
|
|
return EFI_INVALID_PARAMETER;
|
|
|
|
// Store the beginning of descriptor as descriptor base address
|
|
const UINT8* descriptor = (const UINT8*)intelImage.constData();
|
|
UINT32 descriptorBegin = 0;
|
|
UINT32 descriptorEnd = FLASH_DESCRIPTOR_SIZE;
|
|
|
|
// Check for buffer size to be greater or equal to descriptor region size
|
|
if (intelImage.size() < FLASH_DESCRIPTOR_SIZE) {
|
|
msg(tr("parseIntelImage: input file is smaller than minimum descriptor size of 1000h (4096) bytes"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
|
|
// Parse descriptor map
|
|
const FLASH_DESCRIPTOR_MAP* descriptorMap = (const FLASH_DESCRIPTOR_MAP*)(descriptor + sizeof(FLASH_DESCRIPTOR_HEADER));
|
|
const FLASH_DESCRIPTOR_UPPER_MAP* upperMap = (const FLASH_DESCRIPTOR_UPPER_MAP*)(descriptor + FLASH_DESCRIPTOR_UPPER_MAP_BASE);
|
|
|
|
// Check sanity of base values
|
|
if (descriptorMap->MasterBase > FLASH_DESCRIPTOR_MAX_BASE
|
|
|| descriptorMap->MasterBase == descriptorMap->RegionBase
|
|
|| descriptorMap->MasterBase == descriptorMap->ComponentBase) {
|
|
msg(tr("parseIntelImage: invalid descriptor master base %1h").hexarg2(descriptorMap->MasterBase, 2));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (descriptorMap->RegionBase > FLASH_DESCRIPTOR_MAX_BASE
|
|
|| descriptorMap->RegionBase == descriptorMap->ComponentBase) {
|
|
msg(tr("parseIntelImage: invalid descriptor region base %1h").hexarg2(descriptorMap->RegionBase, 2));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (descriptorMap->ComponentBase > FLASH_DESCRIPTOR_MAX_BASE) {
|
|
msg(tr("parseIntelImage: invalid descriptor component base %1h").hexarg2(descriptorMap->ComponentBase, 2));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
|
|
const FLASH_DESCRIPTOR_REGION_SECTION* regionSection = (const FLASH_DESCRIPTOR_REGION_SECTION*)calculateAddress8(descriptor, descriptorMap->RegionBase);
|
|
const FLASH_DESCRIPTOR_COMPONENT_SECTION* componentSection = (const FLASH_DESCRIPTOR_COMPONENT_SECTION*)calculateAddress8(descriptor, descriptorMap->ComponentBase);
|
|
|
|
// Check for legacy descriptor version by getting hardcoded value of FlashParameters.ReadClockFrequency
|
|
UINT8 descriptorVersion = 2; // Skylake+ descriptor
|
|
if (componentSection->FlashParameters.ReadClockFrequency == FLASH_FREQUENCY_20MHZ) // Legacy descriptor
|
|
descriptorVersion = 1;
|
|
|
|
// ME region
|
|
QByteArray me;
|
|
UINT32 meBegin = 0;
|
|
UINT32 meEnd = 0;
|
|
if (regionSection->MeLimit) {
|
|
meBegin = calculateRegionOffset(regionSection->MeBase);
|
|
meEnd = calculateRegionSize(regionSection->MeBase, regionSection->MeLimit);
|
|
me = intelImage.mid(meBegin, meEnd);
|
|
meEnd += meBegin;
|
|
}
|
|
// BIOS region
|
|
QByteArray bios;
|
|
UINT32 biosBegin = 0;
|
|
UINT32 biosEnd = 0;
|
|
if (regionSection->BiosLimit) {
|
|
biosBegin = calculateRegionOffset(regionSection->BiosBase);
|
|
biosEnd = calculateRegionSize(regionSection->BiosBase, regionSection->BiosLimit);
|
|
|
|
// Check for Gigabyte specific descriptor map
|
|
if (biosEnd - biosBegin == (UINT32)intelImage.size()) {
|
|
if (!meEnd) {
|
|
msg(tr("parseIntelImage: can't determine BIOS region start from Gigabyte-specific descriptor"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
biosBegin = meEnd;
|
|
bios = intelImage.mid(biosBegin, biosEnd);
|
|
// biosEnd will point to the end of the image file
|
|
// it may be wrong, but it's pretty hard to detect a padding after BIOS region
|
|
// with malformed descriptor
|
|
}
|
|
// Normal descriptor map
|
|
else {
|
|
bios = intelImage.mid(biosBegin, biosEnd);
|
|
// Calculate biosEnd
|
|
biosEnd += biosBegin;
|
|
}
|
|
}
|
|
else {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, BIOS region not found in descriptor"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
// GbE region
|
|
QByteArray gbe;
|
|
UINT32 gbeBegin = 0;
|
|
UINT32 gbeEnd = 0;
|
|
if (regionSection->GbeLimit) {
|
|
gbeBegin = calculateRegionOffset(regionSection->GbeBase);
|
|
gbeEnd = calculateRegionSize(regionSection->GbeBase, regionSection->GbeLimit);
|
|
gbe = intelImage.mid(gbeBegin, gbeEnd);
|
|
gbeEnd += gbeBegin;
|
|
}
|
|
// PDR region
|
|
QByteArray pdr;
|
|
UINT32 pdrBegin = 0;
|
|
UINT32 pdrEnd = 0;
|
|
if (regionSection->PdrLimit) {
|
|
pdrBegin = calculateRegionOffset(regionSection->PdrBase);
|
|
pdrEnd = calculateRegionSize(regionSection->PdrBase, regionSection->PdrLimit);
|
|
pdr = intelImage.mid(pdrBegin, pdrEnd);
|
|
pdrEnd += pdrBegin;
|
|
}
|
|
// EC region
|
|
QByteArray ec;
|
|
UINT32 ecBegin = 0;
|
|
UINT32 ecEnd = 0;
|
|
if (descriptorVersion == 2) {
|
|
if (regionSection->EcLimit) {
|
|
ecBegin = calculateRegionOffset(regionSection->EcBase);
|
|
ecEnd = calculateRegionSize(regionSection->EcBase, regionSection->EcLimit);
|
|
ec = intelImage.mid(ecBegin, ecEnd);
|
|
ecEnd += ecBegin;
|
|
}
|
|
}
|
|
|
|
// Check for intersections between regions
|
|
// Descriptor
|
|
if (hasIntersection(descriptorBegin, descriptorEnd, gbeBegin, gbeEnd)) {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, descriptor region has intersection with GbE region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (hasIntersection(descriptorBegin, descriptorEnd, meBegin, meEnd)) {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, descriptor region has intersection with ME region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (hasIntersection(descriptorBegin, descriptorEnd, biosBegin, biosEnd)) {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, descriptor region has intersection with BIOS region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (hasIntersection(descriptorBegin, descriptorEnd, pdrBegin, pdrEnd)) {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, descriptor region has intersection with PDR region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (descriptorVersion == 2 && hasIntersection(descriptorBegin, descriptorEnd, ecBegin, ecEnd)) {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, descriptor region has intersection with EC region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
// GbE
|
|
if (hasIntersection(gbeBegin, gbeEnd, meBegin, meEnd)) {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, GbE region has intersection with ME region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (hasIntersection(gbeBegin, gbeEnd, biosBegin, biosEnd)) {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, GbE region has intersection with BIOS region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (hasIntersection(gbeBegin, gbeEnd, pdrBegin, pdrEnd)) {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, GbE region has intersection with PDR region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (descriptorVersion == 2 && hasIntersection(gbeBegin, gbeEnd, ecBegin, ecEnd)) {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, GbE region has intersection with EC region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
// ME
|
|
if (hasIntersection(meBegin, meEnd, biosBegin, biosEnd)) {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, ME region has intersection with BIOS region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (hasIntersection(meBegin, meEnd, pdrBegin, pdrEnd)) {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, ME region has intersection with PDR region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (descriptorVersion == 2 && hasIntersection(meBegin, meEnd, ecBegin, ecEnd)) {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, ME region has intersection with EC region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
// BIOS
|
|
if (hasIntersection(biosBegin, biosEnd, pdrBegin, pdrEnd)) {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, BIOS region has intersection with PDR region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (descriptorVersion == 2 && hasIntersection(biosBegin, biosEnd, ecBegin, ecEnd)) {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, BIOS region has intersection with EC region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
// PDR
|
|
if (descriptorVersion == 2 && hasIntersection(pdrBegin, pdrEnd, ecBegin, ecEnd)) {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, PDR region has intersection with EC region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
|
|
// Region map is consistent
|
|
|
|
// Intel image
|
|
QString name = tr("Intel image");
|
|
QString info = tr("Full size: %1h (%2)\nFlash chips: %3\nMasters: %4\nPCH straps: %5\nCPU straps: %6\n")
|
|
.hexarg(intelImage.size()).arg(intelImage.size())
|
|
.arg(descriptorMap->NumberOfFlashChips + 1)
|
|
.arg(descriptorMap->NumberOfMasters + 1)
|
|
.arg(descriptorMap->NumberOfPchStraps)
|
|
.arg(descriptorMap->NumberOfProcStraps);
|
|
|
|
// Add Intel image tree item
|
|
index = model->addItem(Types::Image, Subtypes::IntelImage, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), intelImage, parent);
|
|
|
|
// Descriptor
|
|
// Get descriptor info
|
|
QByteArray body = intelImage.left(FLASH_DESCRIPTOR_SIZE);
|
|
name = tr("Descriptor region");
|
|
info = tr("Full size: %1h (%2)").hexarg(FLASH_DESCRIPTOR_SIZE).arg(FLASH_DESCRIPTOR_SIZE);
|
|
|
|
// Check regions presence once again
|
|
QVector<UINT32> offsets;
|
|
if (regionSection->GbeLimit) {
|
|
offsets.append(gbeBegin);
|
|
info += tr("\nGbE region offset: %1h").hexarg(gbeBegin);
|
|
}
|
|
if (regionSection->MeLimit) {
|
|
offsets.append(meBegin);
|
|
info += tr("\nME region offset: %1h").hexarg(meBegin);
|
|
}
|
|
if (regionSection->BiosLimit) {
|
|
offsets.append(biosBegin);
|
|
info += tr("\nBIOS region offset: %1h").hexarg(biosBegin);
|
|
}
|
|
if (regionSection->PdrLimit) {
|
|
offsets.append(pdrBegin);
|
|
info += tr("\nPDR region offset: %1h").hexarg(pdrBegin);
|
|
}
|
|
if (descriptorVersion == 2 && regionSection->EcLimit) {
|
|
offsets.append(ecBegin);
|
|
info += tr("\nEC region offset: %1h").hexarg(ecBegin);
|
|
}
|
|
|
|
// Region access settings
|
|
if (descriptorVersion == 1) {
|
|
const FLASH_DESCRIPTOR_MASTER_SECTION* masterSection = (const FLASH_DESCRIPTOR_MASTER_SECTION*)calculateAddress8(descriptor, descriptorMap->MasterBase);
|
|
info += tr("\nRegion access settings:");
|
|
info += tr("\nBIOS:%1%2h ME:%3%4h GbE:%5%6h")
|
|
.hexarg2(masterSection->BiosRead, 2)
|
|
.hexarg2(masterSection->BiosWrite, 2)
|
|
.hexarg2(masterSection->MeRead, 2)
|
|
.hexarg2(masterSection->MeWrite, 2)
|
|
.hexarg2(masterSection->GbeRead, 2)
|
|
.hexarg2(masterSection->GbeWrite, 2);
|
|
|
|
// BIOS access table
|
|
info += tr("\nBIOS access table:");
|
|
info += tr("\n Read Write");
|
|
info += tr("\nDesc %1 %2")
|
|
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_DESC ? "Yes " : "No ")
|
|
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_DESC ? "Yes " : "No ");
|
|
info += tr("\nBIOS Yes Yes");
|
|
info += tr("\nME %1 %2")
|
|
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_ME ? "Yes " : "No ")
|
|
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_ME ? "Yes " : "No ");
|
|
info += tr("\nGbE %1 %2")
|
|
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_GBE ? "Yes " : "No ")
|
|
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_GBE ? "Yes " : "No ");
|
|
info += tr("\nPDR %1 %2")
|
|
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_PDR ? "Yes " : "No ")
|
|
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_PDR ? "Yes " : "No ");
|
|
}
|
|
else if (descriptorVersion == 2) {
|
|
const FLASH_DESCRIPTOR_MASTER_SECTION_V2* masterSection = (const FLASH_DESCRIPTOR_MASTER_SECTION_V2*)calculateAddress8(descriptor, descriptorMap->MasterBase);
|
|
info += tr("\nRegion access settings:");
|
|
info += tr("\nBIOS: %1h %2h ME: %3h %4h\nGbE: %5h %6h EC: %7h %8h")
|
|
.hexarg2(masterSection->BiosRead, 3)
|
|
.hexarg2(masterSection->BiosWrite, 3)
|
|
.hexarg2(masterSection->MeRead, 3)
|
|
.hexarg2(masterSection->MeWrite, 3)
|
|
.hexarg2(masterSection->GbeRead, 3)
|
|
.hexarg2(masterSection->GbeWrite, 3)
|
|
.hexarg2(masterSection->EcRead, 3)
|
|
.hexarg2(masterSection->EcWrite, 3);
|
|
|
|
// BIOS access table
|
|
info += tr("\nBIOS access table:");
|
|
info += tr("\n Read Write");
|
|
info += tr("\nDesc %1 %2")
|
|
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_DESC ? "Yes " : "No ")
|
|
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_DESC ? "Yes " : "No ");
|
|
info += tr("\nBIOS Yes Yes");
|
|
info += tr("\nME %1 %2")
|
|
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_ME ? "Yes " : "No ")
|
|
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_ME ? "Yes " : "No ");
|
|
info += tr("\nGbE %1 %2")
|
|
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_GBE ? "Yes " : "No ")
|
|
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_GBE ? "Yes " : "No ");
|
|
info += tr("\nPDR %1 %2")
|
|
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_PDR ? "Yes " : "No ")
|
|
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_PDR ? "Yes " : "No ");
|
|
info += tr("\nEC %1 %2")
|
|
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_EC ? "Yes " : "No ")
|
|
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_EC ? "Yes " : "No ");
|
|
|
|
// Prepend descriptor version if present
|
|
if (descriptorMap->DescriptorVersion != FLASH_DESCRIPTOR_VERSION_INVALID) {
|
|
const FLASH_DESCRIPTOR_VERSION* version = (const FLASH_DESCRIPTOR_VERSION*)&descriptorMap->DescriptorVersion;
|
|
QString versionStr = tr("Flash descriptor version: %1.%2").arg(version->Major).arg(version->Minor);
|
|
if (version->Major != FLASH_DESCRIPTOR_VERSION_MAJOR || version->Minor != FLASH_DESCRIPTOR_VERSION_MINOR) {
|
|
versionStr += tr(", unknown");
|
|
msg(tr("parseIntelImage: unknown flash descriptor version %1.%2").arg(version->Major).arg(version->Minor));
|
|
}
|
|
info = versionStr + "\n" + info;
|
|
}
|
|
}
|
|
|
|
// VSCC table
|
|
const VSCC_TABLE_ENTRY* vsccTableEntry = (const VSCC_TABLE_ENTRY*)(descriptor + ((UINT16)upperMap->VsccTableBase << 4));
|
|
info += tr("\nFlash chips in VSCC table:");
|
|
UINT8 vsscTableSize = upperMap->VsccTableSize * sizeof(UINT32) / sizeof(VSCC_TABLE_ENTRY);
|
|
for (int i = 0; i < vsscTableSize; i++) {
|
|
info += tr("\n%1%2%3h")
|
|
.hexarg2(vsccTableEntry->VendorId, 2)
|
|
.hexarg2(vsccTableEntry->DeviceId0, 2)
|
|
.hexarg2(vsccTableEntry->DeviceId1, 2);
|
|
vsccTableEntry++;
|
|
}
|
|
|
|
// Add descriptor tree item
|
|
model->addItem(Types::Region, Subtypes::DescriptorRegion, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), body, index);
|
|
|
|
// Sort regions in ascending order
|
|
qSort(offsets);
|
|
|
|
// Parse regions
|
|
UINT8 result = 0;
|
|
for (int i = 0; i < offsets.count(); i++) {
|
|
// Parse GbE region
|
|
if (offsets.at(i) == gbeBegin) {
|
|
QModelIndex gbeIndex;
|
|
result = parseGbeRegion(gbe, gbeIndex, index);
|
|
}
|
|
// Parse ME region
|
|
else if (offsets.at(i) == meBegin) {
|
|
QModelIndex meIndex;
|
|
result = parseMeRegion(me, meIndex, index);
|
|
}
|
|
// Parse BIOS region
|
|
else if (offsets.at(i) == biosBegin) {
|
|
QModelIndex biosIndex;
|
|
result = parseBiosRegion(bios, biosIndex, index);
|
|
}
|
|
// Parse PDR region
|
|
else if (offsets.at(i) == pdrBegin) {
|
|
QModelIndex pdrIndex;
|
|
result = parsePdrRegion(pdr, pdrIndex, index);
|
|
}
|
|
// Parse EC region
|
|
else if (descriptorVersion == 2 && offsets.at(i) == ecBegin) {
|
|
QModelIndex ecIndex;
|
|
result = parseEcRegion(ec, ecIndex, index);
|
|
}
|
|
if (result)
|
|
return result;
|
|
}
|
|
|
|
// Add the data after the last region as padding
|
|
UINT32 IntelDataEnd = 0;
|
|
UINT32 LastRegionOffset = offsets.last();
|
|
if (LastRegionOffset == gbeBegin)
|
|
IntelDataEnd = gbeEnd;
|
|
else if (LastRegionOffset == meBegin)
|
|
IntelDataEnd = meEnd;
|
|
else if (LastRegionOffset == biosBegin)
|
|
IntelDataEnd = biosEnd;
|
|
else if (LastRegionOffset == pdrBegin)
|
|
IntelDataEnd = pdrEnd;
|
|
else if (descriptorVersion == 2 && LastRegionOffset == ecBegin)
|
|
IntelDataEnd = ecEnd;
|
|
|
|
if (IntelDataEnd > (UINT32)intelImage.size()) { // Image file is truncated
|
|
msg(tr("parseIntelImage: image size %1 (%2) is smaller than the end of last region %3 (%4), may be damaged")
|
|
.hexarg(intelImage.size()).arg(intelImage.size())
|
|
.hexarg(IntelDataEnd).arg(IntelDataEnd), index);
|
|
return ERR_TRUNCATED_IMAGE;
|
|
}
|
|
else if (IntelDataEnd < (UINT32)intelImage.size()) { // Insert padding
|
|
QByteArray padding = intelImage.mid(IntelDataEnd);
|
|
// Get info
|
|
name = tr("Padding");
|
|
info = tr("Full size: %1h (%2)")
|
|
.hexarg(padding.size()).arg(padding.size());
|
|
// Add tree item
|
|
model->addItem(Types::Padding, getPaddingType(padding), COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), padding, index);
|
|
}
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::parseGbeRegion(const QByteArray & gbe, QModelIndex & index, const QModelIndex & parent, const UINT8 mode)
|
|
{
|
|
// Check sanity
|
|
if (gbe.isEmpty())
|
|
return ERR_EMPTY_REGION;
|
|
|
|
// Get info
|
|
QString name = tr("GbE region");
|
|
const GBE_MAC_ADDRESS* mac = (const GBE_MAC_ADDRESS*)gbe.constData();
|
|
const GBE_VERSION* version = (const GBE_VERSION*)(gbe.constData() + GBE_VERSION_OFFSET);
|
|
QString info = tr("Full size: %1h (%2)\nMAC: %3:%4:%5:%6:%7:%8\nVersion: %9.%10")
|
|
.hexarg(gbe.size()).arg(gbe.size())
|
|
.hexarg2(mac->vendor[0], 2)
|
|
.hexarg2(mac->vendor[1], 2)
|
|
.hexarg2(mac->vendor[2], 2)
|
|
.hexarg2(mac->device[0], 2)
|
|
.hexarg2(mac->device[1], 2)
|
|
.hexarg2(mac->device[2], 2)
|
|
.arg(version->major)
|
|
.arg(version->minor);
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Region, Subtypes::GbeRegion, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), gbe, parent, mode);
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::parseMeRegion(const QByteArray & me, QModelIndex & index, const QModelIndex & parent, const UINT8 mode)
|
|
{
|
|
// Check sanity
|
|
if (me.isEmpty())
|
|
return ERR_EMPTY_REGION;
|
|
|
|
// Get info
|
|
QString name = tr("ME region");
|
|
QString info = tr("Full size: %1h (%2)").
|
|
hexarg(me.size()).arg(me.size());
|
|
|
|
// Parse region
|
|
bool versionFound = true;
|
|
bool emptyRegion = false;
|
|
// Check for empty region
|
|
if (me.count() == me.count('\xFF') || me.count() == me.count('\x00')) {
|
|
// Further parsing not needed
|
|
emptyRegion = true;
|
|
info += tr("\nState: empty");
|
|
}
|
|
else {
|
|
// Search for new signature
|
|
INT32 versionOffset = me.indexOf(ME_VERSION_SIGNATURE2);
|
|
if (versionOffset < 0){ // New signature not found
|
|
// Search for old signature
|
|
versionOffset = me.indexOf(ME_VERSION_SIGNATURE);
|
|
if (versionOffset < 0){
|
|
info += tr("\nVersion: unknown");
|
|
versionFound = false;
|
|
}
|
|
}
|
|
|
|
// Add version information
|
|
if (versionFound) {
|
|
const ME_VERSION* version = (const ME_VERSION*)(me.constData() + versionOffset);
|
|
info += tr("\nVersion: %1.%2.%3.%4")
|
|
.arg(version->major)
|
|
.arg(version->minor)
|
|
.arg(version->bugfix)
|
|
.arg(version->build);
|
|
}
|
|
}
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Region, Subtypes::MeRegion, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), me, parent, mode);
|
|
|
|
// Show messages
|
|
if (emptyRegion) {
|
|
msg(tr("parseRegion: ME region is empty"), index);
|
|
}
|
|
else if (!versionFound) {
|
|
msg(tr("parseRegion: ME region version is unknown, it can be damaged"), index);
|
|
}
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::parsePdrRegion(const QByteArray & pdr, QModelIndex & index, const QModelIndex & parent, const UINT8 mode)
|
|
{
|
|
// Check sanity
|
|
if (pdr.isEmpty())
|
|
return ERR_EMPTY_REGION;
|
|
|
|
// Get info
|
|
QString name = tr("PDR region");
|
|
QString info = tr("Full size: %1h (%2)").
|
|
hexarg(pdr.size()).arg(pdr.size());
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Region, Subtypes::PdrRegion, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), pdr, parent, mode);
|
|
|
|
// Parse PDR region as BIOS space
|
|
UINT8 result = parseBios(pdr, index);
|
|
if (result && result != ERR_VOLUMES_NOT_FOUND && result != ERR_INVALID_VOLUME)
|
|
return result;
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::parseEcRegion(const QByteArray & ec, QModelIndex & index, const QModelIndex & parent, const UINT8 mode)
|
|
{
|
|
// Check sanity
|
|
if (ec.isEmpty())
|
|
return ERR_EMPTY_REGION;
|
|
|
|
// Get info
|
|
QString name = tr("EC region");
|
|
QString info = tr("Full size: %1h (%2)").
|
|
hexarg(ec.size()).arg(ec.size());
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Region, Subtypes::EcRegion, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), ec, parent, mode);
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::parseBiosRegion(const QByteArray & bios, QModelIndex & index, const QModelIndex & parent, const UINT8 mode)
|
|
{
|
|
if (bios.isEmpty())
|
|
return ERR_EMPTY_REGION;
|
|
|
|
// Get info
|
|
QString name = tr("BIOS region");
|
|
QString info = tr("Full size: %1h (%2)").
|
|
hexarg(bios.size()).arg(bios.size());
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Region, Subtypes::BiosRegion, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), bios, parent, mode);
|
|
|
|
return parseBios(bios, index);
|
|
}
|
|
|
|
UINT32 FfsEngine::getPaddingType(const QByteArray & padding)
|
|
{
|
|
if (padding.count('\x00') == padding.count())
|
|
return Subtypes::ZeroPadding;
|
|
if (padding.count('\xFF') == padding.count())
|
|
return Subtypes::OnePadding;
|
|
return Subtypes::DataPadding;
|
|
}
|
|
|
|
UINT8 FfsEngine::parseBios(const QByteArray & bios, const QModelIndex & parent)
|
|
{
|
|
// Search for first volume
|
|
UINT32 prevVolumeOffset;
|
|
UINT8 result;
|
|
|
|
result = findNextVolume(bios, 0, prevVolumeOffset);
|
|
if (result)
|
|
return result;
|
|
|
|
// First volume is not at the beginning of BIOS space
|
|
QString name;
|
|
QString info;
|
|
if (prevVolumeOffset > 0) {
|
|
// Get info
|
|
QByteArray padding = bios.left(prevVolumeOffset);
|
|
name = tr("Padding");
|
|
info = tr("Full size: %1h (%2)")
|
|
.hexarg(padding.size()).arg(padding.size());
|
|
|
|
// Add tree item
|
|
model->addItem(Types::Padding, getPaddingType(padding), COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), padding, parent);
|
|
}
|
|
|
|
// Search for and parse all volumes
|
|
UINT32 volumeOffset = prevVolumeOffset;
|
|
UINT32 prevVolumeSize = 0;
|
|
UINT32 volumeSize = 0;
|
|
UINT32 bmVolumeSize = 0;
|
|
|
|
while (true)
|
|
{
|
|
bool msgAlignmentBitsSet = false;
|
|
bool msgUnaligned = false;
|
|
bool msgUnknownRevision = false;
|
|
bool msgSizeMismach = false;
|
|
|
|
// Padding between volumes
|
|
if (volumeOffset > prevVolumeOffset + prevVolumeSize) {
|
|
UINT32 paddingSize = volumeOffset - prevVolumeOffset - prevVolumeSize;
|
|
QByteArray padding = bios.mid(prevVolumeOffset + prevVolumeSize, paddingSize);
|
|
// Get info
|
|
name = tr("Padding");
|
|
info = tr("Full size: %1h (%2)")
|
|
.hexarg(padding.size()).arg(padding.size());
|
|
// Add tree item
|
|
model->addItem(Types::Padding, getPaddingType(padding), COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), padding, parent);
|
|
}
|
|
|
|
// Get volume size
|
|
result = getVolumeSize(bios, volumeOffset, volumeSize, bmVolumeSize);
|
|
if (result) {
|
|
msg(tr("parseBios: getVolumeSize failed with error \"%1\"").arg(errorMessage(result)), parent);
|
|
return result;
|
|
}
|
|
|
|
// Check that volume is fully present in input
|
|
if (volumeSize > (UINT32)bios.size() || volumeOffset + volumeSize > (UINT32)bios.size()) {
|
|
msg(tr("parseBios: one of volumes inside overlaps the end of data"), parent);
|
|
return ERR_INVALID_VOLUME;
|
|
}
|
|
|
|
// Check reported size against a size calculated using block map
|
|
if (volumeSize != bmVolumeSize)
|
|
msgSizeMismach = true;
|
|
|
|
// Check volume revision and alignment
|
|
const EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (const EFI_FIRMWARE_VOLUME_HEADER*)(bios.constData() + volumeOffset);
|
|
UINT32 alignment;
|
|
if (volumeHeader->Revision == 1) {
|
|
// Acquire alignment capability bit
|
|
bool alignmentCap = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_CAP;
|
|
if (!alignmentCap) {
|
|
if (volumeHeader->Attributes & 0xFFFF0000)
|
|
msgAlignmentBitsSet = true;
|
|
}
|
|
}
|
|
else if (volumeHeader->Revision == 2) {
|
|
// Acquire alignment
|
|
alignment = (UINT32)(1UL << ((volumeHeader->Attributes & EFI_FVB2_ALIGNMENT) >> 16));
|
|
|
|
// Check alignment
|
|
if (volumeOffset % alignment)
|
|
msgUnaligned = true;
|
|
}
|
|
else
|
|
msgUnknownRevision = true;
|
|
|
|
// Parse volume
|
|
QModelIndex index;
|
|
UINT8 result = parseVolume(bios.mid(volumeOffset, volumeSize), index, parent);
|
|
if (result)
|
|
msg(tr("parseBios: volume parsing failed with error \"%1\"").arg(errorMessage(result)), parent);
|
|
|
|
// Show messages
|
|
if (msgAlignmentBitsSet)
|
|
msg("parseBios: alignment bits set on volume without alignment capability", index);
|
|
if (msgUnaligned)
|
|
msg(tr("parseBios: unaligned revision 2 volume"), index);
|
|
if (msgUnknownRevision)
|
|
msg(tr("parseBios: unknown volume revision %1").arg(volumeHeader->Revision), index);
|
|
if (msgSizeMismach)
|
|
msg(tr("parseBios: volume size stored in header %1h differs from calculated using block map %2h")
|
|
.hexarg(volumeSize).arg(bmVolumeSize),
|
|
index);
|
|
|
|
// Go to next volume
|
|
prevVolumeOffset = volumeOffset;
|
|
prevVolumeSize = volumeSize;
|
|
|
|
result = findNextVolume(bios, volumeOffset + prevVolumeSize, volumeOffset);
|
|
if (result) {
|
|
UINT32 endPaddingSize = bios.size() - prevVolumeOffset - prevVolumeSize;
|
|
// Padding at the end of BIOS space
|
|
if (endPaddingSize > 0) {
|
|
QByteArray padding = bios.right(endPaddingSize);
|
|
// Get info
|
|
name = tr("Padding");
|
|
info = tr("Full size: %1h (%2)")
|
|
.hexarg(padding.size()).arg(padding.size());
|
|
// Add tree item
|
|
model->addItem(Types::Padding, getPaddingType(padding), COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), padding, parent);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::findNextVolume(const QByteArray & bios, UINT32 volumeOffset, UINT32 & nextVolumeOffset)
|
|
{
|
|
int nextIndex = bios.indexOf(EFI_FV_SIGNATURE, volumeOffset);
|
|
if (nextIndex < EFI_FV_SIGNATURE_OFFSET) {
|
|
return ERR_VOLUMES_NOT_FOUND;
|
|
}
|
|
|
|
nextVolumeOffset = nextIndex - EFI_FV_SIGNATURE_OFFSET;
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::getVolumeSize(const QByteArray & bios, UINT32 volumeOffset, UINT32 & volumeSize, UINT32 & bmVolumeSize)
|
|
{
|
|
// Check that there is space for the volume header and at least two block map entries.
|
|
if ((UINT32)bios.size() < volumeOffset + sizeof(EFI_FIRMWARE_VOLUME_HEADER) + 2 * sizeof(EFI_FV_BLOCK_MAP_ENTRY))
|
|
return ERR_INVALID_VOLUME;
|
|
|
|
// Populate volume header
|
|
const EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (const EFI_FIRMWARE_VOLUME_HEADER*)(bios.constData() + volumeOffset);
|
|
|
|
// Check volume signature
|
|
if (QByteArray((const char*)&volumeHeader->Signature, sizeof(volumeHeader->Signature)) != EFI_FV_SIGNATURE)
|
|
return ERR_INVALID_VOLUME;
|
|
|
|
// Calculate volume size using BlockMap
|
|
const EFI_FV_BLOCK_MAP_ENTRY* entry = (const EFI_FV_BLOCK_MAP_ENTRY*)(bios.constData() + volumeOffset + sizeof(EFI_FIRMWARE_VOLUME_HEADER));
|
|
UINT32 calcVolumeSize = 0;
|
|
while (entry->NumBlocks != 0 && entry->Length != 0) {
|
|
if ((void*)entry > bios.constData() + bios.size())
|
|
return ERR_INVALID_VOLUME;
|
|
|
|
calcVolumeSize += entry->NumBlocks * entry->Length;
|
|
entry += 1;
|
|
}
|
|
|
|
volumeSize = volumeHeader->FvLength;
|
|
bmVolumeSize = calcVolumeSize;
|
|
|
|
if (volumeSize == 0)
|
|
return ERR_INVALID_VOLUME;
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::parseVolume(const QByteArray & volume, QModelIndex & index, const QModelIndex & parent, const UINT8 mode)
|
|
{
|
|
// Check that there is space for the volume header
|
|
if ((UINT32)volume.size() < sizeof(EFI_FIRMWARE_VOLUME_HEADER)) {
|
|
msg(tr("parseVolume: input volume size %1h (%2) is smaller than volume header size 40h (64)").hexarg(volume.size()).arg(volume.size()));
|
|
return ERR_INVALID_VOLUME;
|
|
}
|
|
|
|
// Populate volume header
|
|
const EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (const EFI_FIRMWARE_VOLUME_HEADER*)(volume.constData());
|
|
|
|
// Check sanity of HeaderLength value
|
|
if (ALIGN8(volumeHeader->HeaderLength) > volume.size()) {
|
|
msg(tr("parseVolume: volume header overlaps the end of data"));
|
|
return ERR_INVALID_VOLUME;
|
|
}
|
|
|
|
// Check sanity of ExtHeaderOffset value
|
|
if (volumeHeader->ExtHeaderOffset > 0
|
|
&& (UINT32)volume.size() < ALIGN8(volumeHeader->ExtHeaderOffset + sizeof(EFI_FIRMWARE_VOLUME_EXT_HEADER))) {
|
|
msg(tr("parseVolume: extended volume header overlaps the end of data"));
|
|
return ERR_INVALID_VOLUME;
|
|
}
|
|
|
|
// Calculate volume header size
|
|
UINT32 headerSize;
|
|
if (volumeHeader->Revision > 1 && volumeHeader->ExtHeaderOffset) {
|
|
const EFI_FIRMWARE_VOLUME_EXT_HEADER* extendedHeader = (const EFI_FIRMWARE_VOLUME_EXT_HEADER*)(volume.constData() + volumeHeader->ExtHeaderOffset);
|
|
headerSize = volumeHeader->ExtHeaderOffset + extendedHeader->ExtHeaderSize;
|
|
}
|
|
else
|
|
headerSize = volumeHeader->HeaderLength;
|
|
|
|
// Sanity check after some crazy MSI images
|
|
headerSize = ALIGN8(headerSize);
|
|
|
|
// Check for FFS v2/v3 volume
|
|
UINT8 subtype = Subtypes::UnknownVolume;
|
|
if (FFSv2Volumes.contains(QByteArray::fromRawData((const char*)volumeHeader->FileSystemGuid.Data, sizeof(EFI_GUID)))){
|
|
subtype = Subtypes::Ffs2Volume;
|
|
}
|
|
else if (FFSv3Volumes.contains(QByteArray::fromRawData((const char*)volumeHeader->FileSystemGuid.Data, sizeof(EFI_GUID)))) {
|
|
subtype = Subtypes::Ffs3Volume;
|
|
}
|
|
|
|
// Check attributes
|
|
// Determine value of empty byte
|
|
char empty = volumeHeader->Attributes & EFI_FVB_ERASE_POLARITY ? '\xFF' : '\x00';
|
|
|
|
// Get volume size
|
|
UINT32 volumeSize;
|
|
UINT32 bmVolumeSize;
|
|
|
|
UINT8 result = getVolumeSize(volume, 0, volumeSize, bmVolumeSize);
|
|
if (result)
|
|
return result;
|
|
|
|
// Check for Apple CRC32 in ZeroVector
|
|
bool volumeHasZVCRC = false;
|
|
bool volumeHasZVFSO = false;
|
|
UINT32 crc32FromZeroVector = *(UINT32*)(volume.constData() + 8);
|
|
UINT32 freeSpaceOffsetFromZeroVector = *(UINT32*)(volume.constData() + 12);
|
|
if (crc32FromZeroVector != 0) {
|
|
// Calculate CRC32 of the volume body
|
|
UINT32 crc = crc32(0, (const UINT8*)(volume.constData() + volumeHeader->HeaderLength), volumeSize - volumeHeader->HeaderLength);
|
|
if (crc == crc32FromZeroVector) {
|
|
volumeHasZVCRC = true;
|
|
}
|
|
|
|
// Check for free space size in zero vector
|
|
if (freeSpaceOffsetFromZeroVector != 0) {
|
|
volumeHasZVFSO = true;
|
|
}
|
|
}
|
|
|
|
// Check header checksum by recalculating it
|
|
bool msgInvalidChecksum = false;
|
|
if (calculateChecksum16((const UINT16*)volumeHeader, volumeHeader->HeaderLength))
|
|
msgInvalidChecksum = true;
|
|
|
|
// Get info
|
|
QString name = guidToQString(volumeHeader->FileSystemGuid);
|
|
QString info = tr("ZeroVector:\n%1 %2 %3 %4 %5 %6 %7 %8\n%9 %10 %11 %12 %13 %14 %15 %16\nFileSystem GUID: %17\nFull size: %18h (%19)\n"
|
|
"Header size: %20h (%21)\nBody size: %22h (%23)\nRevision: %24\nAttributes: %25h\nErase polarity: %26")
|
|
.hexarg2(volumeHeader->ZeroVector[0], 2).hexarg2(volumeHeader->ZeroVector[1], 2).hexarg2(volumeHeader->ZeroVector[2], 2).hexarg2(volumeHeader->ZeroVector[3], 2)
|
|
.hexarg2(volumeHeader->ZeroVector[4], 2).hexarg2(volumeHeader->ZeroVector[5], 2).hexarg2(volumeHeader->ZeroVector[6], 2).hexarg2(volumeHeader->ZeroVector[7], 2)
|
|
.hexarg2(volumeHeader->ZeroVector[8], 2).hexarg2(volumeHeader->ZeroVector[9], 2).hexarg2(volumeHeader->ZeroVector[10], 2).hexarg2(volumeHeader->ZeroVector[11], 2)
|
|
.hexarg2(volumeHeader->ZeroVector[12], 2).hexarg2(volumeHeader->ZeroVector[13], 2).hexarg2(volumeHeader->ZeroVector[14], 2).hexarg2(volumeHeader->ZeroVector[15], 2)
|
|
.arg(guidToQString(volumeHeader->FileSystemGuid))
|
|
.hexarg(volumeSize).arg(volumeSize)
|
|
.hexarg(headerSize).arg(headerSize)
|
|
.hexarg(volumeSize - headerSize).arg(volumeSize - headerSize)
|
|
.arg(volumeHeader->Revision)
|
|
.hexarg2(volumeHeader->Attributes, 8)
|
|
.arg(empty ? "1" : "0");
|
|
|
|
// Extended header present
|
|
if (volumeHeader->Revision > 1 && volumeHeader->ExtHeaderOffset) {
|
|
const EFI_FIRMWARE_VOLUME_EXT_HEADER* extendedHeader = (const EFI_FIRMWARE_VOLUME_EXT_HEADER*)(volume.constData() + volumeHeader->ExtHeaderOffset);
|
|
info += tr("\nExtended header size: %1h (%2)\nVolume GUID: %3")
|
|
.hexarg(extendedHeader->ExtHeaderSize).arg(extendedHeader->ExtHeaderSize)
|
|
.arg(guidToQString(extendedHeader->FvName));
|
|
}
|
|
|
|
// Add text
|
|
QString text;
|
|
if (volumeHasZVCRC)
|
|
text += tr("AppleCRC32 ");
|
|
if (volumeHasZVFSO)
|
|
text += tr("AppleFSO ");
|
|
|
|
// Add tree item
|
|
QByteArray header = volume.left(headerSize);
|
|
QByteArray body = volume.mid(headerSize, volumeSize - headerSize);
|
|
index = model->addItem(Types::Volume, subtype, COMPRESSION_ALGORITHM_NONE, name, text, info, header, body, parent, mode);
|
|
|
|
// Show messages
|
|
if (subtype == Subtypes::UnknownVolume) {
|
|
msg(tr("parseVolume: unknown file system %1").arg(guidToQString(volumeHeader->FileSystemGuid)), index);
|
|
// Do not parse unknown volumes
|
|
return ERR_SUCCESS;
|
|
}
|
|
if (msgInvalidChecksum) {
|
|
msg(tr("parseVolume: volume header checksum is invalid"), index);
|
|
}
|
|
|
|
// Search for and parse all files
|
|
UINT32 fileOffset = headerSize;
|
|
UINT32 fileSize;
|
|
QQueue<QByteArray> files;
|
|
|
|
while (fileOffset < volumeSize) {
|
|
bool msgUnalignedFile = false;
|
|
bool msgDuplicateGuid = false;
|
|
|
|
// Check if it's possibly the latest file in the volume
|
|
if (volumeSize - fileOffset < sizeof(EFI_FFS_FILE_HEADER)) {
|
|
// No files are possible after this point
|
|
// All the rest is either free space or non-UEFI data
|
|
QByteArray rest = volume.right(volumeSize - fileOffset);
|
|
if (rest.count(empty) == rest.size()) { // It's a free space
|
|
model->addItem(Types::FreeSpace, 0, COMPRESSION_ALGORITHM_NONE, tr("Volume free space"), "", tr("Full size: %1h (%2)").hexarg(rest.size()).arg(rest.size()), QByteArray(), rest, index);
|
|
}
|
|
else { //It's non-UEFI data
|
|
QModelIndex dataIndex = model->addItem(Types::Padding, Subtypes::DataPadding, COMPRESSION_ALGORITHM_NONE, tr("Non-UEFI data"), "", tr("Full size: %1h (%2)").hexarg(rest.size()).arg(rest.size()), QByteArray(), rest, index);
|
|
msg(tr("parseVolume: non-UEFI data found in volume's free space"), dataIndex);
|
|
}
|
|
// Exit from loop
|
|
break;
|
|
}
|
|
|
|
QByteArray tempFile = volume.mid(fileOffset, sizeof(EFI_FFS_FILE_HEADER));
|
|
const EFI_FFS_FILE_HEADER* tempFileHeader = (const EFI_FFS_FILE_HEADER*)tempFile.constData();
|
|
UINT32 fileHeaderSize = sizeof(EFI_FFS_FILE_HEADER);
|
|
fileSize = uint24ToUint32(tempFileHeader->Size);
|
|
if (volumeHeader->Revision > 1 && (tempFileHeader->Attributes & FFS_ATTRIB_LARGE_FILE)) {
|
|
// Check if it's possibly the latest file in the volume
|
|
if (volumeSize - fileOffset < sizeof(EFI_FFS_FILE_HEADER2)) {
|
|
// No files are possible after this point
|
|
// All the rest is either free space or non-UEFI data
|
|
QByteArray rest = volume.right(volumeSize - fileOffset);
|
|
if (rest.count(empty) == rest.size()) { // It's a free space
|
|
model->addItem(Types::FreeSpace, 0, COMPRESSION_ALGORITHM_NONE, tr("Volume free space"), "", tr("Full size: %1h (%2)").hexarg(rest.size()).arg(rest.size()), QByteArray(), rest, index);
|
|
}
|
|
else { //It's non-UEFI data
|
|
QModelIndex dataIndex = model->addItem(Types::Padding, Subtypes::DataPadding, COMPRESSION_ALGORITHM_NONE, tr("Non-UEFI data"), "", tr("Full size: %1h (%2)").hexarg(rest.size()).arg(rest.size()), QByteArray(), rest, index);
|
|
msg(tr("parseVolume: non-UEFI data found in volume's free space"), dataIndex);
|
|
}
|
|
// Exit from loop
|
|
break;
|
|
}
|
|
|
|
fileHeaderSize = sizeof(EFI_FFS_FILE_HEADER2);
|
|
tempFile = volume.mid(fileOffset, sizeof(EFI_FFS_FILE_HEADER2));
|
|
const EFI_FFS_FILE_HEADER2* tempFileHeader2 = (const EFI_FFS_FILE_HEADER2*)tempFile.constData();
|
|
fileSize = (UINT32)tempFileHeader2->ExtendedSize;
|
|
}
|
|
|
|
// Check file size to be at least size of the header
|
|
if (fileSize < fileHeaderSize) {
|
|
msg(tr("parseVolume: volume has FFS file with invalid size"), index);
|
|
return ERR_INVALID_FILE;
|
|
}
|
|
|
|
QByteArray file = volume.mid(fileOffset, fileSize);
|
|
QByteArray header = file.left(fileHeaderSize);
|
|
|
|
// If we are at empty space in the end of volume
|
|
if (header.count(empty) == header.size()) {
|
|
// Check free space to be actually free
|
|
QByteArray freeSpace = volume.mid(fileOffset);
|
|
if (freeSpace.count(empty) != freeSpace.count()) {
|
|
// Search for the first non-empty byte
|
|
UINT32 i;
|
|
UINT32 size = freeSpace.size();
|
|
const CHAR8* current = freeSpace.constData();
|
|
for (i = 0; i < size; i++) {
|
|
if (*current++ != empty)
|
|
break;
|
|
}
|
|
|
|
// Align found index to file alignment
|
|
// It must be possible because minimum 16 bytes of empty were found before
|
|
if (i != ALIGN8(i))
|
|
i = ALIGN8(i) - 8;
|
|
|
|
// Add all bytes before as free space...
|
|
if (i > 0) {
|
|
QByteArray free = freeSpace.left(i);
|
|
model->addItem(Types::FreeSpace, 0, COMPRESSION_ALGORITHM_NONE, tr("Volume free space"), "", tr("Full size: %1h (%2)").hexarg(free.size()).arg(free.size()), QByteArray(), free, index);
|
|
}
|
|
// ... and all bytes after as a padding
|
|
QByteArray padding = freeSpace.mid(i);
|
|
QModelIndex dataIndex = model->addItem(Types::Padding, Subtypes::DataPadding, COMPRESSION_ALGORITHM_NONE, tr("Non-UEFI data"), "", tr("Full size: %1h (%2)").hexarg(padding.size()).arg(padding.size()), QByteArray(), padding, index);
|
|
msg(tr("parseVolume: non-UEFI data found in volume's free space"), dataIndex);
|
|
}
|
|
else {
|
|
// Add free space element
|
|
model->addItem(Types::FreeSpace, 0, COMPRESSION_ALGORITHM_NONE, tr("Volume free space"), "", tr("Full size: %1h (%2)").hexarg(freeSpace.size()).arg(freeSpace.size()), QByteArray(), freeSpace, index);
|
|
}
|
|
break; // Exit from loop
|
|
}
|
|
|
|
// Check file alignment
|
|
const EFI_FFS_FILE_HEADER* fileHeader = (const EFI_FFS_FILE_HEADER*)header.constData();
|
|
UINT8 alignmentPower = ffsAlignmentTable[(fileHeader->Attributes & FFS_ATTRIB_DATA_ALIGNMENT) >> 3];
|
|
if (volumeHeader->Revision > 1 && (fileHeader->Attributes & FFS_ATTRIB_DATA_ALIGNMENT2))
|
|
alignmentPower = ffsAlignment2Table[(fileHeader->Attributes & FFS_ATTRIB_DATA_ALIGNMENT) >> 3];
|
|
|
|
UINT32 alignment = (UINT32)(1UL << alignmentPower);
|
|
if ((fileOffset + fileHeaderSize) % alignment)
|
|
msgUnalignedFile = true;
|
|
|
|
// Check file GUID
|
|
if (fileHeader->Type != EFI_FV_FILETYPE_PAD && files.indexOf(header.left(sizeof(EFI_GUID))) != -1)
|
|
msgDuplicateGuid = true;
|
|
|
|
// Add file GUID to queue
|
|
files.enqueue(header.left(sizeof(EFI_GUID)));
|
|
|
|
// Parse file
|
|
QModelIndex fileIndex;
|
|
result = parseFile(file, fileIndex, volumeHeader->Revision, empty == '\xFF' ? ERASE_POLARITY_TRUE : ERASE_POLARITY_FALSE, index);
|
|
if (result && result != ERR_VOLUMES_NOT_FOUND && result != ERR_INVALID_VOLUME)
|
|
msg(tr("parseVolume: FFS file parsing failed with error \"%1\"").arg(errorMessage(result)), index);
|
|
|
|
// Show messages
|
|
if (msgUnalignedFile)
|
|
msg(tr("parseVolume: unaligned file %1").arg(guidToQString(fileHeader->Name)), fileIndex);
|
|
if (msgDuplicateGuid)
|
|
msg(tr("parseVolume: file with duplicate GUID %1").arg(guidToQString(fileHeader->Name)), fileIndex);
|
|
|
|
// Move to next file
|
|
fileOffset += fileSize;
|
|
fileOffset = ALIGN8(fileOffset);
|
|
}
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::parseFile(const QByteArray & file, QModelIndex & index, const UINT8 revision, const UINT8 erasePolarity, const QModelIndex & parent, const UINT8 mode)
|
|
{
|
|
bool msgInvalidHeaderChecksum = false;
|
|
bool msgInvalidDataChecksum = false;
|
|
bool msgInvalidTailValue = false;
|
|
bool msgInvalidType = false;
|
|
|
|
// Populate file header
|
|
if ((UINT32)file.size() < sizeof(EFI_FFS_FILE_HEADER))
|
|
return ERR_INVALID_FILE;
|
|
const EFI_FFS_FILE_HEADER* fileHeader = (const EFI_FFS_FILE_HEADER*)file.constData();
|
|
|
|
// Construct empty byte for this file
|
|
char empty = erasePolarity ? '\xFF' : '\x00';
|
|
|
|
// Get file header
|
|
QByteArray header = file.left(sizeof(EFI_FFS_FILE_HEADER));
|
|
if (revision > 1 && (fileHeader->Attributes & FFS_ATTRIB_LARGE_FILE)) {
|
|
if ((UINT32)file.size() < sizeof(EFI_FFS_FILE_HEADER2))
|
|
return ERR_INVALID_FILE;
|
|
header = file.left(sizeof(EFI_FFS_FILE_HEADER2));
|
|
}
|
|
|
|
// Check header checksum
|
|
UINT8 calculatedHeader = 0x100 - (calculateSum8((const UINT8*)header.constData(), header.size()) - fileHeader->IntegrityCheck.Checksum.Header - fileHeader->IntegrityCheck.Checksum.File - fileHeader->State);
|
|
if (fileHeader->IntegrityCheck.Checksum.Header != calculatedHeader)
|
|
msgInvalidHeaderChecksum = true;
|
|
|
|
// Get file body
|
|
QByteArray body = file.mid(header.size());
|
|
|
|
// Check for file tail presence
|
|
QByteArray tail;
|
|
if (revision == 1 && fileHeader->Attributes & FFS_ATTRIB_TAIL_PRESENT) {
|
|
//Check file tail;
|
|
tail = body.right(sizeof(UINT16));
|
|
UINT16 tailValue = *(UINT16*)tail.constData();
|
|
if (fileHeader->IntegrityCheck.TailReference != (UINT16)~tailValue)
|
|
msgInvalidTailValue = true;
|
|
|
|
// Remove tail from file body
|
|
body = body.left(body.size() - sizeof(UINT16));
|
|
}
|
|
|
|
// Check data checksum
|
|
// Data checksum must be calculated
|
|
UINT8 calculatedData = 0;
|
|
if (fileHeader->Attributes & FFS_ATTRIB_CHECKSUM) {
|
|
calculatedData = calculateChecksum8((const UINT8*)body.constData(), body.size());
|
|
}
|
|
// Data checksum must be one of predefined values
|
|
else if (revision == 1) {
|
|
calculatedData = FFS_FIXED_CHECKSUM;
|
|
}
|
|
else {
|
|
calculatedData = FFS_FIXED_CHECKSUM2;
|
|
}
|
|
|
|
if (fileHeader->IntegrityCheck.Checksum.File != calculatedData)
|
|
msgInvalidDataChecksum = true;
|
|
|
|
// Parse current file by default
|
|
bool parseCurrentFile = false;
|
|
bool parseAsBios = false;
|
|
|
|
// Check file type
|
|
switch (fileHeader->Type) {
|
|
case EFI_FV_FILETYPE_ALL:
|
|
case EFI_FV_FILETYPE_RAW:
|
|
parseAsBios = true;
|
|
case EFI_FV_FILETYPE_FREEFORM:
|
|
case EFI_FV_FILETYPE_SECURITY_CORE:
|
|
case EFI_FV_FILETYPE_PEI_CORE:
|
|
case EFI_FV_FILETYPE_DXE_CORE:
|
|
case EFI_FV_FILETYPE_PEIM:
|
|
case EFI_FV_FILETYPE_DRIVER:
|
|
case EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER:
|
|
case EFI_FV_FILETYPE_APPLICATION:
|
|
case EFI_FV_FILETYPE_SMM:
|
|
case EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE:
|
|
case EFI_FV_FILETYPE_COMBINED_SMM_DXE:
|
|
case EFI_FV_FILETYPE_SMM_CORE:
|
|
case EFI_FV_FILETYPE_SMM_STANDALONE:
|
|
case EFI_FV_FILETYPE_SMM_CORE_STANDALONE:
|
|
case EFI_FV_FILETYPE_PAD:
|
|
parseCurrentFile = true;
|
|
break;
|
|
default:
|
|
msgInvalidType = true;
|
|
};
|
|
|
|
// Check for empty file
|
|
bool parseAsNonEmptyPadFile = false;
|
|
if (body.count(empty) == body.size()) {
|
|
// No need to parse empty files
|
|
parseCurrentFile = false;
|
|
}
|
|
// Check for non-empty pad file
|
|
else if (fileHeader->Type == EFI_FV_FILETYPE_PAD) {
|
|
parseAsNonEmptyPadFile = true;
|
|
}
|
|
|
|
// Get info
|
|
QString name;
|
|
QString info;
|
|
if (fileHeader->Type != EFI_FV_FILETYPE_PAD)
|
|
name = guidToQString(fileHeader->Name);
|
|
else
|
|
name = parseAsNonEmptyPadFile ? tr("Non-empty pad-file") : tr("Pad-file");
|
|
|
|
info = tr("File GUID: %1\nType: %2h\nAttributes: %3h\nFull size: %4h (%5)\nHeader size: %6h (%7)\nBody size: %8h (%9)\nState: %10h\nHeader checksum: %11h\nData checksum: %12h")
|
|
.arg(guidToQString(fileHeader->Name))
|
|
.hexarg2(fileHeader->Type, 2)
|
|
.hexarg2(fileHeader->Attributes, 2)
|
|
.hexarg(header.size() + body.size() + tail.size()).arg(header.size() + body.size() + tail.size())
|
|
.hexarg(header.size()).arg(header.size())
|
|
.hexarg(body.size()).arg(body.size())
|
|
.hexarg2(fileHeader->State, 2)
|
|
.hexarg2(fileHeader->IntegrityCheck.Checksum.Header, 2)
|
|
.hexarg2(fileHeader->IntegrityCheck.Checksum.File, 2);
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::File, fileHeader->Type, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body, parent, mode);
|
|
|
|
// Show messages
|
|
if (msgInvalidHeaderChecksum)
|
|
msg(tr("parseFile: invalid header checksum %1h, should be %2h").hexarg2(fileHeader->IntegrityCheck.Checksum.Header, 2).hexarg2(calculatedHeader, 2), index);
|
|
if (msgInvalidDataChecksum)
|
|
msg(tr("parseFile: invalid data checksum %1h, should be %2h").hexarg2(fileHeader->IntegrityCheck.Checksum.File, 2).hexarg2(calculatedData, 2), index);
|
|
if (msgInvalidTailValue)
|
|
msg(tr("parseFile: invalid tail value %1h").hexarg(*(UINT16*)tail.data()), index);
|
|
if (msgInvalidType)
|
|
msg(tr("parseFile: unknown file type %1h").arg(fileHeader->Type, 2), index);
|
|
|
|
// No parsing needed
|
|
if (!parseCurrentFile)
|
|
return ERR_SUCCESS;
|
|
|
|
// Parse non-empty pad file
|
|
if (parseAsNonEmptyPadFile) {
|
|
// Search for the first non-empty byte
|
|
UINT32 i;
|
|
UINT32 size = body.size();
|
|
const CHAR8* current = body.constData();
|
|
for (i = 0; i < size; i++) {
|
|
if (*current++ != empty)
|
|
break;
|
|
}
|
|
// Add all bytes before as free space...
|
|
if (i > 0) {
|
|
QByteArray free = body.left(i);
|
|
model->addItem(Types::FreeSpace, 0, COMPRESSION_ALGORITHM_NONE, tr("Free space"), "", tr("Full size: %1h (%2)").hexarg(free.size()).arg(free.size()), QByteArray(), free, index, mode);
|
|
}
|
|
// ... and all bytes after as a padding
|
|
QByteArray padding = body.mid(i);
|
|
QModelIndex dataIndex = model->addItem(Types::Padding, Subtypes::DataPadding, COMPRESSION_ALGORITHM_NONE, tr("Non-UEFI data"), "", tr("Full size: %1h (%2)").hexarg(padding.size()).arg(padding.size()), QByteArray(), padding, index, mode);
|
|
|
|
// Show message
|
|
msg(tr("parseFile: non-empty pad-file contents will be destroyed after volume modifications"), dataIndex);
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
// Parse file as BIOS space
|
|
UINT8 result;
|
|
if (parseAsBios) {
|
|
result = parseBios(body, index);
|
|
if (result && result != ERR_VOLUMES_NOT_FOUND && result != ERR_INVALID_VOLUME)
|
|
msg(tr("parseFile: parsing file as BIOS failed with error \"%1\"").arg(errorMessage(result)), index);
|
|
return result;
|
|
}
|
|
|
|
// Parse sections
|
|
result = parseSections(body, index);
|
|
if (result)
|
|
return result;
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::getSectionSize(const QByteArray & file, const UINT32 sectionOffset, UINT32 & sectionSize)
|
|
{
|
|
if ((UINT32)file.size() < sectionOffset + sizeof(EFI_COMMON_SECTION_HEADER))
|
|
return ERR_INVALID_FILE;
|
|
|
|
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(file.constData() + sectionOffset);
|
|
sectionSize = uint24ToUint32(sectionHeader->Size);
|
|
// This may introduce a very rare error with a non-extended section of size equal to 0xFFFFFF
|
|
if (sectionSize != 0xFFFFFF)
|
|
return ERR_SUCCESS;
|
|
|
|
if ((UINT32)file.size() < sectionOffset + sizeof(EFI_COMMON_SECTION_HEADER2))
|
|
return ERR_INVALID_FILE;
|
|
|
|
const EFI_COMMON_SECTION_HEADER2* sectionHeader2 = (const EFI_COMMON_SECTION_HEADER2*)(file.constData() + sectionOffset);
|
|
sectionSize = sectionHeader2->ExtendedSize;
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::parseSections(const QByteArray & body, const QModelIndex & parent)
|
|
{
|
|
// Search for and parse all sections
|
|
UINT32 sectionOffset = 0;
|
|
UINT32 sectionSize;
|
|
UINT32 bodySize = body.size();
|
|
UINT8 result;
|
|
|
|
while (true) {
|
|
// Get section size
|
|
result = getSectionSize(body, sectionOffset, sectionSize);
|
|
if (result)
|
|
return result;
|
|
// Exit from loop if no sections left
|
|
if (sectionSize == 0)
|
|
break;
|
|
|
|
// Parse section
|
|
QModelIndex sectionIndex;
|
|
result = parseSection(body.mid(sectionOffset, sectionSize), sectionIndex, parent);
|
|
if (result)
|
|
return result;
|
|
|
|
// Move to next section
|
|
sectionOffset += sectionSize;
|
|
sectionOffset = ALIGN4(sectionOffset);
|
|
|
|
// Exit from loop if no sections left
|
|
if (sectionOffset >= bodySize)
|
|
break;
|
|
}
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
void FfsEngine::parseAprioriRawSection(const QByteArray & body, QString & parsed)
|
|
{
|
|
parsed.clear();
|
|
|
|
UINT32 count = body.size() / sizeof(EFI_GUID);
|
|
if (count > 0) {
|
|
for (UINT32 i = 0; i < count; i++) {
|
|
const EFI_GUID* guid = (const EFI_GUID*)body.constData() + i;
|
|
parsed += tr("\n%1").arg(guidToQString(*guid));
|
|
}
|
|
}
|
|
}
|
|
|
|
UINT8 FfsEngine::parseDepexSection(const QByteArray & body, QString & parsed)
|
|
{
|
|
parsed.clear();
|
|
// Check data to be present
|
|
if (!body.size())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
const EFI_GUID * guid;
|
|
const UINT8* current = (const UINT8*)body.constData();
|
|
|
|
// Special cases of first opcode
|
|
switch (*current) {
|
|
case EFI_DEP_BEFORE:
|
|
if (body.size() != 2*EFI_DEP_OPCODE_SIZE + sizeof(EFI_GUID))
|
|
return ERR_DEPEX_PARSE_FAILED;
|
|
guid = (const EFI_GUID*)(current + EFI_DEP_OPCODE_SIZE);
|
|
parsed += tr("\nBEFORE %1").arg(guidToQString(*guid));
|
|
current += EFI_DEP_OPCODE_SIZE + sizeof(EFI_GUID);
|
|
if (*current != EFI_DEP_END)
|
|
return ERR_DEPEX_PARSE_FAILED;
|
|
return ERR_SUCCESS;
|
|
case EFI_DEP_AFTER:
|
|
if (body.size() != 2 * EFI_DEP_OPCODE_SIZE + sizeof(EFI_GUID))
|
|
return ERR_DEPEX_PARSE_FAILED;
|
|
guid = (const EFI_GUID*)(current + EFI_DEP_OPCODE_SIZE);
|
|
parsed += tr("\nAFTER %1").arg(guidToQString(*guid));
|
|
current += EFI_DEP_OPCODE_SIZE + sizeof(EFI_GUID);
|
|
if (*current != EFI_DEP_END)
|
|
return ERR_DEPEX_PARSE_FAILED;
|
|
return ERR_SUCCESS;
|
|
case EFI_DEP_SOR:
|
|
if (body.size() <= 2 * EFI_DEP_OPCODE_SIZE) {
|
|
return ERR_DEPEX_PARSE_FAILED;
|
|
}
|
|
parsed += tr("\nSOR");
|
|
current += EFI_DEP_OPCODE_SIZE;
|
|
break;
|
|
}
|
|
|
|
// Parse the rest of depex
|
|
while (current - (const UINT8*)body.constData() < body.size()) {
|
|
switch (*current) {
|
|
case EFI_DEP_BEFORE:
|
|
case EFI_DEP_AFTER:
|
|
case EFI_DEP_SOR:
|
|
return ERR_DEPEX_PARSE_FAILED;
|
|
case EFI_DEP_PUSH:
|
|
// Check that the rest of depex has correct size
|
|
if ((UINT32)body.size() - (UINT32)(current - (const UINT8*)body.constData()) <= EFI_DEP_OPCODE_SIZE + sizeof(EFI_GUID)) {
|
|
parsed.clear();
|
|
return ERR_DEPEX_PARSE_FAILED;
|
|
}
|
|
guid = (const EFI_GUID*)(current + EFI_DEP_OPCODE_SIZE);
|
|
parsed += tr("\nPUSH %1").arg(guidToQString(*guid));
|
|
current += EFI_DEP_OPCODE_SIZE + sizeof(EFI_GUID);
|
|
break;
|
|
case EFI_DEP_AND:
|
|
parsed += tr("\nAND");
|
|
current += EFI_DEP_OPCODE_SIZE;
|
|
break;
|
|
case EFI_DEP_OR:
|
|
parsed += tr("\nOR");
|
|
current += EFI_DEP_OPCODE_SIZE;
|
|
break;
|
|
case EFI_DEP_NOT:
|
|
parsed += tr("\nNOT");
|
|
current += EFI_DEP_OPCODE_SIZE;
|
|
break;
|
|
case EFI_DEP_TRUE:
|
|
parsed += tr("\nTRUE");
|
|
current += EFI_DEP_OPCODE_SIZE;
|
|
break;
|
|
case EFI_DEP_FALSE:
|
|
parsed += tr("\nFALSE");
|
|
current += EFI_DEP_OPCODE_SIZE;
|
|
break;
|
|
case EFI_DEP_END:
|
|
parsed += tr("\nEND");
|
|
current += EFI_DEP_OPCODE_SIZE;
|
|
// Check that END is the last opcode
|
|
if (current - (const UINT8*)body.constData() < body.size()) {
|
|
parsed.clear();
|
|
return ERR_DEPEX_PARSE_FAILED;
|
|
}
|
|
break;
|
|
default:
|
|
return ERR_DEPEX_PARSE_FAILED;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 x86Convert(QByteArray & input, int mode) {
|
|
unsigned char* source = (unsigned char*)input.data();
|
|
UINT32 sourceSize = input.size();
|
|
|
|
UINT32 state;
|
|
x86_Convert_Init(state);
|
|
UINT32 converted = x86_Convert(source, sourceSize, 0, &state, mode);
|
|
|
|
const UINT8 x86LookAhead = 4;
|
|
if (converted + x86LookAhead != sourceSize) {
|
|
return ERR_INVALID_VOLUME;
|
|
}
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::parseSection(const QByteArray & section, QModelIndex & index, const QModelIndex & parent, const UINT8 mode)
|
|
{
|
|
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(section.constData());
|
|
QString name = sectionTypeToQString(sectionHeader->Type) + tr(" section");
|
|
QString info;
|
|
QByteArray header;
|
|
QByteArray body;
|
|
UINT32 headerSize = sizeOfSectionHeader(sectionHeader);
|
|
UINT8 result;
|
|
|
|
switch (sectionHeader->Type) {
|
|
// Encapsulated sections
|
|
case EFI_SECTION_COMPRESSION:
|
|
{
|
|
bool parseCurrentSection = true;
|
|
QByteArray decompressed;
|
|
UINT8 algorithm;
|
|
const EFI_COMPRESSION_SECTION* compressedSectionHeader = (const EFI_COMPRESSION_SECTION*)sectionHeader;
|
|
header = section.left(headerSize);
|
|
body = section.mid(headerSize);
|
|
algorithm = COMPRESSION_ALGORITHM_UNKNOWN;
|
|
// Decompress section
|
|
result = decompress(body, compressedSectionHeader->CompressionType, decompressed, &algorithm);
|
|
if (result)
|
|
parseCurrentSection = false;
|
|
|
|
// Get info
|
|
info = tr("Type: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)\nCompression type: %8\nDecompressed size: %9h (%10)")
|
|
.hexarg2(sectionHeader->Type, 2)
|
|
.hexarg(section.size()).arg(section.size())
|
|
.hexarg(header.size()).arg(header.size())
|
|
.hexarg(body.size()).arg(body.size())
|
|
.arg(compressionTypeToQString(algorithm))
|
|
.hexarg(compressedSectionHeader->UncompressedLength).arg(compressedSectionHeader->UncompressedLength);
|
|
|
|
UINT32 dictionarySize = DEFAULT_LZMA_DICTIONARY_SIZE;
|
|
if (algorithm == COMPRESSION_ALGORITHM_LZMA) {
|
|
// Dictionary size is stored in bytes 1-4 of LZMA-compressed data
|
|
dictionarySize = *(UINT32*)(body.constData() + 1);
|
|
info += tr("\nLZMA dictionary size: %1h").hexarg(dictionarySize);
|
|
}
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Section, sectionHeader->Type, algorithm, name, "", info, header, body, parent, mode);
|
|
model->setDictionarySize(index, dictionarySize);
|
|
|
|
// Show message
|
|
if (!parseCurrentSection)
|
|
msg(tr("parseSection: decompression failed with error \"%1\"").arg(errorMessage(result)), index);
|
|
else { // Parse decompressed data
|
|
result = parseSections(decompressed, index);
|
|
if (result)
|
|
return result;
|
|
}
|
|
} break;
|
|
|
|
case EFI_SECTION_GUID_DEFINED:
|
|
{
|
|
bool parseCurrentSection = true;
|
|
bool msgUnknownGuid = false;
|
|
bool msgInvalidCrc = false;
|
|
bool msgUnknownAuth = false;
|
|
bool msgSigned = false;
|
|
bool msgInvalidSignatureLength = false;
|
|
bool msgUnknownSignature = false;
|
|
bool msgUnknownUefiGuidSignature = false;
|
|
|
|
header = section.left(headerSize);
|
|
body = section.mid(headerSize);
|
|
|
|
const EFI_GUID_DEFINED_SECTION* guidDefinedSectionHeader = (const EFI_GUID_DEFINED_SECTION*)(header.constData());
|
|
QByteArray processed = body;
|
|
|
|
// Get info
|
|
name = guidToQString(guidDefinedSectionHeader->SectionDefinitionGuid);
|
|
info = tr("Section GUID: %1\nType: %2h\nFull size: %3h (%4)\nHeader size: %5h (%6)\nBody size: %7h (%8)\nData offset: %9h\nAttributes: %10h")
|
|
.arg(name)
|
|
.hexarg2(sectionHeader->Type, 2)
|
|
.hexarg(section.size()).arg(section.size())
|
|
.hexarg(header.size()).arg(header.size())
|
|
.hexarg(body.size()).arg(body.size())
|
|
.hexarg(guidDefinedSectionHeader->DataOffset)
|
|
.hexarg2(guidDefinedSectionHeader->Attributes, 4);
|
|
|
|
UINT8 algorithm = COMPRESSION_ALGORITHM_NONE;
|
|
UINT32 dictionarySize = DEFAULT_LZMA_DICTIONARY_SIZE;
|
|
|
|
// Check if section requires processing
|
|
QByteArray parsedGuid = QByteArray((const char*)&guidDefinedSectionHeader->SectionDefinitionGuid, sizeof(EFI_GUID));
|
|
if (guidDefinedSectionHeader->Attributes & EFI_GUIDED_SECTION_PROCESSING_REQUIRED) {
|
|
// Tiano compressed section
|
|
if (parsedGuid == EFI_GUIDED_SECTION_TIANO) {
|
|
algorithm = COMPRESSION_ALGORITHM_UNKNOWN;
|
|
|
|
result = decompress(body, EFI_STANDARD_COMPRESSION, processed, &algorithm);
|
|
if (result)
|
|
parseCurrentSection = false;
|
|
|
|
if (algorithm == COMPRESSION_ALGORITHM_TIANO) {
|
|
info += tr("\nCompression type: Tiano");
|
|
info += tr("\nDecompressed size: %1h (%2)").hexarg(processed.length()).arg(processed.length());
|
|
}
|
|
else if (algorithm == COMPRESSION_ALGORITHM_EFI11) {
|
|
info += tr("\nCompression type: EFI 1.1");
|
|
info += tr("\nDecompressed size: %1h (%2)").hexarg(processed.length()).arg(processed.length());
|
|
}
|
|
else
|
|
info += tr("\nCompression type: unknown");
|
|
}
|
|
// LZMA compressed section
|
|
else if (parsedGuid == EFI_GUIDED_SECTION_LZMA || parsedGuid == EFI_GUIDED_SECTION_LZMAF86) {
|
|
algorithm = COMPRESSION_ALGORITHM_UNKNOWN;
|
|
|
|
result = decompress(body, EFI_CUSTOMIZED_COMPRESSION, processed, &algorithm);
|
|
if (result)
|
|
parseCurrentSection = false;
|
|
if (parsedGuid == EFI_GUIDED_SECTION_LZMAF86) {
|
|
if (x86Convert(processed, 0) != ERR_SUCCESS) {
|
|
msg(tr("parseSection: unable to convert LZMAF86 compressed data"));
|
|
}
|
|
}
|
|
|
|
if (algorithm == COMPRESSION_ALGORITHM_LZMA) {
|
|
info += tr("\nCompression type: LZMA");
|
|
info += tr("\nDecompressed size: %1h (%2)").hexarg(processed.length()).arg(processed.length());
|
|
|
|
// Dictionary size is stored in bytes 1-4 of LZMA-compressed data
|
|
dictionarySize = *(UINT32*)(body.constData() + 1);
|
|
info += tr("\nLZMA dictionary size: %1h").hexarg(dictionarySize);
|
|
}
|
|
else
|
|
info += tr("\nCompression type: unknown");
|
|
}
|
|
// Signed section
|
|
else if (parsedGuid == EFI_FIRMWARE_CONTENTS_SIGNED_GUID) {
|
|
msgSigned = true;
|
|
const WIN_CERTIFICATE* certificateHeader = (const WIN_CERTIFICATE*)body.constData();
|
|
if ((UINT32)body.size() < sizeof(WIN_CERTIFICATE)) {
|
|
info += tr("\nSignature type: invalid, wrong length");
|
|
msgInvalidSignatureLength = true;
|
|
parseCurrentSection = false;
|
|
}
|
|
else if (certificateHeader->CertificateType == WIN_CERT_TYPE_EFI_GUID) {
|
|
info += tr("\nSignature type: UEFI");
|
|
const WIN_CERTIFICATE_UEFI_GUID* guidCertificateHeader = (const WIN_CERTIFICATE_UEFI_GUID*)certificateHeader;
|
|
if (QByteArray((const char*)&guidCertificateHeader->CertType, sizeof(EFI_GUID)) == EFI_CERT_TYPE_RSA2048_SHA256_GUID) {
|
|
info += tr("\nSignature subtype: RSA2048/SHA256");
|
|
// TODO: show signature info in Information panel
|
|
}
|
|
else if (QByteArray((const char*)&guidCertificateHeader->CertType, sizeof(EFI_GUID)) == EFI_CERT_TYPE_PKCS7_GUID) {
|
|
info += tr("\nSignature subtype: PCKS7");
|
|
// TODO: show signature info in Information panel
|
|
}
|
|
else {
|
|
info += tr("\nSignature subtype: unknown");
|
|
msgUnknownUefiGuidSignature = true;
|
|
}
|
|
}
|
|
else if (certificateHeader->CertificateType == WIN_CERT_TYPE_PKCS_SIGNED_DATA) {
|
|
info += tr("\nSignature type: PKCS7");
|
|
// TODO: show signature info in Information panel
|
|
}
|
|
else {
|
|
info += tr("\nSignature type: unknown");
|
|
msgUnknownSignature = true;
|
|
}
|
|
|
|
if ((UINT32)body.size() < certificateHeader->Length) {
|
|
info += tr("\nSignature type: invalid, wrong length");
|
|
msgInvalidSignatureLength = true;
|
|
parseCurrentSection = false;
|
|
}
|
|
else {
|
|
// Add additional data to the header
|
|
header.append(body.left(certificateHeader->Length));
|
|
// Get new body
|
|
processed = body = body.mid(certificateHeader->Length);
|
|
}
|
|
}
|
|
// Unknown GUIDed section
|
|
else {
|
|
msgUnknownGuid = true;
|
|
parseCurrentSection = false;
|
|
}
|
|
}
|
|
// Check if section requires checksum calculation
|
|
else if (guidDefinedSectionHeader->Attributes & EFI_GUIDED_SECTION_AUTH_STATUS_VALID)
|
|
{
|
|
// CRC32 section
|
|
if (parsedGuid == EFI_GUIDED_SECTION_CRC32) {
|
|
info += tr("\nChecksum type: CRC32");
|
|
// Calculate CRC32 of section data
|
|
UINT32 crc = crc32(0, (const UINT8*)body.constData(), body.size());
|
|
// Check stored CRC32
|
|
if (crc == *(const UINT32*)(header.constData() + sizeof(EFI_GUID_DEFINED_SECTION))) {
|
|
info += tr("\nChecksum: valid");
|
|
}
|
|
else {
|
|
info += tr("\nChecksum: invalid");
|
|
msgInvalidCrc = true;
|
|
}
|
|
}
|
|
else
|
|
msgUnknownAuth = true;
|
|
}
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Section, sectionHeader->Type, algorithm, name, "", info, header, body, parent, mode);
|
|
model->setDictionarySize(index, dictionarySize);
|
|
|
|
// Show messages
|
|
if (msgUnknownGuid)
|
|
msg(tr("parseSection: GUID defined section with unknown processing method"), index);
|
|
if (msgUnknownAuth)
|
|
msg(tr("parseSection: GUID defined section with unknown authentication method"), index);
|
|
if (msgInvalidCrc)
|
|
msg(tr("parseSection: GUID defined section with invalid CRC32"), index);
|
|
if (msgSigned)
|
|
msg(tr("parseSection: signature may become invalid after any modification"), index);
|
|
if (msgUnknownUefiGuidSignature)
|
|
msg(tr("parseSection: GUID defined section with unknown signature subtype"), index);
|
|
if (msgInvalidSignatureLength)
|
|
msg(tr("parseSection: GUID defined section with invalid signature length"), index);
|
|
if (msgUnknownSignature)
|
|
msg(tr("parseSection: GUID defined section with unknown signature type"), index);
|
|
|
|
if (!parseCurrentSection) {
|
|
msg(tr("parseSection: GUID defined section can not be processed"), index);
|
|
}
|
|
else { // Parse processed data
|
|
result = parseSections(processed, index);
|
|
if (result)
|
|
return result;
|
|
}
|
|
} break;
|
|
|
|
case EFI_SECTION_DISPOSABLE:
|
|
{
|
|
header = section.left(headerSize);
|
|
body = section.mid(headerSize);
|
|
|
|
// Get info
|
|
info = tr("Type: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)")
|
|
.hexarg2(sectionHeader->Type, 2)
|
|
.hexarg(section.size()).arg(section.size())
|
|
.hexarg(header.size()).arg(header.size())
|
|
.hexarg(body.size()).arg(body.size());
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Section, sectionHeader->Type, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body, parent, mode);
|
|
|
|
// Parse section body
|
|
result = parseSections(body, index);
|
|
if (result)
|
|
return result;
|
|
} break;
|
|
|
|
// Leaf sections
|
|
case EFI_SECTION_DXE_DEPEX:
|
|
case EFI_SECTION_PEI_DEPEX:
|
|
case EFI_SECTION_SMM_DEPEX: {
|
|
bool msgDepexParseFailed = false;
|
|
header = section.left(headerSize);
|
|
body = section.mid(headerSize);
|
|
|
|
// Get info
|
|
info = tr("Type: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)")
|
|
.hexarg2(sectionHeader->Type, 2)
|
|
.hexarg(section.size()).arg(section.size())
|
|
.hexarg(header.size()).arg(header.size())
|
|
.hexarg(body.size()).arg(body.size());
|
|
|
|
// Parse dependency expression
|
|
QString str;
|
|
result = parseDepexSection(body, str);
|
|
if (result)
|
|
msgDepexParseFailed = true;
|
|
else if (str.count())
|
|
info += tr("\nParsed expression:%1").arg(str);
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Section, sectionHeader->Type, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body, parent, mode);
|
|
|
|
// Show messages
|
|
if (msgDepexParseFailed)
|
|
msg(tr("parseSection: dependency expression parsing failed"), index);
|
|
} break;
|
|
|
|
case EFI_SECTION_TE: {
|
|
header = section.left(headerSize);
|
|
body = section.mid(headerSize);
|
|
|
|
// Get standard info
|
|
info = tr("Type: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)")
|
|
.hexarg2(sectionHeader->Type, 2)
|
|
.hexarg(section.size()).arg(section.size())
|
|
.hexarg(header.size()).arg(header.size())
|
|
.hexarg(body.size()).arg(body.size());
|
|
|
|
// Get TE info
|
|
bool msgInvalidSignature = false;
|
|
const EFI_IMAGE_TE_HEADER* teHeader = (const EFI_IMAGE_TE_HEADER*)body.constData();
|
|
|
|
// Most EFI images today include teFixup in ImageBase value,
|
|
// which doesn't follow the UEFI spec, but is so popular that
|
|
// only a few images out of thousands are different
|
|
UINT32 teFixup = 0; //teHeader->StrippedSize - sizeof(EFI_IMAGE_TE_HEADER);
|
|
if (teHeader->Signature != EFI_IMAGE_TE_SIGNATURE) {
|
|
info += tr("\nSignature: %1h, invalid").hexarg2(teHeader->Signature, 4);
|
|
msgInvalidSignature = true;
|
|
}
|
|
else {
|
|
info += tr("\nSignature: %1h\nMachine type: %2\nNumber of sections: %3\nSubsystem: %4h\nStrippedSize: %5h (%6)\nBaseOfCode: %7h\nRelativeEntryPoint: %8h\nImageBase: %9h\nEntryPoint: %10h")
|
|
.hexarg2(teHeader->Signature, 4)
|
|
.arg(machineTypeToQString(teHeader->Machine))
|
|
.arg(teHeader->NumberOfSections)
|
|
.hexarg2(teHeader->Subsystem, 2)
|
|
.hexarg(teHeader->StrippedSize).arg(teHeader->StrippedSize)
|
|
.hexarg(teHeader->BaseOfCode)
|
|
.hexarg(teHeader->AddressOfEntryPoint)
|
|
.hexarg(teHeader->ImageBase)
|
|
.hexarg(teHeader->ImageBase + teHeader->AddressOfEntryPoint - teFixup);
|
|
}
|
|
// Add tree item
|
|
index = model->addItem(Types::Section, sectionHeader->Type, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body, parent, mode);
|
|
|
|
// Show messages
|
|
if (msgInvalidSignature) {
|
|
msg("parseSection: TE image with invalid TE signature", index);
|
|
}
|
|
|
|
// Special case of PEI Core
|
|
QModelIndex core = model->findParentOfType(index, Types::File);
|
|
if (core.isValid() && model->subtype(core) == EFI_FV_FILETYPE_PEI_CORE
|
|
&& oldPeiCoreEntryPoint == 0) {
|
|
result = getEntryPoint(model->body(index), oldPeiCoreEntryPoint);
|
|
if (result)
|
|
msg(tr("parseSection: can't get original PEI core entry point"), index);
|
|
}
|
|
} break;
|
|
|
|
case EFI_SECTION_PE32:
|
|
case EFI_SECTION_PIC: {
|
|
header = section.left(headerSize);
|
|
body = section.mid(headerSize);
|
|
|
|
// Get standard info
|
|
info = tr("Type: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)")
|
|
.hexarg2(sectionHeader->Type, 2)
|
|
.hexarg(section.size()).arg(section.size())
|
|
.hexarg(header.size()).arg(header.size())
|
|
.hexarg(body.size()).arg(body.size());
|
|
|
|
// Get PE info
|
|
bool msgInvalidDosSignature = false;
|
|
bool msgInvalidDosHeader = false;
|
|
bool msgInvalidPeSignature = false;
|
|
bool msgUnknownOptionalHeaderSignature = false;
|
|
|
|
const EFI_IMAGE_DOS_HEADER* dosHeader = (const EFI_IMAGE_DOS_HEADER*)body.constData();
|
|
if (dosHeader->e_magic != EFI_IMAGE_DOS_SIGNATURE) {
|
|
info += tr("\nDOS signature: %1h, invalid").hexarg2(dosHeader->e_magic, 4);
|
|
msgInvalidDosSignature = true;
|
|
}
|
|
else {
|
|
const EFI_IMAGE_PE_HEADER* peHeader = (EFI_IMAGE_PE_HEADER*)(body.constData() + dosHeader->e_lfanew);
|
|
if ((UINT32)body.size() < dosHeader->e_lfanew + sizeof(EFI_IMAGE_PE_HEADER)) {
|
|
info += tr("\nDOS lfanew: %1h, invalid").hexarg2(dosHeader->e_lfanew, 8);
|
|
msgInvalidDosHeader = true;
|
|
}
|
|
else if (peHeader->Signature != EFI_IMAGE_PE_SIGNATURE) {
|
|
info += tr("\nPE signature: %1h, invalid").hexarg2(peHeader->Signature, 8);
|
|
msgInvalidPeSignature = true;
|
|
}
|
|
else {
|
|
const EFI_IMAGE_FILE_HEADER* imageFileHeader = (const EFI_IMAGE_FILE_HEADER*)(peHeader + 1);
|
|
info += tr("\nDOS signature: %1h\nPE signature: %2h\nMachine type: %3\nNumber of sections: %4\nCharacteristics: %5h")
|
|
.hexarg2(dosHeader->e_magic, 4)
|
|
.hexarg2(peHeader->Signature, 8)
|
|
.arg(machineTypeToQString(imageFileHeader->Machine))
|
|
.arg(imageFileHeader->NumberOfSections)
|
|
.hexarg2(imageFileHeader->Characteristics, 4);
|
|
|
|
EFI_IMAGE_OPTIONAL_HEADER_POINTERS_UNION optionalHeader;
|
|
optionalHeader.H32 = (const EFI_IMAGE_OPTIONAL_HEADER32*)(imageFileHeader + 1);
|
|
if (optionalHeader.H32->Magic == EFI_IMAGE_PE_OPTIONAL_HDR32_MAGIC) {
|
|
info += tr("\nOptional header signature: %1h\nSubsystem: %2h\nRelativeEntryPoint: %3h\nBaseOfCode: %4h\nImageBase: %5h\nEntryPoint: %6h")
|
|
.hexarg2(optionalHeader.H32->Magic, 4)
|
|
.hexarg2(optionalHeader.H32->Subsystem, 4)
|
|
.hexarg(optionalHeader.H32->AddressOfEntryPoint)
|
|
.hexarg(optionalHeader.H32->BaseOfCode)
|
|
.hexarg(optionalHeader.H32->ImageBase)
|
|
.hexarg(optionalHeader.H32->ImageBase + optionalHeader.H32->AddressOfEntryPoint);
|
|
}
|
|
else if (optionalHeader.H32->Magic == EFI_IMAGE_PE_OPTIONAL_HDR64_MAGIC) {
|
|
info += tr("\nOptional header signature: %1h\nSubsystem: %2h\nRelativeEntryPoint: %3h\nBaseOfCode: %4h\nImageBase: %5h\nEntryPoint: %6h")
|
|
.hexarg2(optionalHeader.H64->Magic, 4)
|
|
.hexarg2(optionalHeader.H64->Subsystem, 4)
|
|
.hexarg(optionalHeader.H64->AddressOfEntryPoint)
|
|
.hexarg(optionalHeader.H64->BaseOfCode)
|
|
.hexarg(optionalHeader.H64->ImageBase)
|
|
.hexarg(optionalHeader.H64->ImageBase + optionalHeader.H64->AddressOfEntryPoint);
|
|
}
|
|
else {
|
|
info += tr("\nOptional header signature: %1h, unknown").hexarg2(optionalHeader.H64->Magic, 4);
|
|
msgUnknownOptionalHeaderSignature = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Section, sectionHeader->Type, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body, parent, mode);
|
|
|
|
// Show messages
|
|
if (msgInvalidDosSignature) {
|
|
msg("parseSection: PE32 image with invalid DOS signature", index);
|
|
}
|
|
if (msgInvalidDosHeader) {
|
|
msg("parseSection: PE32 image with invalid DOS header", index);
|
|
}
|
|
if (msgInvalidPeSignature) {
|
|
msg("parseSection: PE32 image with invalid PE signature", index);
|
|
}
|
|
if (msgUnknownOptionalHeaderSignature) {
|
|
msg("parseSection: PE32 image with unknown optional header signature", index);
|
|
}
|
|
|
|
// Special case of PEI Core
|
|
QModelIndex core = model->findParentOfType(index, Types::File);
|
|
if (core.isValid() && model->subtype(core) == EFI_FV_FILETYPE_PEI_CORE
|
|
&& oldPeiCoreEntryPoint == 0) {
|
|
result = getEntryPoint(model->body(index), oldPeiCoreEntryPoint);
|
|
if (result)
|
|
msg(tr("parseSection: can't get original PEI core entry point"), index);
|
|
}
|
|
} break;
|
|
|
|
case EFI_SECTION_COMPATIBILITY16: {
|
|
header = section.left(headerSize);
|
|
body = section.mid(headerSize);
|
|
|
|
// Get info
|
|
info = tr("Type: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)")
|
|
.hexarg2(sectionHeader->Type, 2)
|
|
.hexarg(section.size()).arg(section.size())
|
|
.hexarg(header.size()).arg(header.size())
|
|
.hexarg(body.size()).arg(body.size());
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Section, sectionHeader->Type, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body, parent, mode);
|
|
} break;
|
|
|
|
case EFI_SECTION_FREEFORM_SUBTYPE_GUID: {
|
|
header = section.left(headerSize);
|
|
body = section.mid(headerSize);
|
|
|
|
const EFI_FREEFORM_SUBTYPE_GUID_SECTION* fsgHeader = (const EFI_FREEFORM_SUBTYPE_GUID_SECTION*)sectionHeader;
|
|
// Get info
|
|
info = tr("Type: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)\nSubtype GUID: %8")
|
|
.hexarg2(fsgHeader->Type, 2)
|
|
.hexarg(section.size()).arg(section.size())
|
|
.hexarg(header.size()).arg(header.size())
|
|
.hexarg(body.size()).arg(body.size())
|
|
.arg(guidToQString(fsgHeader->SubTypeGuid));
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Section, sectionHeader->Type, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body, parent, mode);
|
|
|
|
// Rename section
|
|
model->setName(index, guidToQString(fsgHeader->SubTypeGuid));
|
|
} break;
|
|
|
|
case EFI_SECTION_VERSION: {
|
|
header = section.left(headerSize);
|
|
body = section.mid(headerSize);
|
|
|
|
const EFI_VERSION_SECTION* versionHeader = (const EFI_VERSION_SECTION*)sectionHeader;
|
|
|
|
// Get info
|
|
info = tr("Type: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)\nBuild number: %8\nVersion string: %9")
|
|
.hexarg2(versionHeader->Type, 2)
|
|
.hexarg(section.size()).arg(section.size())
|
|
.hexarg(header.size()).arg(header.size())
|
|
.hexarg(body.size()).arg(body.size())
|
|
.arg(versionHeader->BuildNumber)
|
|
.arg(QString::fromUtf16((const ushort*)body.constData()));
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Section, sectionHeader->Type, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body, parent, mode);
|
|
} break;
|
|
|
|
case EFI_SECTION_USER_INTERFACE: {
|
|
header = section.left(headerSize);
|
|
body = section.mid(headerSize);
|
|
QString text = QString::fromUtf16((const ushort*)body.constData());
|
|
|
|
// Get info
|
|
info = tr("Type: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)\nText: %8")
|
|
.hexarg2(sectionHeader->Type, 2)
|
|
.hexarg(section.size()).arg(section.size())
|
|
.hexarg(header.size()).arg(header.size())
|
|
.hexarg(body.size()).arg(body.size())
|
|
.arg(text);
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Section, sectionHeader->Type, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body, parent, mode);
|
|
|
|
// Rename parent file
|
|
model->setText(model->findParentOfType(parent, Types::File), text);
|
|
} break;
|
|
|
|
case EFI_SECTION_FIRMWARE_VOLUME_IMAGE: {
|
|
header = section.left(headerSize);
|
|
body = section.mid(headerSize);
|
|
|
|
// Get info
|
|
info = tr("Type: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)")
|
|
.hexarg2(sectionHeader->Type, 2)
|
|
.hexarg(section.size()).arg(section.size())
|
|
.hexarg(header.size()).arg(header.size())
|
|
.hexarg(body.size()).arg(body.size());
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Section, sectionHeader->Type, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body, parent, mode);
|
|
|
|
// Parse section body as BIOS space
|
|
result = parseBios(body, index);
|
|
if (result && result != ERR_VOLUMES_NOT_FOUND && result != ERR_INVALID_VOLUME) {
|
|
msg(tr("parseSection: parsing firmware volume image section as BIOS failed with error \"%1\"").arg(errorMessage(result)), index);
|
|
return result;
|
|
}
|
|
} break;
|
|
|
|
case EFI_SECTION_RAW: {
|
|
bool parsed = false;
|
|
header = section.left(headerSize);
|
|
body = section.mid(headerSize);
|
|
|
|
// Get info
|
|
info = tr("Type: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)")
|
|
.hexarg2(sectionHeader->Type, 2)
|
|
.hexarg(section.size()).arg(section.size())
|
|
.hexarg(header.size()).arg(header.size())
|
|
.hexarg(body.size()).arg(body.size());
|
|
|
|
// Check for apriori file
|
|
QModelIndex parentFile = model->findParentOfType(parent, Types::File);
|
|
QByteArray parentFileGuid = model->header(parentFile).left(sizeof(EFI_GUID));
|
|
if (parentFileGuid == EFI_PEI_APRIORI_FILE_GUID) {
|
|
// Mark file as parsed
|
|
parsed = true;
|
|
|
|
// Parse apriori file list
|
|
QString str;
|
|
parseAprioriRawSection(body, str);
|
|
if (str.count())
|
|
info += tr("\nFile list:%1").arg(str);
|
|
|
|
// Set parent file text
|
|
model->setText(parentFile, tr("PEI apriori file"));
|
|
}
|
|
else if (parentFileGuid == EFI_DXE_APRIORI_FILE_GUID) {
|
|
// Mark file as parsed
|
|
parsed = true;
|
|
|
|
// Parse apriori file list
|
|
QString str;
|
|
parseAprioriRawSection(body, str);
|
|
if (str.count())
|
|
info += tr("\nFile list:%1").arg(str);
|
|
|
|
// Set parent file text
|
|
model->setText(parentFile, tr("DXE apriori file"));
|
|
}
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Section, sectionHeader->Type, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body, parent, mode);
|
|
|
|
// Parse section body as BIOS space
|
|
if (!parsed) {
|
|
result = parseBios(body, index);
|
|
if (result && result != ERR_VOLUMES_NOT_FOUND && result != ERR_INVALID_VOLUME) {
|
|
msg(tr("parseSection: parsing raw section as BIOS failed with error \"%1\"").arg(errorMessage(result)), index);
|
|
return result;
|
|
}
|
|
}
|
|
} break;
|
|
|
|
case SCT_SECTION_POSTCODE:
|
|
case INSYDE_SECTION_POSTCODE: {
|
|
header = section.left(headerSize);
|
|
body = section.mid(headerSize);
|
|
|
|
const POSTCODE_SECTION* postcodeHeader = (const POSTCODE_SECTION*)sectionHeader;
|
|
|
|
// Get info
|
|
info = tr("Type: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)\nPostcode: %8h")
|
|
.hexarg2(postcodeHeader->Type, 2)
|
|
.hexarg(section.size()).arg(section.size())
|
|
.hexarg(header.size()).arg(header.size())
|
|
.hexarg(body.size()).arg(body.size())
|
|
.hexarg(postcodeHeader->Postcode);
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Section, sectionHeader->Type, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body, parent, mode);
|
|
} break;
|
|
|
|
default:
|
|
header = section.left(headerSize);
|
|
body = section.mid(headerSize);
|
|
// Get info
|
|
info = tr("Type: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)")
|
|
.hexarg2(sectionHeader->Type, 2)
|
|
.hexarg(section.size()).arg(section.size())
|
|
.hexarg(header.size()).arg(header.size())
|
|
.hexarg(body.size()).arg(body.size());
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Section, sectionHeader->Type, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body, parent, mode);
|
|
msg(tr("parseSection: section with unknown type %1h").hexarg2(sectionHeader->Type, 2), index);
|
|
}
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
// Operations on tree items
|
|
UINT8 FfsEngine::create(const QModelIndex & index, const UINT8 type, const QByteArray & header, const QByteArray & body, const UINT8 mode, const UINT8 action, const UINT8 algorithm)
|
|
{
|
|
QByteArray created;
|
|
UINT8 result;
|
|
QModelIndex fileIndex;
|
|
UINT32 defaultDictionarySize = DEFAULT_LZMA_DICTIONARY_SIZE;
|
|
|
|
if (!index.isValid() || !index.parent().isValid())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
QModelIndex parent;
|
|
if (mode == CREATE_MODE_BEFORE || mode == CREATE_MODE_AFTER)
|
|
parent = index.parent();
|
|
else
|
|
parent = index;
|
|
|
|
// Create item
|
|
if (type == Types::Region) {
|
|
UINT8 type = model->subtype(index);
|
|
switch (type) {
|
|
case Subtypes::BiosRegion:
|
|
result = parseBiosRegion(body, fileIndex, index, mode);
|
|
break;
|
|
case Subtypes::MeRegion:
|
|
result = parseMeRegion(body, fileIndex, index, mode);
|
|
break;
|
|
case Subtypes::GbeRegion:
|
|
result = parseGbeRegion(body, fileIndex, index, mode);
|
|
break;
|
|
case Subtypes::PdrRegion:
|
|
result = parsePdrRegion(body, fileIndex, index, mode);
|
|
break;
|
|
default:
|
|
return ERR_NOT_IMPLEMENTED;
|
|
}
|
|
|
|
if (result && result != ERR_VOLUMES_NOT_FOUND && result != ERR_INVALID_VOLUME)
|
|
return result;
|
|
|
|
// Set action
|
|
model->setAction(fileIndex, action);
|
|
}
|
|
else if (type == Types::Padding) {
|
|
// Get info
|
|
QString name = tr("Padding");
|
|
QString info = tr("Full size: %1h (%2)")
|
|
.hexarg(body.size()).arg(body.size());
|
|
|
|
// Add tree item
|
|
QModelIndex fileIndex = model->addItem(Types::Padding, getPaddingType(body), COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), body, index, mode);
|
|
|
|
// Set action
|
|
model->setAction(fileIndex, action);
|
|
}
|
|
else if (type == Types::Volume) {
|
|
QByteArray volume;
|
|
if (header.isEmpty()) // Whole volume
|
|
volume.append(body);
|
|
else { // Body only
|
|
volume.append(header).append(body);
|
|
INT32 sizeDiff = model->body(index).size() - body.size();
|
|
if (sizeDiff > 0) {
|
|
const EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (const EFI_FIRMWARE_VOLUME_HEADER*)model->header(index).constData();
|
|
bool erasePolarity = volumeHeader->Attributes & EFI_FVB_ERASE_POLARITY;
|
|
volume.append(QByteArray(sizeDiff, erasePolarity ? '\xFF' : '\x00'));
|
|
}
|
|
}
|
|
result = parseVolume(volume, fileIndex, index, mode);
|
|
if (result)
|
|
return result;
|
|
|
|
// Set action
|
|
model->setAction(fileIndex, action);
|
|
}
|
|
else if (type == Types::File) {
|
|
if (model->type(parent) != Types::Volume)
|
|
return ERR_INVALID_FILE;
|
|
|
|
const EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (const EFI_FIRMWARE_VOLUME_HEADER*)model->header(parent).constData();
|
|
UINT8 revision = volumeHeader->Revision;
|
|
bool erasePolarity = volumeHeader->Attributes & EFI_FVB_ERASE_POLARITY;
|
|
|
|
if (header.size() != sizeof(EFI_FFS_FILE_HEADER))
|
|
return ERR_INVALID_FILE;
|
|
|
|
QByteArray newObject = header + body;
|
|
EFI_FFS_FILE_HEADER* fileHeader = (EFI_FFS_FILE_HEADER*)newObject.data();
|
|
|
|
// Determine correct file header size
|
|
bool largeFile = false;
|
|
UINT32 headerSize = sizeof(EFI_FFS_FILE_HEADER);
|
|
if (revision > 1 && (fileHeader->Attributes & FFS_ATTRIB_LARGE_FILE)) {
|
|
largeFile = true;
|
|
headerSize = sizeof(EFI_FFS_FILE_HEADER2);
|
|
}
|
|
|
|
QByteArray newHeader = newObject.left(headerSize);
|
|
QByteArray newBody = newObject.mid(headerSize);
|
|
|
|
// Check if the file has a tail
|
|
UINT8 tailSize = (revision == 1 && (fileHeader->Attributes & FFS_ATTRIB_TAIL_PRESENT)) ? sizeof(UINT16) : 0;
|
|
if (tailSize) {
|
|
// Remove the tail, it will then be added back for revision 1 volumes
|
|
newBody = newBody.left(newBody.size() - tailSize);
|
|
}
|
|
|
|
// Correct file size
|
|
if (!largeFile) {
|
|
if (newBody.size() >= 0xFFFFFF) {
|
|
return ERR_INVALID_FILE;
|
|
}
|
|
|
|
uint32ToUint24(headerSize + newBody.size() + tailSize, fileHeader->Size);
|
|
}
|
|
else {
|
|
uint32ToUint24(0xFFFFFF, fileHeader->Size);
|
|
EFI_FFS_FILE_HEADER2* fileHeader2 = (EFI_FFS_FILE_HEADER2*)newHeader.data();
|
|
fileHeader2->ExtendedSize = headerSize + newBody.size() + tailSize;
|
|
}
|
|
|
|
// Set file state
|
|
UINT8 state = EFI_FILE_DATA_VALID | EFI_FILE_HEADER_VALID | EFI_FILE_HEADER_CONSTRUCTION;
|
|
if (erasePolarity)
|
|
state = ~state;
|
|
fileHeader->State = state;
|
|
|
|
// Recalculate header checksum
|
|
fileHeader->IntegrityCheck.Checksum.Header = 0;
|
|
fileHeader->IntegrityCheck.Checksum.File = 0;
|
|
fileHeader->IntegrityCheck.Checksum.Header = 0x100 - (calculateSum8((const UINT8*)newHeader.constData(), headerSize) - fileHeader->State);
|
|
|
|
// Recalculate data checksum, if needed
|
|
if (fileHeader->Attributes & FFS_ATTRIB_CHECKSUM)
|
|
fileHeader->IntegrityCheck.Checksum.File = calculateChecksum8((const UINT8*)newBody.constData(), newBody.size());
|
|
else if (revision == 1)
|
|
fileHeader->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM;
|
|
else
|
|
fileHeader->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM2;
|
|
|
|
// Append new body
|
|
created.append(newBody);
|
|
|
|
// Append tail, if needed
|
|
if (revision == 1 && tailSize) {
|
|
UINT8 ht = ~fileHeader->IntegrityCheck.Checksum.Header;
|
|
UINT8 ft = ~fileHeader->IntegrityCheck.Checksum.File;
|
|
created.append(ht).append(ft);
|
|
}
|
|
|
|
// Prepend header
|
|
created.prepend(newHeader);
|
|
|
|
// Parse file
|
|
result = parseFile(created, fileIndex, revision, erasePolarity ? ERASE_POLARITY_TRUE : ERASE_POLARITY_FALSE, index, mode);
|
|
if (result && result != ERR_VOLUMES_NOT_FOUND && result != ERR_INVALID_VOLUME)
|
|
return result;
|
|
|
|
// Set action
|
|
model->setAction(fileIndex, action);
|
|
|
|
// Rebase all PEI-files that follow
|
|
rebasePeiFiles(fileIndex);
|
|
}
|
|
else if (type == Types::Section) {
|
|
if (model->type(parent) != Types::File && model->type(parent) != Types::Section)
|
|
return ERR_INVALID_SECTION;
|
|
|
|
if ((UINT32)header.size() < sizeof(EFI_COMMON_SECTION_HEADER))
|
|
return ERR_INVALID_SECTION;
|
|
|
|
QByteArray newHeader = header;
|
|
EFI_COMMON_SECTION_HEADER* commonHeader = (EFI_COMMON_SECTION_HEADER*)newHeader.data();
|
|
|
|
if (uint24ToUint32(commonHeader->Size) == EFI_SECTION2_IS_USED) {
|
|
msg(tr("create: creation of large sections not supported yet"), index);
|
|
return ERR_NOT_IMPLEMENTED;
|
|
}
|
|
|
|
switch (commonHeader->Type)
|
|
{
|
|
case EFI_SECTION_COMPRESSION: {
|
|
EFI_COMPRESSION_SECTION* sectionHeader = (EFI_COMPRESSION_SECTION*)newHeader.data();
|
|
// Correct uncompressed size
|
|
sectionHeader->UncompressedLength = body.size();
|
|
|
|
// Set compression type
|
|
if (algorithm == COMPRESSION_ALGORITHM_NONE) {
|
|
sectionHeader->CompressionType = EFI_NOT_COMPRESSED;
|
|
}
|
|
else if (algorithm == COMPRESSION_ALGORITHM_EFI11 || algorithm == COMPRESSION_ALGORITHM_TIANO) {
|
|
sectionHeader->CompressionType = EFI_STANDARD_COMPRESSION;
|
|
}
|
|
else if (algorithm == COMPRESSION_ALGORITHM_LZMA || algorithm == COMPRESSION_ALGORITHM_IMLZMA) {
|
|
sectionHeader->CompressionType = EFI_CUSTOMIZED_COMPRESSION;
|
|
}
|
|
else
|
|
return ERR_UNKNOWN_COMPRESSION_ALGORITHM;
|
|
|
|
// Compress body
|
|
QByteArray compressed;
|
|
result = compress(body, algorithm, defaultDictionarySize, compressed);
|
|
if (result)
|
|
return result;
|
|
|
|
// Correct section size
|
|
uint32ToUint24(header.size() + compressed.size(), commonHeader->Size);
|
|
|
|
// Append header and body
|
|
created.append(newHeader).append(compressed);
|
|
|
|
// Parse section
|
|
QModelIndex sectionIndex;
|
|
result = parseSection(created, sectionIndex, index, mode);
|
|
if (result && result != ERR_VOLUMES_NOT_FOUND && result != ERR_INVALID_VOLUME)
|
|
return result;
|
|
|
|
// Set create action
|
|
model->setAction(sectionIndex, action);
|
|
|
|
// Find parent file for rebase
|
|
fileIndex = model->findParentOfType(parent, Types::File);
|
|
}
|
|
break;
|
|
case EFI_SECTION_GUID_DEFINED:{
|
|
// Compress body
|
|
QByteArray compressed;
|
|
result = compress(body, algorithm, defaultDictionarySize, compressed);
|
|
if (result)
|
|
return result;
|
|
|
|
// Correct section size
|
|
uint32ToUint24(header.size() + compressed.size(), commonHeader->Size);
|
|
|
|
// Append header and body
|
|
created.append(newHeader).append(compressed);
|
|
|
|
// Parse section
|
|
QModelIndex sectionIndex;
|
|
result = parseSection(created, sectionIndex, index, mode);
|
|
if (result && result != ERR_VOLUMES_NOT_FOUND && result != ERR_INVALID_VOLUME)
|
|
return result;
|
|
|
|
// Set create action
|
|
model->setAction(sectionIndex, action);
|
|
|
|
// Find parent file for rebase
|
|
fileIndex = model->findParentOfType(parent, Types::File);
|
|
}
|
|
break;
|
|
default:
|
|
// Correct section size
|
|
uint32ToUint24(header.size() + body.size(), commonHeader->Size);
|
|
|
|
// Append header and body
|
|
created.append(newHeader).append(body);
|
|
|
|
// Parse section
|
|
QModelIndex sectionIndex;
|
|
result = parseSection(created, sectionIndex, index, mode);
|
|
if (result && result != ERR_VOLUMES_NOT_FOUND && result != ERR_INVALID_VOLUME)
|
|
return result;
|
|
|
|
// Set create action
|
|
model->setAction(sectionIndex, action);
|
|
|
|
// Find parent file for rebase
|
|
fileIndex = model->findParentOfType(parent, Types::File);
|
|
}
|
|
|
|
// Rebase all PEI-files that follow
|
|
rebasePeiFiles(fileIndex);
|
|
}
|
|
else
|
|
return ERR_NOT_IMPLEMENTED;
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
void FfsEngine::rebasePeiFiles(const QModelIndex & index)
|
|
{
|
|
// Rebase all PE32 and TE sections in PEI-files after modified file
|
|
for (int i = index.row(); i < model->rowCount(index.parent()); i++) {
|
|
// PEI-file
|
|
QModelIndex currentFileIndex = index.parent().child(i, 0);
|
|
if (model->subtype(currentFileIndex) == EFI_FV_FILETYPE_PEI_CORE ||
|
|
model->subtype(currentFileIndex) == EFI_FV_FILETYPE_PEIM ||
|
|
model->subtype(currentFileIndex) == EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER) {
|
|
for (int j = 0; j < model->rowCount(currentFileIndex); j++) {
|
|
// Section in that file
|
|
QModelIndex currentSectionIndex = currentFileIndex.child(j, 0);
|
|
// If section stores PE32 or TE image
|
|
if (model->subtype(currentSectionIndex) == EFI_SECTION_PE32 || model->subtype(currentSectionIndex) == EFI_SECTION_TE)
|
|
// Set rebase action
|
|
if (model->action(currentSectionIndex) != Actions::Remove)
|
|
model->setAction(currentSectionIndex, Actions::Rebase);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Rebase VTF in subsequent volumes.
|
|
QModelIndex parent = index.parent();
|
|
while (parent.isValid() && model->type(parent) != Types::Volume)
|
|
parent = parent.parent();
|
|
if (parent.isValid()) {
|
|
QModelIndex volumeContainer = parent.parent();
|
|
// Iterate over volumes starting from the one after.
|
|
for (int i = parent.row() + 1; i < model->rowCount(volumeContainer); i++) {
|
|
QModelIndex currentVolumeIndex = volumeContainer.child(i, 0);
|
|
// Iterate over files within each volume after the current one.
|
|
for (int j = 0; j < model->rowCount(currentVolumeIndex); j++) {
|
|
QModelIndex currentFileIndex = currentVolumeIndex.child(j, 0);
|
|
if (model->header(currentFileIndex).left(sizeof(EFI_GUID)) == EFI_FFS_VOLUME_TOP_FILE_GUID) {
|
|
for (int k = 0; k < model->rowCount(currentFileIndex); k++) {
|
|
QModelIndex currentSectionIndex = currentFileIndex.child(k, 0);
|
|
// If section stores PE32 or TE image
|
|
if (model->subtype(currentSectionIndex) == EFI_SECTION_PE32 || model->subtype(currentSectionIndex) == EFI_SECTION_TE)
|
|
// Set rebase action
|
|
if (model->action(currentSectionIndex) != Actions::Remove)
|
|
model->setAction(currentSectionIndex, Actions::Rebase);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
UINT8 FfsEngine::insert(const QModelIndex & index, const QByteArray & object, const UINT8 mode)
|
|
{
|
|
if (!index.isValid() || !index.parent().isValid())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
QModelIndex parent;
|
|
if (mode == CREATE_MODE_BEFORE || mode == CREATE_MODE_AFTER)
|
|
parent = index.parent();
|
|
else
|
|
parent = index;
|
|
|
|
// Determine type of item to insert
|
|
UINT8 type;
|
|
UINT32 headerSize;
|
|
if (model->type(parent) == Types::Volume) {
|
|
type = Types::File;
|
|
headerSize = sizeof(EFI_FFS_FILE_HEADER);
|
|
}
|
|
else if (model->type(parent) == Types::File) {
|
|
type = Types::Section;
|
|
const EFI_COMMON_SECTION_HEADER* commonHeader = (const EFI_COMMON_SECTION_HEADER*)object.constData();
|
|
headerSize = sizeOfSectionHeader(commonHeader);
|
|
}
|
|
else if (model->type(parent) == Types::Section) {
|
|
type = Types::Section;
|
|
const EFI_COMMON_SECTION_HEADER* commonHeader = (const EFI_COMMON_SECTION_HEADER*)object.constData();
|
|
headerSize = sizeOfSectionHeader(commonHeader);
|
|
}
|
|
else
|
|
return ERR_NOT_IMPLEMENTED;
|
|
|
|
if ((UINT32)object.size() < headerSize)
|
|
return ERR_BUFFER_TOO_SMALL;
|
|
|
|
return create(index, type, object.left(headerSize), object.right(object.size() - headerSize), mode, Actions::Insert);
|
|
}
|
|
|
|
UINT8 FfsEngine::replace(const QModelIndex & index, const QByteArray & object, const UINT8 mode)
|
|
{
|
|
if (!index.isValid())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
// Determine type of item to replace
|
|
UINT32 headerSize;
|
|
UINT8 result;
|
|
if (model->type(index) == Types::Region) {
|
|
if (mode == REPLACE_MODE_AS_IS)
|
|
result = create(index, Types::Region, QByteArray(), object, CREATE_MODE_AFTER, Actions::Replace);
|
|
else
|
|
return ERR_NOT_IMPLEMENTED;
|
|
}
|
|
else if (model->type(index) == Types::Padding) {
|
|
if (mode == REPLACE_MODE_AS_IS)
|
|
result = create(index, Types::Padding, QByteArray(), object, CREATE_MODE_AFTER, Actions::Replace);
|
|
else
|
|
return ERR_NOT_IMPLEMENTED;
|
|
}
|
|
else if (model->type(index) == Types::Volume) {
|
|
if (mode == REPLACE_MODE_AS_IS) {
|
|
result = create(index, Types::Volume, QByteArray(), object, CREATE_MODE_AFTER, Actions::Replace);
|
|
}
|
|
else if (mode == REPLACE_MODE_BODY) {
|
|
result = create(index, Types::Volume, model->header(index), object, CREATE_MODE_AFTER, Actions::Replace);
|
|
}
|
|
else
|
|
return ERR_NOT_IMPLEMENTED;
|
|
}
|
|
else if (model->type(index) == Types::File) {
|
|
if (mode == REPLACE_MODE_AS_IS) {
|
|
headerSize = sizeof(EFI_FFS_FILE_HEADER);
|
|
result = create(index, Types::File, object.left(headerSize), object.right(object.size() - headerSize), CREATE_MODE_AFTER, Actions::Replace);
|
|
}
|
|
else if (mode == REPLACE_MODE_BODY)
|
|
result = create(index, Types::File, model->header(index), object, CREATE_MODE_AFTER, Actions::Replace);
|
|
else
|
|
return ERR_NOT_IMPLEMENTED;
|
|
}
|
|
else if (model->type(index) == Types::Section) {
|
|
if (mode == REPLACE_MODE_AS_IS) {
|
|
const EFI_COMMON_SECTION_HEADER* commonHeader = (const EFI_COMMON_SECTION_HEADER*)object.constData();
|
|
headerSize = sizeOfSectionHeader(commonHeader);
|
|
result = create(index, Types::Section, object.left(headerSize), object.right(object.size() - headerSize), CREATE_MODE_AFTER, Actions::Replace);
|
|
}
|
|
else if (mode == REPLACE_MODE_BODY) {
|
|
result = create(index, Types::Section, model->header(index), object, CREATE_MODE_AFTER, Actions::Replace, model->compression(index));
|
|
}
|
|
else
|
|
return ERR_NOT_IMPLEMENTED;
|
|
}
|
|
else
|
|
return ERR_NOT_IMPLEMENTED;
|
|
|
|
// Check create result
|
|
if (result)
|
|
return result;
|
|
|
|
// Set remove action to replaced item
|
|
model->setAction(index, Actions::Remove);
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::extract(const QModelIndex & index, QByteArray & extracted, const UINT8 mode)
|
|
{
|
|
if (!index.isValid())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
if (mode == EXTRACT_MODE_AS_IS) {
|
|
// Extract as is, with header and body
|
|
extracted.clear();
|
|
extracted.append(model->header(index));
|
|
extracted.append(model->body(index));
|
|
if (model->type(index) == Types::File) {
|
|
UINT8 revision = 2;
|
|
QModelIndex parent = model->parent(index);
|
|
if (parent.isValid() && model->type(parent) == Types::Volume) {
|
|
const EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (const EFI_FIRMWARE_VOLUME_HEADER*)model->header(parent).constData();
|
|
revision = volumeHeader->Revision;
|
|
}
|
|
|
|
const EFI_FFS_FILE_HEADER* fileHeader = (const EFI_FFS_FILE_HEADER*)model->header(index).constData();
|
|
if (revision == 1 && fileHeader->Attributes & FFS_ATTRIB_TAIL_PRESENT) {
|
|
UINT8 ht = ~fileHeader->IntegrityCheck.Checksum.Header;
|
|
UINT8 ft = ~fileHeader->IntegrityCheck.Checksum.File;
|
|
extracted.append(ht).append(ft);
|
|
}
|
|
}
|
|
}
|
|
else if (mode == EXTRACT_MODE_BODY) {
|
|
// Extract without header and tail
|
|
extracted.clear();
|
|
// Special case of compressed bodies
|
|
if (model->type(index) == Types::Section) {
|
|
QByteArray decompressed;
|
|
UINT8 result;
|
|
if (model->subtype(index) == EFI_SECTION_COMPRESSION) {
|
|
const EFI_COMPRESSION_SECTION* compressedHeader = (const EFI_COMPRESSION_SECTION*)model->header(index).constData();
|
|
result = decompress(model->body(index), compressedHeader->CompressionType, decompressed);
|
|
if (result)
|
|
return result;
|
|
extracted.append(decompressed);
|
|
return ERR_SUCCESS;
|
|
}
|
|
else if (model->subtype(index) == EFI_SECTION_GUID_DEFINED) {
|
|
QByteArray decompressed;
|
|
// Check if section requires processing
|
|
const EFI_GUID_DEFINED_SECTION* guidDefinedSectionHeader = (const EFI_GUID_DEFINED_SECTION*)model->header(index).constData();
|
|
if (guidDefinedSectionHeader->Attributes & EFI_GUIDED_SECTION_PROCESSING_REQUIRED) {
|
|
// Try to decompress section body using both known compression algorithms
|
|
result = decompress(model->body(index), EFI_STANDARD_COMPRESSION, decompressed);
|
|
if (result) {
|
|
result = decompress(model->body(index), EFI_CUSTOMIZED_COMPRESSION, decompressed);
|
|
if (result)
|
|
return result;
|
|
}
|
|
extracted.append(decompressed);
|
|
return ERR_SUCCESS;
|
|
}
|
|
}
|
|
}
|
|
|
|
extracted.append(model->body(index));
|
|
}
|
|
else
|
|
return ERR_UNKNOWN_EXTRACT_MODE;
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::remove(const QModelIndex & index)
|
|
{
|
|
if (!index.isValid())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
// Set action for the item
|
|
model->setAction(index, Actions::Remove);
|
|
|
|
QModelIndex fileIndex;
|
|
|
|
if (model->type(index) == Types::Volume && model->rowCount(index) > 0)
|
|
fileIndex = index.child(0, 0);
|
|
else if (model->type(index) == Types::File)
|
|
fileIndex = index;
|
|
else if (model->type(index) == Types::Section)
|
|
fileIndex = model->findParentOfType(index, Types::File);
|
|
else
|
|
return ERR_SUCCESS;
|
|
|
|
// Rebase all PEI-files that follow
|
|
rebasePeiFiles(fileIndex);
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::rebuild(const QModelIndex & index)
|
|
{
|
|
if (!index.isValid())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
// Set action for the item
|
|
model->setAction(index, Actions::Rebuild);
|
|
|
|
QModelIndex fileIndex;
|
|
|
|
if (model->type(index) == Types::Volume && model->rowCount(index) > 0)
|
|
fileIndex = index.child(0, 0);
|
|
else if (model->type(index) == Types::File)
|
|
fileIndex = index;
|
|
else if (model->type(index) == Types::Section)
|
|
fileIndex = model->findParentOfType(index, Types::File);
|
|
else
|
|
return ERR_SUCCESS;
|
|
|
|
// Rebase all PEI-files that follow
|
|
rebasePeiFiles(fileIndex);
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::doNotRebuild(const QModelIndex & index)
|
|
{
|
|
if (!index.isValid())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
// Set action for the item
|
|
model->setAction(index, Actions::DoNotRebuild);
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
// Compression routines
|
|
UINT8 FfsEngine::decompress(const QByteArray & compressedData, const UINT8 compressionType, QByteArray & decompressedData, UINT8 * algorithm)
|
|
{
|
|
const UINT8* data;
|
|
UINT32 dataSize;
|
|
UINT8* decompressed;
|
|
UINT32 decompressedSize = 0;
|
|
UINT8* scratch;
|
|
UINT32 scratchSize = 0;
|
|
const EFI_TIANO_HEADER* header;
|
|
|
|
switch (compressionType)
|
|
{
|
|
case EFI_NOT_COMPRESSED:
|
|
decompressedData = compressedData;
|
|
if (algorithm)
|
|
*algorithm = COMPRESSION_ALGORITHM_NONE;
|
|
return ERR_SUCCESS;
|
|
case EFI_STANDARD_COMPRESSION:
|
|
// Get buffer sizes
|
|
data = (UINT8*)compressedData.data();
|
|
dataSize = compressedData.size();
|
|
|
|
// Check header to be valid
|
|
header = (const EFI_TIANO_HEADER*)data;
|
|
if (header->CompSize + sizeof(EFI_TIANO_HEADER) != dataSize)
|
|
return ERR_STANDARD_DECOMPRESSION_FAILED;
|
|
|
|
// Get info function is the same for both algorithms
|
|
if (ERR_SUCCESS != EfiTianoGetInfo(data, dataSize, &decompressedSize, &scratchSize))
|
|
return ERR_STANDARD_DECOMPRESSION_FAILED;
|
|
|
|
// Allocate memory
|
|
decompressed = new UINT8[decompressedSize];
|
|
scratch = new UINT8[scratchSize];
|
|
|
|
// Decompress section data
|
|
|
|
//TODO: separate EFI1.1 from Tiano another way
|
|
// Try Tiano decompression first
|
|
if (ERR_SUCCESS != TianoDecompress(data, dataSize, decompressed, decompressedSize, scratch, scratchSize)) {
|
|
// Not Tiano, try EFI 1.1
|
|
if (ERR_SUCCESS != EfiDecompress(data, dataSize, decompressed, decompressedSize, scratch, scratchSize)) {
|
|
if (algorithm)
|
|
*algorithm = COMPRESSION_ALGORITHM_UNKNOWN;
|
|
|
|
delete[] decompressed;
|
|
delete[] scratch;
|
|
return ERR_STANDARD_DECOMPRESSION_FAILED;
|
|
}
|
|
else if (algorithm)
|
|
*algorithm = COMPRESSION_ALGORITHM_EFI11;
|
|
}
|
|
else if (algorithm)
|
|
*algorithm = COMPRESSION_ALGORITHM_TIANO;
|
|
|
|
if (decompressedSize > INT32_MAX) {
|
|
delete[] decompressed;
|
|
delete[] scratch;
|
|
return ERR_STANDARD_DECOMPRESSION_FAILED;
|
|
}
|
|
|
|
decompressedData = QByteArray((const char*)decompressed, (int)decompressedSize);
|
|
|
|
delete[] decompressed;
|
|
delete[] scratch;
|
|
return ERR_SUCCESS;
|
|
case EFI_CUSTOMIZED_COMPRESSION:
|
|
// Get buffer sizes
|
|
data = (const UINT8*)compressedData.constData();
|
|
dataSize = compressedData.size();
|
|
|
|
// Get info
|
|
if (ERR_SUCCESS != LzmaGetInfo(data, dataSize, &decompressedSize))
|
|
return ERR_CUSTOMIZED_DECOMPRESSION_FAILED;
|
|
|
|
// Allocate memory
|
|
decompressed = new UINT8[decompressedSize];
|
|
|
|
// Decompress section data
|
|
if (ERR_SUCCESS != LzmaDecompress(data, dataSize, decompressed)) {
|
|
// Intel modified LZMA workaround
|
|
EFI_COMMON_SECTION_HEADER* shittySectionHeader;
|
|
UINT32 shittySectionSize;
|
|
// Shitty compressed section with a section header between COMPRESSED_SECTION_HEADER and LZMA_HEADER
|
|
// We must determine section header size by checking it's type before we can unpack that non-standard compressed section
|
|
shittySectionHeader = (EFI_COMMON_SECTION_HEADER*)data;
|
|
shittySectionSize = sizeOfSectionHeader(shittySectionHeader);
|
|
|
|
// Decompress section data once again
|
|
data += shittySectionSize;
|
|
|
|
// Get info again
|
|
if (ERR_SUCCESS != LzmaGetInfo(data, dataSize, &decompressedSize)) {
|
|
delete[] decompressed;
|
|
return ERR_CUSTOMIZED_DECOMPRESSION_FAILED;
|
|
}
|
|
|
|
// Decompress section data again
|
|
if (ERR_SUCCESS != LzmaDecompress(data, dataSize, decompressed)
|
|
|| decompressedSize > INT32_MAX) {
|
|
if (algorithm)
|
|
*algorithm = COMPRESSION_ALGORITHM_UNKNOWN;
|
|
delete[] decompressed;
|
|
return ERR_CUSTOMIZED_DECOMPRESSION_FAILED;
|
|
}
|
|
else {
|
|
if (algorithm)
|
|
*algorithm = COMPRESSION_ALGORITHM_IMLZMA;
|
|
decompressedData = QByteArray((const char*)decompressed, (int)decompressedSize);
|
|
}
|
|
}
|
|
else {
|
|
if (decompressedSize > INT32_MAX) {
|
|
delete[] decompressed;
|
|
return ERR_CUSTOMIZED_DECOMPRESSION_FAILED;
|
|
}
|
|
if (algorithm)
|
|
*algorithm = COMPRESSION_ALGORITHM_LZMA;
|
|
decompressedData = QByteArray((const char*)decompressed, (int)decompressedSize);
|
|
}
|
|
|
|
delete[] decompressed;
|
|
return ERR_SUCCESS;
|
|
default:
|
|
msg(tr("decompress: unknown compression type %1").arg(compressionType));
|
|
if (algorithm)
|
|
*algorithm = COMPRESSION_ALGORITHM_UNKNOWN;
|
|
return ERR_UNKNOWN_COMPRESSION_ALGORITHM;
|
|
}
|
|
}
|
|
|
|
UINT8 FfsEngine::compress(const QByteArray & data, const UINT8 algorithm, const UINT32 dictionarySize, QByteArray & compressedData)
|
|
{
|
|
UINT8* compressed;
|
|
|
|
switch (algorithm) {
|
|
case COMPRESSION_ALGORITHM_NONE:
|
|
{
|
|
compressedData = data;
|
|
return ERR_SUCCESS;
|
|
}
|
|
break;
|
|
case COMPRESSION_ALGORITHM_EFI11:
|
|
{
|
|
// Try legacy function first
|
|
UINT32 compressedSize = 0;
|
|
if (EfiCompressLegacy(data.constData(), data.size(), NULL, &compressedSize) != ERR_BUFFER_TOO_SMALL)
|
|
return ERR_STANDARD_COMPRESSION_FAILED;
|
|
compressed = new UINT8[compressedSize];
|
|
if (EfiCompressLegacy(data.constData(), data.size(), compressed, &compressedSize) != ERR_SUCCESS) {
|
|
delete[] compressed;
|
|
return ERR_STANDARD_COMPRESSION_FAILED;
|
|
}
|
|
compressedData = QByteArray((const char*)compressed, compressedSize);
|
|
|
|
// Check that compressed data can be decompressed normally
|
|
QByteArray decompressed;
|
|
if (decompress(compressedData, EFI_STANDARD_COMPRESSION, decompressed, NULL) == ERR_SUCCESS
|
|
&& decompressed == data) {
|
|
delete[] compressed;
|
|
return ERR_SUCCESS;
|
|
}
|
|
delete[] compressed;
|
|
|
|
// Legacy function failed, use current one
|
|
compressedSize = 0;
|
|
if (EfiCompress(data.constData(), data.size(), NULL, &compressedSize) != ERR_BUFFER_TOO_SMALL)
|
|
return ERR_STANDARD_COMPRESSION_FAILED;
|
|
compressed = new UINT8[compressedSize];
|
|
if (EfiCompress(data.constData(), data.size(), compressed, &compressedSize) != ERR_SUCCESS) {
|
|
delete[] compressed;
|
|
return ERR_STANDARD_COMPRESSION_FAILED;
|
|
}
|
|
compressedData = QByteArray((const char*)compressed, compressedSize);
|
|
|
|
// New functions will be trusted here, because another check will reduce performance
|
|
delete[] compressed;
|
|
return ERR_SUCCESS;
|
|
}
|
|
break;
|
|
case COMPRESSION_ALGORITHM_TIANO:
|
|
{
|
|
// Try legacy function first
|
|
UINT32 compressedSize = 0;
|
|
if (TianoCompressLegacy(data.constData(), data.size(), NULL, &compressedSize) != ERR_BUFFER_TOO_SMALL)
|
|
return ERR_STANDARD_COMPRESSION_FAILED;
|
|
compressed = new UINT8[compressedSize];
|
|
if (TianoCompressLegacy(data.constData(), data.size(), compressed, &compressedSize) != ERR_SUCCESS) {
|
|
delete[] compressed;
|
|
return ERR_STANDARD_COMPRESSION_FAILED;
|
|
}
|
|
compressedData = QByteArray((const char*)compressed, compressedSize);
|
|
|
|
// Check that compressed data can be decompressed normally
|
|
QByteArray decompressed;
|
|
if (decompress(compressedData, EFI_STANDARD_COMPRESSION, decompressed, NULL) == ERR_SUCCESS
|
|
&& decompressed == data) {
|
|
delete[] compressed;
|
|
return ERR_SUCCESS;
|
|
}
|
|
delete[] compressed;
|
|
|
|
// Legacy function failed, use current one
|
|
compressedSize = 0;
|
|
if (TianoCompress(data.constData(), data.size(), NULL, &compressedSize) != ERR_BUFFER_TOO_SMALL)
|
|
return ERR_STANDARD_COMPRESSION_FAILED;
|
|
compressed = new UINT8[compressedSize];
|
|
if (TianoCompress(data.constData(), data.size(), compressed, &compressedSize) != ERR_SUCCESS) {
|
|
delete[] compressed;
|
|
return ERR_STANDARD_COMPRESSION_FAILED;
|
|
}
|
|
compressedData = QByteArray((const char*)compressed, compressedSize);
|
|
|
|
// New functions will be trusted here, because another check will reduce performance
|
|
delete[] compressed;
|
|
return ERR_SUCCESS;
|
|
}
|
|
break;
|
|
case COMPRESSION_ALGORITHM_LZMA:
|
|
{
|
|
UINT32 compressedSize = 0;
|
|
if (LzmaCompress((const UINT8*)data.constData(), data.size(), NULL, &compressedSize, dictionarySize) != ERR_BUFFER_TOO_SMALL)
|
|
return ERR_CUSTOMIZED_COMPRESSION_FAILED;
|
|
compressed = new UINT8[compressedSize];
|
|
if (LzmaCompress((const UINT8*)data.constData(), data.size(), compressed, &compressedSize, dictionarySize) != ERR_SUCCESS) {
|
|
delete[] compressed;
|
|
return ERR_CUSTOMIZED_COMPRESSION_FAILED;
|
|
}
|
|
compressedData = QByteArray((const char*)compressed, compressedSize);
|
|
delete[] compressed;
|
|
return ERR_SUCCESS;
|
|
}
|
|
break;
|
|
case COMPRESSION_ALGORITHM_IMLZMA:
|
|
{
|
|
UINT32 compressedSize = 0;
|
|
QByteArray header = data.left(sizeof(EFI_COMMON_SECTION_HEADER));
|
|
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)header.constData();
|
|
UINT32 headerSize = sizeOfSectionHeader(sectionHeader);
|
|
header = data.left(headerSize);
|
|
QByteArray newData = data.mid(headerSize);
|
|
if (LzmaCompress((const UINT8*)newData.constData(), newData.size(), NULL, &compressedSize, dictionarySize) != ERR_BUFFER_TOO_SMALL)
|
|
return ERR_CUSTOMIZED_COMPRESSION_FAILED;
|
|
compressed = new UINT8[compressedSize];
|
|
if (LzmaCompress((const UINT8*)newData.constData(), newData.size(), compressed, &compressedSize, dictionarySize) != ERR_SUCCESS) {
|
|
delete[] compressed;
|
|
return ERR_CUSTOMIZED_COMPRESSION_FAILED;
|
|
}
|
|
compressedData = header.append(QByteArray((const char*)compressed, compressedSize));
|
|
delete[] compressed;
|
|
return ERR_SUCCESS;
|
|
}
|
|
break;
|
|
default:
|
|
msg(tr("compress: unknown compression algorithm %1").arg(algorithm));
|
|
return ERR_UNKNOWN_COMPRESSION_ALGORITHM;
|
|
}
|
|
}
|
|
|
|
// Construction routines
|
|
UINT8 FfsEngine::constructPadFile(const QByteArray &guid, const UINT32 size, const UINT8 revision, const UINT8 erasePolarity, QByteArray & pad)
|
|
{
|
|
if (size < sizeof(EFI_FFS_FILE_HEADER) || erasePolarity == ERASE_POLARITY_UNKNOWN)
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
if (size >= 0xFFFFFF) // TODO: large file support
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
pad = QByteArray(size - guid.size(), erasePolarity == ERASE_POLARITY_TRUE ? '\xFF' : '\x00');
|
|
pad.prepend(guid);
|
|
EFI_FFS_FILE_HEADER* header = (EFI_FFS_FILE_HEADER*)pad.data();
|
|
uint32ToUint24(size, header->Size);
|
|
header->Attributes = 0x00;
|
|
header->Type = EFI_FV_FILETYPE_PAD;
|
|
header->State = EFI_FILE_HEADER_CONSTRUCTION | EFI_FILE_HEADER_VALID | EFI_FILE_DATA_VALID;
|
|
// Invert state bits if erase polarity is true
|
|
if (erasePolarity == ERASE_POLARITY_TRUE)
|
|
header->State = ~header->State;
|
|
|
|
// Calculate header checksum
|
|
header->IntegrityCheck.Checksum.Header = 0;
|
|
header->IntegrityCheck.Checksum.File = 0;
|
|
header->IntegrityCheck.Checksum.Header = calculateChecksum8((const UINT8*)header, sizeof(EFI_FFS_FILE_HEADER) - 1);
|
|
|
|
// Set data checksum
|
|
if (revision == 1)
|
|
header->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM;
|
|
else
|
|
header->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM2;
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::reconstructIntelImage(const QModelIndex& index, QByteArray& reconstructed)
|
|
{
|
|
if (!index.isValid())
|
|
return ERR_SUCCESS;
|
|
|
|
UINT8 result;
|
|
|
|
// No action
|
|
if (model->action(index) == Actions::NoAction || model->action(index) == Actions::DoNotRebuild) {
|
|
reconstructed = model->header(index).append(model->body(index));
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
// Other supported actions
|
|
else if (model->action(index) == Actions::Rebuild) {
|
|
reconstructed.clear();
|
|
// First child will always be descriptor for this type of image
|
|
QByteArray descriptor;
|
|
result = reconstructRegion(index.child(0, 0), descriptor);
|
|
if (result)
|
|
return result;
|
|
reconstructed.append(descriptor);
|
|
|
|
// Check descriptor size
|
|
if ((UINT32)descriptor.size() < FLASH_DESCRIPTOR_SIZE) {
|
|
msg(tr("reconstructIntelImage: descriptor is smaller than minimum size of 1000h (4096) bytes"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
|
|
const FLASH_DESCRIPTOR_MAP* descriptorMap = (const FLASH_DESCRIPTOR_MAP*)(descriptor.constData() + sizeof(FLASH_DESCRIPTOR_HEADER));
|
|
// Check sanity of base values
|
|
if (descriptorMap->MasterBase > FLASH_DESCRIPTOR_MAX_BASE
|
|
|| descriptorMap->MasterBase == descriptorMap->RegionBase
|
|
|| descriptorMap->MasterBase == descriptorMap->ComponentBase) {
|
|
msg(tr("reconstructIntelImage: invalid descriptor master base %1h").hexarg2(descriptorMap->MasterBase, 2));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (descriptorMap->RegionBase > FLASH_DESCRIPTOR_MAX_BASE
|
|
|| descriptorMap->RegionBase == descriptorMap->ComponentBase) {
|
|
msg(tr("reconstructIntelImage: invalid descriptor region base %1h").hexarg2(descriptorMap->RegionBase, 2));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (descriptorMap->ComponentBase > FLASH_DESCRIPTOR_MAX_BASE) {
|
|
msg(tr("reconstructIntelImage: invalid descriptor component base %1h").hexarg2(descriptorMap->ComponentBase, 2));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
|
|
|
|
const FLASH_DESCRIPTOR_REGION_SECTION* regionSection = (const FLASH_DESCRIPTOR_REGION_SECTION*)calculateAddress8((const UINT8*)descriptor.constData(), descriptorMap->RegionBase);
|
|
QByteArray gbe;
|
|
UINT32 gbeBegin = calculateRegionOffset(regionSection->GbeBase);
|
|
UINT32 gbeEnd = gbeBegin + calculateRegionSize(regionSection->GbeBase, regionSection->GbeLimit);
|
|
|
|
QByteArray me;
|
|
UINT32 meBegin = calculateRegionOffset(regionSection->MeBase);
|
|
UINT32 meEnd = meBegin + calculateRegionSize(regionSection->MeBase, regionSection->MeLimit);
|
|
|
|
QByteArray bios;
|
|
UINT32 biosBegin = calculateRegionOffset(regionSection->BiosBase);
|
|
UINT32 biosEnd = calculateRegionSize(regionSection->BiosBase, regionSection->BiosLimit);
|
|
// Gigabyte descriptor map
|
|
if (biosEnd - biosBegin == (UINT32)(model->header(index).size() + model->body(index).size())) {
|
|
biosBegin = meEnd;
|
|
biosEnd = model->header(index).size() + model->body(index).size();
|
|
}
|
|
// Normal descriptor map
|
|
else
|
|
biosEnd += biosBegin;
|
|
|
|
QByteArray pdr;
|
|
UINT32 pdrBegin = calculateRegionOffset(regionSection->PdrBase);
|
|
UINT32 pdrEnd = pdrBegin + calculateRegionSize(regionSection->PdrBase, regionSection->PdrLimit);
|
|
|
|
QByteArray ec;
|
|
UINT32 ecBegin = 0;
|
|
UINT32 ecEnd = 0;
|
|
|
|
// Check for legacy descriptor version by getting hardcoded value of FlashParameters.ReadClockFrequency
|
|
UINT8 descriptorVersion = 2; // Skylake+ descriptor
|
|
const FLASH_DESCRIPTOR_COMPONENT_SECTION* componentSection = (const FLASH_DESCRIPTOR_COMPONENT_SECTION*)calculateAddress8((const UINT8*)descriptor.constData(), descriptorMap->ComponentBase);
|
|
if (componentSection->FlashParameters.ReadClockFrequency == FLASH_FREQUENCY_20MHZ) // Legacy descriptor
|
|
descriptorVersion = 1;
|
|
|
|
if (descriptorVersion == 2 && descriptorMap->DescriptorVersion != FLASH_DESCRIPTOR_VERSION_INVALID) {
|
|
// Warn about incompatible version descriptor in case it is different.
|
|
const FLASH_DESCRIPTOR_VERSION *version = (const FLASH_DESCRIPTOR_VERSION *)&descriptorMap->DescriptorVersion;
|
|
if (version->Major != FLASH_DESCRIPTOR_VERSION_MAJOR || version->Minor != FLASH_DESCRIPTOR_VERSION_MINOR)
|
|
msg(tr("reconstructIntelImage: discovered unexpected %1.%2 descriptor version, trying to continue...")
|
|
.arg(version->Major).arg(version->Minor));
|
|
}
|
|
|
|
if (descriptorVersion == 2) {
|
|
ecBegin = calculateRegionOffset(regionSection->EcBase);
|
|
ecEnd = ecBegin + calculateRegionSize(regionSection->EcBase, regionSection->EcLimit);
|
|
}
|
|
|
|
UINT32 offset = descriptor.size();
|
|
// Reconstruct other regions
|
|
char empty = '\xFF';
|
|
for (int i = 1; i < model->rowCount(index); i++) {
|
|
QByteArray region;
|
|
|
|
// Padding after the end of all Intel regions
|
|
if (model->type(index.child(i, 0)) == Types::Padding) {
|
|
region = model->body(index.child(i, 0));
|
|
reconstructed.append(region);
|
|
offset += region.size();
|
|
continue;
|
|
}
|
|
|
|
result = reconstructRegion(index.child(i, 0), region);
|
|
if (result)
|
|
return result;
|
|
|
|
switch (model->subtype(index.child(i, 0)))
|
|
{
|
|
case Subtypes::GbeRegion:
|
|
gbe = region;
|
|
if (gbeBegin > offset)
|
|
reconstructed.append(QByteArray(gbeBegin - offset, empty));
|
|
reconstructed.append(gbe);
|
|
offset = gbeEnd;
|
|
break;
|
|
case Subtypes::MeRegion:
|
|
me = region;
|
|
if (meBegin > offset)
|
|
reconstructed.append(QByteArray(meBegin - offset, empty));
|
|
reconstructed.append(me);
|
|
offset = meEnd;
|
|
break;
|
|
case Subtypes::BiosRegion:
|
|
bios = region;
|
|
if (biosBegin > offset)
|
|
reconstructed.append(QByteArray(biosBegin - offset, empty));
|
|
reconstructed.append(bios);
|
|
offset = biosEnd;
|
|
break;
|
|
case Subtypes::PdrRegion:
|
|
pdr = region;
|
|
if (pdrBegin > offset)
|
|
reconstructed.append(QByteArray(pdrBegin - offset, empty));
|
|
reconstructed.append(pdr);
|
|
offset = pdrEnd;
|
|
break;
|
|
case Subtypes::EcRegion:
|
|
if (descriptorVersion == 1) {
|
|
msg(tr("reconstructIntelImage: incompatible region type found"), index);
|
|
return ERR_INVALID_REGION;
|
|
}
|
|
ec = region;
|
|
if (ecBegin > offset)
|
|
reconstructed.append(QByteArray(ecBegin - offset, empty));
|
|
reconstructed.append(ec);
|
|
offset = ecEnd;
|
|
break;
|
|
default:
|
|
msg(tr("reconstructIntelImage: unknown region type found"), index);
|
|
return ERR_INVALID_REGION;
|
|
}
|
|
}
|
|
if ((UINT32)model->body(index).size() > offset)
|
|
reconstructed.append(QByteArray((UINT32)model->body(index).size() - offset, empty));
|
|
|
|
// Check size of reconstructed image, it must be same
|
|
if (reconstructed.size() > model->body(index).size()) {
|
|
msg(tr("reconstructIntelImage: reconstructed body size %1h (%2) is bigger then original %3h (%4) ")
|
|
.hexarg(reconstructed.size()).arg(reconstructed.size())
|
|
.hexarg(model->body(index).size()).arg(model->body(index).size()),
|
|
index);
|
|
return ERR_INVALID_PARAMETER;
|
|
}
|
|
else if (reconstructed.size() < model->body(index).size()) {
|
|
msg(tr("reconstructIntelImage: reconstructed body size %1h (%2) is smaller then original %3h (%4) ")
|
|
.hexarg(reconstructed.size()).arg(reconstructed.size())
|
|
.hexarg(model->body(index).size()).arg(model->body(index).size()),
|
|
index);
|
|
return ERR_INVALID_PARAMETER;
|
|
}
|
|
|
|
// Reconstruction successful
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
// All other actions are not supported
|
|
return ERR_NOT_IMPLEMENTED;
|
|
}
|
|
|
|
UINT8 FfsEngine::reconstructRegion(const QModelIndex& index, QByteArray& reconstructed, bool includeHeader)
|
|
{
|
|
if (!index.isValid())
|
|
return ERR_SUCCESS;
|
|
|
|
UINT8 result;
|
|
|
|
// No action
|
|
if (model->action(index) == Actions::NoAction || model->action(index) == Actions::DoNotRebuild) {
|
|
reconstructed = model->header(index).append(model->body(index));
|
|
return ERR_SUCCESS;
|
|
}
|
|
else if (model->action(index) == Actions::Remove) {
|
|
reconstructed.clear();
|
|
return ERR_SUCCESS;
|
|
}
|
|
else if (model->action(index) == Actions::Rebuild ||
|
|
model->action(index) == Actions::Replace) {
|
|
if (model->rowCount(index)) {
|
|
reconstructed.clear();
|
|
// Reconstruct children
|
|
for (int i = 0; i < model->rowCount(index); i++) {
|
|
QByteArray child;
|
|
result = reconstruct(index.child(i, 0), child);
|
|
if (result)
|
|
return result;
|
|
reconstructed.append(child);
|
|
}
|
|
}
|
|
// Use stored item body
|
|
else
|
|
reconstructed = model->body(index);
|
|
|
|
// Check size of reconstructed region, it must be same
|
|
if (reconstructed.size() > model->body(index).size()) {
|
|
msg(tr("reconstructRegion: reconstructed region size %1h (%2) is bigger then original %3h (%4)")
|
|
.hexarg(reconstructed.size()).arg(reconstructed.size())
|
|
.hexarg(model->body(index).size()).arg(model->body(index).size()),
|
|
index);
|
|
return ERR_INVALID_PARAMETER;
|
|
}
|
|
else if (reconstructed.size() < model->body(index).size()) {
|
|
msg(tr("reconstructRegion: reconstructed region size %1h (%2) is smaller then original %3h (%4)")
|
|
.hexarg(reconstructed.size()).arg(reconstructed.size())
|
|
.hexarg(model->body(index).size()).arg(model->body(index).size()),
|
|
index);
|
|
return ERR_INVALID_PARAMETER;
|
|
}
|
|
|
|
// Reconstruction successful
|
|
if (includeHeader)
|
|
reconstructed = model->header(index).append(reconstructed);
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
// All other actions are not supported
|
|
return ERR_NOT_IMPLEMENTED;
|
|
}
|
|
|
|
UINT8 FfsEngine::reconstructPadding(const QModelIndex& index, QByteArray& reconstructed)
|
|
{
|
|
if (!index.isValid())
|
|
return ERR_SUCCESS;
|
|
|
|
// No action
|
|
if (model->action(index) == Actions::NoAction || model->action(index) == Actions::DoNotRebuild) {
|
|
reconstructed = model->body(index);
|
|
return ERR_SUCCESS;
|
|
}
|
|
else if (model->action(index) == Actions::Remove) {
|
|
reconstructed.clear();
|
|
return ERR_SUCCESS;
|
|
}
|
|
else if (model->action(index) == Actions::Rebuild ||
|
|
model->action(index) == Actions::Replace) {
|
|
// Use stored item body
|
|
reconstructed = model->body(index);
|
|
|
|
// Check size of reconstructed region, it must be same
|
|
if (reconstructed.size() > model->body(index).size()) {
|
|
msg(tr("reconstructPadding: reconstructed padding size %1h (%2) is bigger then original %3h (%4)")
|
|
.hexarg(reconstructed.size()).arg(reconstructed.size())
|
|
.hexarg(model->body(index).size()).arg(model->body(index).size()),
|
|
index);
|
|
return ERR_INVALID_PARAMETER;
|
|
}
|
|
else if (reconstructed.size() < model->body(index).size()) {
|
|
msg(tr("reconstructPadding: reconstructed padding size %1h (%2) is smaller then original %3h (%4)")
|
|
.hexarg(reconstructed.size()).arg(reconstructed.size())
|
|
.hexarg(model->body(index).size()).arg(model->body(index).size()),
|
|
index);
|
|
return ERR_INVALID_PARAMETER;
|
|
}
|
|
|
|
// Reconstruction successful
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
// All other actions are not supported
|
|
return ERR_NOT_IMPLEMENTED;
|
|
}
|
|
|
|
UINT8 FfsEngine::reconstructVolume(const QModelIndex & index, QByteArray & reconstructed)
|
|
{
|
|
if (!index.isValid())
|
|
return ERR_SUCCESS;
|
|
|
|
UINT8 result;
|
|
|
|
// No action
|
|
if (model->action(index) == Actions::NoAction || model->action(index) == Actions::DoNotRebuild) {
|
|
reconstructed = model->header(index).append(model->body(index));
|
|
return ERR_SUCCESS;
|
|
}
|
|
else if (model->action(index) == Actions::Remove) {
|
|
reconstructed.clear();
|
|
return ERR_SUCCESS;
|
|
}
|
|
else if (model->action(index) == Actions::Replace ||
|
|
model->action(index) == Actions::Rebuild) {
|
|
QByteArray header = model->header(index);
|
|
QByteArray body = model->body(index);
|
|
EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (EFI_FIRMWARE_VOLUME_HEADER*)header.data();
|
|
|
|
// Check sanity of HeaderLength
|
|
if (volumeHeader->HeaderLength > header.size()) {
|
|
msg(tr("reconstructVolume: invalid volume header length, reconstruction is not possible"), index);
|
|
return ERR_INVALID_VOLUME;
|
|
}
|
|
|
|
// Recalculate volume header checksum
|
|
volumeHeader->Checksum = 0;
|
|
volumeHeader->Checksum = calculateChecksum16((const UINT16*)volumeHeader, volumeHeader->HeaderLength);
|
|
|
|
// Get volume size
|
|
UINT32 volumeSize = header.size() + body.size();
|
|
|
|
// Reconstruct volume body
|
|
UINT32 freeSpaceOffset = 0;
|
|
if (model->rowCount(index)) {
|
|
reconstructed.clear();
|
|
UINT8 polarity = volumeHeader->Attributes & EFI_FVB_ERASE_POLARITY ? ERASE_POLARITY_TRUE : ERASE_POLARITY_FALSE;
|
|
char empty = volumeHeader->Attributes & EFI_FVB_ERASE_POLARITY ? '\xFF' : '\x00';
|
|
|
|
// Calculate volume base for volume
|
|
UINT32 volumeBase;
|
|
QByteArray file;
|
|
bool baseFound = false;
|
|
|
|
// Search for VTF
|
|
for (int i = 0; i < model->rowCount(index); i++) {
|
|
file = model->header(index.child(i, 0));
|
|
// VTF found
|
|
if (file.left(sizeof(EFI_GUID)) == EFI_FFS_VOLUME_TOP_FILE_GUID) {
|
|
baseFound = true;
|
|
volumeBase = (UINT32)(0x100000000 - volumeSize);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Determine if volume is inside compressed item
|
|
if (!baseFound) {
|
|
// Iterate up to the root, checking for compression type to be other then none
|
|
for (QModelIndex parentIndex = index.parent(); model->type(parentIndex) != Types::Root; parentIndex = parentIndex.parent())
|
|
if (model->compression(parentIndex) != COMPRESSION_ALGORITHM_NONE) {
|
|
// No rebase needed for compressed PEI files
|
|
baseFound = true;
|
|
volumeBase = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Find volume base address using first PEI file in it
|
|
if (!baseFound) {
|
|
// Search for first PEI-file and use it as base source
|
|
UINT32 fileOffset = header.size();
|
|
for (int i = 0; i < model->rowCount(index); i++) {
|
|
if ((model->subtype(index.child(i, 0)) == EFI_FV_FILETYPE_PEI_CORE ||
|
|
model->subtype(index.child(i, 0)) == EFI_FV_FILETYPE_PEIM ||
|
|
model->subtype(index.child(i, 0)) == EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER)){
|
|
QModelIndex peiFile = index.child(i, 0);
|
|
UINT32 sectionOffset = sizeof(EFI_FFS_FILE_HEADER);
|
|
// BUGBUG: this parsing is bad and doesn't support large files, but it needs to be performed only for very old images with uncompressed DXE volumes, so whatever
|
|
// Search for PE32 or TE section
|
|
for (int j = 0; j < model->rowCount(peiFile); j++) {
|
|
if (model->subtype(peiFile.child(j, 0)) == EFI_SECTION_PE32 ||
|
|
model->subtype(peiFile.child(j, 0)) == EFI_SECTION_TE) {
|
|
QModelIndex image = peiFile.child(j, 0);
|
|
// Check for correct action
|
|
if (model->action(image) == Actions::Remove || model->action(image) == Actions::Insert)
|
|
continue;
|
|
// Calculate relative base address
|
|
UINT32 relbase = fileOffset + sectionOffset + model->header(image).size();
|
|
// Calculate offset of image relative to file base
|
|
UINT32 imagebase = 0;
|
|
result = getBase(model->body(image), imagebase); // imagebase passed by reference
|
|
if (!result) {
|
|
// Calculate volume base
|
|
volumeBase = imagebase - relbase;
|
|
baseFound = true;
|
|
goto out;
|
|
}
|
|
}
|
|
sectionOffset += model->header(peiFile.child(j, 0)).size() + model->body(peiFile.child(j, 0)).size();
|
|
sectionOffset = ALIGN4(sectionOffset);
|
|
}
|
|
}
|
|
fileOffset += model->header(index.child(i, 0)).size() + model->body(index.child(i, 0)).size();
|
|
fileOffset = ALIGN8(fileOffset);
|
|
}
|
|
}
|
|
out:
|
|
// Do not set volume base
|
|
if (!baseFound)
|
|
volumeBase = 0;
|
|
|
|
// Reconstruct files in volume
|
|
UINT32 offset = 0;
|
|
QByteArray padFileGuid = EFI_FFS_PAD_FILE_GUID;
|
|
QByteArray vtf;
|
|
QModelIndex vtfIndex;
|
|
UINT32 nonUefiDataOffset = 0;
|
|
QByteArray nonUefiData;
|
|
for (int i = 0; i < model->rowCount(index); i++) {
|
|
// Inside a volume can be files, free space or padding with non-UEFI data
|
|
if (model->type(index.child(i, 0)) == Types::File) { // Next item is a file
|
|
|
|
// Align to 8 byte boundary
|
|
UINT32 alignment = offset % 8;
|
|
if (alignment) {
|
|
alignment = 8 - alignment;
|
|
offset += alignment;
|
|
reconstructed.append(QByteArray(alignment, empty));
|
|
}
|
|
|
|
// Calculate file base
|
|
UINT32 fileBase = volumeBase ? volumeBase + header.size() + offset : 0;
|
|
|
|
// Reconstruct file
|
|
result = reconstructFile(index.child(i, 0), volumeHeader->Revision, polarity, fileBase, file);
|
|
if (result)
|
|
return result;
|
|
|
|
// Empty file
|
|
if (file.isEmpty())
|
|
continue;
|
|
|
|
EFI_FFS_FILE_HEADER* fileHeader = (EFI_FFS_FILE_HEADER*)file.data();
|
|
UINT32 fileHeaderSize = sizeof(EFI_FFS_FILE_HEADER);
|
|
if (volumeHeader->Revision > 1 && (fileHeader->Attributes & FFS_ATTRIB_LARGE_FILE))
|
|
fileHeaderSize = sizeof(EFI_FFS_FILE_HEADER2);
|
|
|
|
// Pad file
|
|
if (fileHeader->Type == EFI_FV_FILETYPE_PAD) {
|
|
padFileGuid = file.left(sizeof(EFI_GUID));
|
|
|
|
if (model->action(index.child(i, 0)) == Actions::DoNotRebuild) {
|
|
// User asked not to touch this file, do nothing here
|
|
}
|
|
// Parse non-empty pad file
|
|
else if (model->rowCount(index.child(i, 0))) {
|
|
// TODO: handle this special case
|
|
continue;
|
|
}
|
|
// Skip empty pad-file
|
|
else {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Volume Top File
|
|
if (file.left(sizeof(EFI_GUID)) == EFI_FFS_VOLUME_TOP_FILE_GUID) {
|
|
vtf = file;
|
|
vtfIndex = index.child(i, 0);
|
|
continue;
|
|
}
|
|
|
|
// Normal file
|
|
// Ensure correct alignment
|
|
UINT8 alignmentPower = ffsAlignmentTable[(fileHeader->Attributes & FFS_ATTRIB_DATA_ALIGNMENT) >> 3];
|
|
alignment = (UINT32)(1UL <<alignmentPower);
|
|
UINT32 alignmentBase = header.size() + offset + fileHeaderSize;
|
|
if (alignmentBase % alignment) {
|
|
// File will be unaligned if added as is, so we must add pad file before it
|
|
// Determine pad file size
|
|
UINT32 size = alignment - (alignmentBase % alignment);
|
|
// Required padding is smaller then minimal pad file size
|
|
while (size < sizeof(EFI_FFS_FILE_HEADER)) {
|
|
size += alignment;
|
|
}
|
|
// Construct pad file
|
|
QByteArray pad;
|
|
result = constructPadFile(padFileGuid, size, volumeHeader->Revision, polarity, pad);
|
|
if (result)
|
|
return result;
|
|
// Append constructed pad file to volume body
|
|
reconstructed.append(pad);
|
|
offset += size;
|
|
}
|
|
|
|
// Append current file to new volume body
|
|
reconstructed.append(file);
|
|
|
|
// Change current file offset
|
|
offset += file.size();
|
|
}
|
|
else if (model->type(index.child(i, 0)) == Types::FreeSpace) { //Next item is a free space
|
|
// Some data are located beyond free space
|
|
if (offset + (UINT32)model->body(index.child(i, 0)).size() < (UINT32)model->body(index).size()) {
|
|
// Get non-UEFI data and it's offset
|
|
nonUefiData = model->body(index.child(i + 1, 0));
|
|
nonUefiDataOffset = body.size() - nonUefiData.size();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check volume sanity
|
|
if (!vtf.isEmpty() && !nonUefiData.isEmpty()) {
|
|
msg(tr("reconstructVolume: both VTF and non-UEFI data found in the volume, reconstruction is not possible"), index);
|
|
return ERR_INVALID_VOLUME;
|
|
}
|
|
|
|
// Check for free space offset in ZeroVector
|
|
if (model->text(index).contains("AppleFSO ")) {
|
|
// Align current offset to 8 byte boundary
|
|
UINT32 alignment = offset % 8;
|
|
freeSpaceOffset = model->header(index).size() + offset;
|
|
if (alignment) {
|
|
alignment = 8 - alignment;
|
|
freeSpaceOffset += alignment;
|
|
}
|
|
}
|
|
|
|
// Insert VTF or non-UEFI data to it's correct place
|
|
if (!vtf.isEmpty()) { // VTF found
|
|
// Determine correct VTF offset
|
|
UINT32 vtfOffset = model->body(index).size() - vtf.size();
|
|
|
|
if (vtfOffset % 8) {
|
|
msg(tr("reconstructVolume: wrong size of the Volume Top File"), index);
|
|
return ERR_INVALID_FILE;
|
|
}
|
|
// Insert pad file to fill the gap
|
|
if (vtfOffset > offset) {
|
|
// Determine pad file size
|
|
UINT32 size = vtfOffset - offset;
|
|
// Construct pad file
|
|
QByteArray pad;
|
|
result = constructPadFile(padFileGuid, size, volumeHeader->Revision, polarity, pad);
|
|
if (result)
|
|
return result;
|
|
// Append constructed pad file to volume body
|
|
reconstructed.append(pad);
|
|
}
|
|
// No more space left in volume
|
|
else if (offset > vtfOffset) {
|
|
msg(tr("reconstructVolume: no space left to insert VTF, need %1h (%2) byte(s) more")
|
|
.hexarg(offset - vtfOffset).arg(offset - vtfOffset), index);
|
|
return ERR_INVALID_VOLUME;
|
|
}
|
|
|
|
// Calculate VTF base
|
|
UINT32 vtfBase = volumeBase ? volumeBase + vtfOffset : 0;
|
|
|
|
// Reconstruct VTF again
|
|
result = reconstructFile(vtfIndex, volumeHeader->Revision, polarity, vtfBase, vtf);
|
|
if (result)
|
|
return result;
|
|
|
|
// Patch PEI core entry point in VTF
|
|
result = patchVtf(vtf);
|
|
if (result)
|
|
return result;
|
|
|
|
// Append VTF
|
|
reconstructed.append(vtf);
|
|
}
|
|
else if (!nonUefiData.isEmpty()) { //Non-UEFI data found
|
|
// No space left
|
|
if (offset > nonUefiDataOffset) {
|
|
msg(tr("reconstructVolume: no space left to insert non-UEFI data, need %1h (%2) byte(s) more")
|
|
.hexarg(offset - nonUefiDataOffset).arg(offset - nonUefiDataOffset), index);
|
|
return ERR_INVALID_VOLUME;
|
|
}
|
|
// Append additional free space
|
|
else if (nonUefiDataOffset > offset) {
|
|
reconstructed.append(QByteArray(nonUefiDataOffset - offset, empty));
|
|
}
|
|
|
|
// Append VTF
|
|
reconstructed.append(nonUefiData);
|
|
}
|
|
else {
|
|
// Fill the rest of volume space with empty char
|
|
if (body.size() > reconstructed.size()) {
|
|
// Fill volume end with empty char
|
|
reconstructed.append(QByteArray(body.size() - reconstructed.size(), empty));
|
|
}
|
|
else if (body.size() < reconstructed.size()) {
|
|
// Check if volume can be grown
|
|
// Root volume can't be grown
|
|
UINT8 parentType = model->type(index.parent());
|
|
if (parentType != Types::File && parentType != Types::Section) {
|
|
msg(tr("reconstructVolume: root volume can't be grown"), index);
|
|
return ERR_INVALID_VOLUME;
|
|
}
|
|
|
|
// Grow volume to fit new body
|
|
UINT32 newSize = header.size() + reconstructed.size();
|
|
result = growVolume(header, volumeSize, newSize);
|
|
if (result)
|
|
return result;
|
|
|
|
// Fill volume end with empty char
|
|
reconstructed.append(QByteArray(newSize - header.size() - reconstructed.size(), empty));
|
|
volumeSize = newSize;
|
|
}
|
|
}
|
|
}
|
|
// Use current volume body
|
|
else {
|
|
reconstructed = model->body(index);
|
|
|
|
// BUGBUG: volume size may change during this operation for volumes withour files in them
|
|
// but such volumes are fairly rare
|
|
}
|
|
|
|
// Check new volume size
|
|
if ((UINT32)(header.size() + reconstructed.size()) != volumeSize) {
|
|
msg(tr("reconstructVolume: volume size can't be changed"), index);
|
|
return ERR_INVALID_VOLUME;
|
|
}
|
|
|
|
// Reconstruction successful
|
|
reconstructed = header.append(reconstructed);
|
|
|
|
// Recalculate CRC32 in ZeroVector, if needed
|
|
if (model->text(index).contains("AppleCRC32 ")) {
|
|
// Get current CRC32 value from volume header
|
|
const UINT32 currentCrc = *(const UINT32*)(reconstructed.constData() + 8);
|
|
// Calculate new value
|
|
UINT32 crc = crc32(0, (const UINT8*)reconstructed.constData() + volumeHeader->HeaderLength, reconstructed.size() - volumeHeader->HeaderLength);
|
|
// Update the value
|
|
if (currentCrc != crc) {
|
|
*(UINT32*)(reconstructed.data() + 8) = crc;
|
|
|
|
// Recalculate header checksum
|
|
volumeHeader = (EFI_FIRMWARE_VOLUME_HEADER*)reconstructed.data();
|
|
volumeHeader->Checksum = 0;
|
|
volumeHeader->Checksum = calculateChecksum16((const UINT16*)volumeHeader, volumeHeader->HeaderLength);
|
|
}
|
|
}
|
|
|
|
// Store new free space offset, if needed
|
|
if (model->text(index).contains("AppleFSO ")) {
|
|
// Get current CRC32 value from volume header
|
|
const UINT32 currentFso = *(const UINT32*)(reconstructed.constData() + 12);
|
|
// Update the value
|
|
if (freeSpaceOffset != 0 && currentFso != freeSpaceOffset) {
|
|
*(UINT32*)(reconstructed.data() + 12) = freeSpaceOffset;
|
|
|
|
// Recalculate header checksum
|
|
volumeHeader = (EFI_FIRMWARE_VOLUME_HEADER*)reconstructed.data();
|
|
volumeHeader->Checksum = 0;
|
|
volumeHeader->Checksum = calculateChecksum16((const UINT16*)volumeHeader, volumeHeader->HeaderLength);
|
|
}
|
|
}
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
// All other actions are not supported
|
|
return ERR_NOT_IMPLEMENTED;
|
|
}
|
|
|
|
UINT8 FfsEngine::reconstructFile(const QModelIndex& index, const UINT8 revision, const UINT8 erasePolarity, const UINT32 base, QByteArray& reconstructed)
|
|
{
|
|
if (!index.isValid())
|
|
return ERR_SUCCESS;
|
|
|
|
UINT8 result;
|
|
|
|
// No action
|
|
if (model->action(index) == Actions::NoAction || model->action(index) == Actions::DoNotRebuild) {
|
|
reconstructed = model->header(index).append(model->body(index));
|
|
const EFI_FFS_FILE_HEADER* fileHeader = (const EFI_FFS_FILE_HEADER*)model->header(index).constData();
|
|
// Append tail, if needed
|
|
if (fileHeader->Attributes & FFS_ATTRIB_TAIL_PRESENT) {
|
|
UINT8 ht = ~fileHeader->IntegrityCheck.Checksum.Header;
|
|
UINT8 ft = ~fileHeader->IntegrityCheck.Checksum.File;
|
|
reconstructed.append(ht).append(ft);
|
|
}
|
|
return ERR_SUCCESS;
|
|
}
|
|
else if (model->action(index) == Actions::Remove) {
|
|
reconstructed.clear();
|
|
return ERR_SUCCESS;
|
|
}
|
|
else if (model->action(index) == Actions::Insert ||
|
|
model->action(index) == Actions::Replace ||
|
|
model->action(index) == Actions::Rebuild) {
|
|
QByteArray header = model->header(index);
|
|
EFI_FFS_FILE_HEADER* fileHeader = (EFI_FFS_FILE_HEADER*)header.data();
|
|
|
|
// Check erase polarity
|
|
if (erasePolarity == ERASE_POLARITY_UNKNOWN) {
|
|
msg(tr("reconstructFile: unknown erase polarity"), index);
|
|
return ERR_INVALID_PARAMETER;
|
|
}
|
|
|
|
// Check file state
|
|
// Check top reserved bit of file state to determine it's original erase polarity
|
|
UINT8 state = fileHeader->State;
|
|
if (state & EFI_FILE_ERASE_POLARITY)
|
|
state = ~state;
|
|
|
|
// Order of this checks must be preserved
|
|
// Check file to have valid state, or delete it otherwise
|
|
if (state & EFI_FILE_HEADER_INVALID) {
|
|
// File marked to have invalid header and must be deleted
|
|
// Do not add anything to queue
|
|
msg(tr("reconstructFile: file is HEADER_INVALID state, and will be removed from reconstructed image"), index);
|
|
return ERR_SUCCESS;
|
|
}
|
|
else if (state & EFI_FILE_DELETED) {
|
|
// File marked to have been deleted form and must be deleted
|
|
// Do not add anything to queue
|
|
msg(tr("reconstructFile: file is in DELETED state, and will be removed from reconstructed image"), index);
|
|
return ERR_SUCCESS;
|
|
}
|
|
else if (state & EFI_FILE_MARKED_FOR_UPDATE) {
|
|
// File is marked for update, the mark must be removed
|
|
msg(tr("reconstructFile: file's MARKED_FOR_UPDATE state cleared"), index);
|
|
}
|
|
else if (state & EFI_FILE_DATA_VALID) {
|
|
// File is in good condition, reconstruct it
|
|
}
|
|
else if (state & EFI_FILE_HEADER_VALID) {
|
|
// Header is valid, but data is not, so file must be deleted
|
|
msg(tr("reconstructFile: file is in HEADER_VALID (but not in DATA_VALID) state, and will be removed from reconstructed image"), index);
|
|
return ERR_SUCCESS;
|
|
}
|
|
else if (state & EFI_FILE_HEADER_CONSTRUCTION) {
|
|
// Header construction not finished, so file must be deleted
|
|
msg(tr("reconstructFile: file is in HEADER_CONSTRUCTION (but not in DATA_VALID) state, and will be removed from reconstructed image"), index);
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
// Reconstruct file body
|
|
if (model->rowCount(index)) {
|
|
reconstructed.clear();
|
|
// Construct new file body
|
|
// File contains raw data, must be parsed as region without header
|
|
if (model->subtype(index) == EFI_FV_FILETYPE_ALL || model->subtype(index) == EFI_FV_FILETYPE_RAW) {
|
|
result = reconstructRegion(index, reconstructed, false);
|
|
if (result)
|
|
return result;
|
|
}
|
|
// File contains sections
|
|
else {
|
|
UINT32 offset = 0;
|
|
UINT32 headerSize = sizeof(EFI_FFS_FILE_HEADER);
|
|
if (revision > 1 && (fileHeader->Attributes & FFS_ATTRIB_LARGE_FILE)) {
|
|
headerSize = sizeof(EFI_FFS_FILE_HEADER2);
|
|
}
|
|
|
|
for (int i = 0; i < model->rowCount(index); i++) {
|
|
// Align to 4 byte boundary
|
|
UINT8 alignment = offset % 4;
|
|
if (alignment) {
|
|
alignment = 4 - alignment;
|
|
offset += alignment;
|
|
reconstructed.append(QByteArray(alignment, '\x00'));
|
|
}
|
|
|
|
// Calculate section base
|
|
UINT32 sectionBase = base ? base + headerSize + offset : 0;
|
|
UINT8 alignmentPower = ffsAlignmentTable[(fileHeader->Attributes & FFS_ATTRIB_DATA_ALIGNMENT) >> 3];
|
|
UINT32 fileAlignment = (UINT32)(1UL << alignmentPower);
|
|
UINT32 alignmentBase = base + headerSize;
|
|
if (alignmentBase % fileAlignment) {
|
|
// File will be unaligned if added as is, so we must add pad file before it
|
|
// Determine pad file size
|
|
UINT32 size = fileAlignment - (alignmentBase % fileAlignment);
|
|
// Required padding is smaller then minimal pad file size
|
|
while (size < sizeof(EFI_FFS_FILE_HEADER)) {
|
|
size += fileAlignment;
|
|
}
|
|
// Adjust file base to incorporate pad file that will be added to align it
|
|
sectionBase += size;
|
|
}
|
|
|
|
// Reconstruct section
|
|
QByteArray section;
|
|
result = reconstructSection(index.child(i, 0), sectionBase, section);
|
|
if (result)
|
|
return result;
|
|
|
|
// Check for empty section
|
|
if (section.isEmpty())
|
|
continue;
|
|
|
|
// Append current section to new file body
|
|
reconstructed.append(section);
|
|
|
|
// Change current file offset
|
|
offset += section.size();
|
|
}
|
|
}
|
|
}
|
|
// Use current file body
|
|
else
|
|
reconstructed = model->body(index);
|
|
|
|
// Correct file size
|
|
UINT8 tailSize = (revision == 1 && (fileHeader->Attributes & FFS_ATTRIB_TAIL_PRESENT)) ? sizeof(UINT16) : 0;
|
|
if (revision > 1 && (fileHeader->Attributes & FFS_ATTRIB_LARGE_FILE)) {
|
|
uint32ToUint24(EFI_SECTION2_IS_USED, fileHeader->Size);
|
|
EFI_FFS_FILE_HEADER2* fileHeader2 = (EFI_FFS_FILE_HEADER2*)fileHeader;
|
|
fileHeader2->ExtendedSize = sizeof(EFI_FFS_FILE_HEADER2) + reconstructed.size() + tailSize;
|
|
}
|
|
else {
|
|
if (sizeof(EFI_FFS_FILE_HEADER) + reconstructed.size() + tailSize > 0xFFFFFF) {
|
|
msg(tr("reconstructFile: resulting file size is too big"), index);
|
|
return ERR_INVALID_FILE;
|
|
}
|
|
uint32ToUint24(sizeof(EFI_FFS_FILE_HEADER) + reconstructed.size() + tailSize, fileHeader->Size);
|
|
}
|
|
|
|
// Recalculate header checksum
|
|
fileHeader->IntegrityCheck.Checksum.Header = 0;
|
|
fileHeader->IntegrityCheck.Checksum.File = 0;
|
|
fileHeader->IntegrityCheck.Checksum.Header = 0x100 - (calculateSum8((const UINT8*)header.constData(), header.size()) - fileHeader->State);
|
|
|
|
// Recalculate data checksum, if needed
|
|
if (fileHeader->Attributes & FFS_ATTRIB_CHECKSUM) {
|
|
fileHeader->IntegrityCheck.Checksum.File = calculateChecksum8((const UINT8*)reconstructed.constData(), reconstructed.size());
|
|
}
|
|
else if (revision == 1)
|
|
fileHeader->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM;
|
|
else
|
|
fileHeader->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM2;
|
|
|
|
// Append tail, if needed
|
|
if (revision == 1 && fileHeader->Attributes & FFS_ATTRIB_TAIL_PRESENT) {
|
|
UINT8 ht = ~fileHeader->IntegrityCheck.Checksum.Header;
|
|
UINT8 ft = ~fileHeader->IntegrityCheck.Checksum.File;
|
|
reconstructed.append(ht).append(ft);
|
|
}
|
|
|
|
// Set file state
|
|
state = EFI_FILE_DATA_VALID | EFI_FILE_HEADER_VALID | EFI_FILE_HEADER_CONSTRUCTION;
|
|
if (erasePolarity == ERASE_POLARITY_TRUE)
|
|
state = ~state;
|
|
fileHeader->State = state;
|
|
|
|
// Reconstruction successful
|
|
reconstructed = header.append(reconstructed);
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
// All other actions are not supported
|
|
return ERR_NOT_IMPLEMENTED;
|
|
}
|
|
|
|
UINT8 FfsEngine::reconstructSection(const QModelIndex& index, const UINT32 base, QByteArray& reconstructed)
|
|
{
|
|
if (!index.isValid())
|
|
return ERR_SUCCESS;
|
|
|
|
UINT8 result;
|
|
|
|
// No action
|
|
if (model->action(index) == Actions::NoAction || model->action(index) == Actions::DoNotRebuild) {
|
|
reconstructed = model->header(index).append(model->body(index));
|
|
return ERR_SUCCESS;
|
|
}
|
|
else if (model->action(index) == Actions::Remove) {
|
|
reconstructed.clear();
|
|
return ERR_SUCCESS;
|
|
}
|
|
else if (model->action(index) == Actions::Insert ||
|
|
model->action(index) == Actions::Replace ||
|
|
model->action(index) == Actions::Rebuild ||
|
|
model->action(index) == Actions::Rebase) {
|
|
QByteArray header = model->header(index);
|
|
EFI_COMMON_SECTION_HEADER* commonHeader = (EFI_COMMON_SECTION_HEADER*)header.data();
|
|
bool extended = false;
|
|
if (uint24ToUint32(commonHeader->Size) == 0xFFFFFF) {
|
|
extended = true;
|
|
}
|
|
|
|
// Reconstruct section with children
|
|
if (model->rowCount(index)) {
|
|
reconstructed.clear();
|
|
// Construct new section body
|
|
UINT32 offset = 0;
|
|
|
|
// Reconstruct section body
|
|
for (int i = 0; i < model->rowCount(index); i++) {
|
|
// Align to 4 byte boundary
|
|
UINT8 alignment = offset % 4;
|
|
if (alignment) {
|
|
alignment = 4 - alignment;
|
|
offset += alignment;
|
|
reconstructed.append(QByteArray(alignment, '\x00'));
|
|
}
|
|
|
|
// Reconstruct subsections
|
|
QByteArray section;
|
|
result = reconstruct(index.child(i, 0), section);
|
|
if (result)
|
|
return result;
|
|
|
|
// Check for empty queue
|
|
if (section.isEmpty())
|
|
continue;
|
|
|
|
// Append current subsection to new section body
|
|
reconstructed.append(section);
|
|
|
|
// Change current file offset
|
|
offset += section.size();
|
|
}
|
|
|
|
// Only this 2 sections can have compressed body
|
|
if (model->subtype(index) == EFI_SECTION_COMPRESSION) {
|
|
EFI_COMPRESSION_SECTION* compessionHeader = (EFI_COMPRESSION_SECTION*)header.data();
|
|
// Set new uncompressed size
|
|
compessionHeader->UncompressedLength = reconstructed.size();
|
|
|
|
// Correct compression type
|
|
if (model->compression(index) == COMPRESSION_ALGORITHM_NONE) {
|
|
compessionHeader->CompressionType = EFI_NOT_COMPRESSED;
|
|
}
|
|
else if (model->compression(index) == COMPRESSION_ALGORITHM_EFI11 || model->compression(index) == COMPRESSION_ALGORITHM_TIANO) {
|
|
compessionHeader->CompressionType = EFI_STANDARD_COMPRESSION;
|
|
}
|
|
else if (model->compression(index) == COMPRESSION_ALGORITHM_LZMA) {
|
|
compessionHeader->CompressionType = EFI_CUSTOMIZED_COMPRESSION;
|
|
}
|
|
else if (model->compression(index) == COMPRESSION_ALGORITHM_IMLZMA) {
|
|
compessionHeader->CompressionType = EFI_CUSTOMIZED_COMPRESSION;
|
|
}
|
|
else
|
|
return ERR_UNKNOWN_COMPRESSION_ALGORITHM;
|
|
|
|
// Compress new section body
|
|
QByteArray compressed;
|
|
result = compress(reconstructed, model->compression(index), model->dictionarySize(index), compressed);
|
|
if (result)
|
|
return result;
|
|
|
|
// Replace new section body
|
|
reconstructed = compressed;
|
|
}
|
|
else if (model->subtype(index) == EFI_SECTION_GUID_DEFINED) {
|
|
EFI_GUID_DEFINED_SECTION* guidDefinedHeader = (EFI_GUID_DEFINED_SECTION*)header.data();
|
|
// Convert x86
|
|
if (QByteArray((const char*)&guidDefinedHeader->SectionDefinitionGuid, sizeof(EFI_GUID)) == EFI_GUIDED_SECTION_LZMAF86) {
|
|
result = x86Convert(reconstructed, 1);
|
|
if (result)
|
|
return result;
|
|
}
|
|
// Compress new section body
|
|
QByteArray compressed;
|
|
result = compress(reconstructed, model->compression(index), model->dictionarySize(index), compressed);
|
|
if (result)
|
|
return result;
|
|
// Check for authentication status valid attribute
|
|
if (guidDefinedHeader->Attributes & EFI_GUIDED_SECTION_AUTH_STATUS_VALID) {
|
|
// CRC32 section
|
|
if (QByteArray((const char*)&guidDefinedHeader->SectionDefinitionGuid, sizeof(EFI_GUID)) == EFI_GUIDED_SECTION_CRC32) {
|
|
// Check header size
|
|
if ((UINT32)header.size() != sizeof(EFI_GUID_DEFINED_SECTION) + sizeof(UINT32)) {
|
|
msg(tr("reconstructSection: invalid CRC32 section size %1h (%2)")
|
|
.hexarg(header.size()).arg(header.size()), index);
|
|
return ERR_INVALID_SECTION;
|
|
}
|
|
// Calculate CRC32 of section data
|
|
UINT32 crc = crc32(0, (const UINT8*)compressed.constData(), compressed.size());
|
|
// Store new CRC32
|
|
*(UINT32*)(header.data() + sizeof(EFI_GUID_DEFINED_SECTION)) = crc;
|
|
}
|
|
else {
|
|
msg(tr("reconstructSection: GUID defined section authentication info can become invalid")
|
|
.arg(guidToQString(guidDefinedHeader->SectionDefinitionGuid)), index);
|
|
}
|
|
}
|
|
// Check for Intel signed section
|
|
if (guidDefinedHeader->Attributes & EFI_GUIDED_SECTION_PROCESSING_REQUIRED
|
|
&& QByteArray((const char*)&guidDefinedHeader->SectionDefinitionGuid, sizeof(EFI_GUID)) == EFI_FIRMWARE_CONTENTS_SIGNED_GUID) {
|
|
msg(tr("reconstructSection: GUID defined section signature can become invalid")
|
|
.arg(guidToQString(guidDefinedHeader->SectionDefinitionGuid)), index);
|
|
}
|
|
// Replace new section body
|
|
reconstructed = compressed;
|
|
}
|
|
else if (model->compression(index) != COMPRESSION_ALGORITHM_NONE) {
|
|
msg(tr("reconstructSection: incorrectly required compression for section of type %1")
|
|
.arg(model->subtype(index)), index);
|
|
return ERR_INVALID_SECTION;
|
|
}
|
|
}
|
|
// Leaf section
|
|
else {
|
|
reconstructed = model->body(index);
|
|
}
|
|
|
|
// Correct section size
|
|
if (extended) {
|
|
EFI_COMMON_SECTION_HEADER2 * extHeader = (EFI_COMMON_SECTION_HEADER2*)commonHeader;
|
|
extHeader->ExtendedSize = header.size() + reconstructed.size();
|
|
uint32ToUint24(0xFFFFFF, commonHeader->Size);
|
|
}
|
|
else {
|
|
uint32ToUint24(header.size() + reconstructed.size(), commonHeader->Size);
|
|
}
|
|
|
|
// Rebase PE32 or TE image, if needed
|
|
if ((model->subtype(index) == EFI_SECTION_PE32 || model->subtype(index) == EFI_SECTION_TE) &&
|
|
(model->subtype(index.parent()) == EFI_FV_FILETYPE_PEI_CORE ||
|
|
model->subtype(index.parent()) == EFI_FV_FILETYPE_PEIM ||
|
|
model->subtype(index.parent()) == EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER)) {
|
|
UINT16 teFixup = 0;
|
|
|
|
// Most EFI images today include teFixup in ImageBase value,
|
|
// which doesn't follow the UEFI spec, but is so popular that
|
|
// only a few images out of thousands are different
|
|
|
|
// There are some heuristics possible here to detect if an entry point is calculated correctly
|
|
// or needs a proper fixup, but new_engine already have them and it's better to work on proper
|
|
// builder for it than trying to fix this mess
|
|
|
|
//if (model->subtype(index) == EFI_SECTION_TE) {
|
|
// const EFI_IMAGE_TE_HEADER* teHeader = (const EFI_IMAGE_TE_HEADER*)model->body(index).constData();
|
|
// teFixup = teHeader->StrippedSize - sizeof(EFI_IMAGE_TE_HEADER);
|
|
//
|
|
|
|
if (base) {
|
|
result = rebase(reconstructed, base - teFixup + header.size(), index);
|
|
if (result) {
|
|
msg(tr("reconstructSection: executable section rebase failed"), index);
|
|
return result;
|
|
}
|
|
|
|
// Special case of PEI Core rebase
|
|
if (model->subtype(index.parent()) == EFI_FV_FILETYPE_PEI_CORE) {
|
|
result = getEntryPoint(reconstructed, newPeiCoreEntryPoint);
|
|
if (result)
|
|
msg(tr("reconstructSection: can't get entry point of PEI core"), index);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Reconstruction successful
|
|
reconstructed = header.append(reconstructed);
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
// All other actions are not supported
|
|
return ERR_NOT_IMPLEMENTED;
|
|
}
|
|
|
|
UINT8 FfsEngine::reconstruct(const QModelIndex &index, QByteArray& reconstructed)
|
|
{
|
|
if (!index.isValid())
|
|
return ERR_SUCCESS;
|
|
|
|
UINT8 result;
|
|
|
|
switch (model->type(index)) {
|
|
case Types::Image:
|
|
if (model->subtype(index) == Subtypes::IntelImage) {
|
|
result = reconstructIntelImage(index, reconstructed);
|
|
if (result)
|
|
return result;
|
|
}
|
|
else {
|
|
//Other images types can be reconstructed like regions
|
|
result = reconstructRegion(index, reconstructed);
|
|
if (result)
|
|
return result;
|
|
}
|
|
break;
|
|
|
|
case Types::Capsule:
|
|
// Capsules can be reconstructed like regions
|
|
result = reconstructRegion(index, reconstructed);
|
|
if (result)
|
|
return result;
|
|
break;
|
|
|
|
case Types::Region:
|
|
result = reconstructRegion(index, reconstructed);
|
|
if (result)
|
|
return result;
|
|
break;
|
|
|
|
case Types::Padding:
|
|
result = reconstructPadding(index, reconstructed);
|
|
if (result)
|
|
return result;
|
|
break;
|
|
|
|
case Types::Volume:
|
|
result = reconstructVolume(index, reconstructed);
|
|
if (result)
|
|
return result;
|
|
break;
|
|
|
|
case Types::File: //Must not be called that way
|
|
msg(tr("reconstruct: call of generic function is not supported for files").arg(model->type(index)), index);
|
|
return ERR_GENERIC_CALL_NOT_SUPPORTED;
|
|
break;
|
|
|
|
case Types::Section:
|
|
result = reconstructSection(index, 0, reconstructed);
|
|
if (result)
|
|
return result;
|
|
break;
|
|
default:
|
|
msg(tr("reconstruct: unknown item type %1").arg(model->type(index)), index);
|
|
return ERR_UNKNOWN_ITEM_TYPE;
|
|
}
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::growVolume(QByteArray & header, const UINT32 size, UINT32 & newSize)
|
|
{
|
|
// Check sanity
|
|
if ((UINT32)header.size() < sizeof(EFI_FIRMWARE_VOLUME_HEADER))
|
|
return ERR_INVALID_VOLUME;
|
|
|
|
// Adjust new size to be representable by current FvBlockMap
|
|
EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (EFI_FIRMWARE_VOLUME_HEADER*)header.data();
|
|
EFI_FV_BLOCK_MAP_ENTRY* blockMap = (EFI_FV_BLOCK_MAP_ENTRY*)(header.data() + sizeof(EFI_FIRMWARE_VOLUME_HEADER));
|
|
|
|
// Get block map size
|
|
UINT32 blockMapSize = volumeHeader->HeaderLength - sizeof(EFI_FIRMWARE_VOLUME_HEADER);
|
|
if (blockMapSize % sizeof(EFI_FV_BLOCK_MAP_ENTRY))
|
|
return ERR_INVALID_VOLUME;
|
|
UINT32 blockMapCount = blockMapSize / sizeof(EFI_FV_BLOCK_MAP_ENTRY);
|
|
|
|
// Check blockMap validity
|
|
if (blockMap[blockMapCount - 1].NumBlocks != 0 || blockMap[blockMapCount - 1].Length != 0)
|
|
return ERR_INVALID_VOLUME;
|
|
|
|
// Case of complex blockMap
|
|
if (blockMapCount > 2)
|
|
return ERR_COMPLEX_BLOCK_MAP;
|
|
|
|
// Calculate new size
|
|
if (newSize <= size)
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
newSize += blockMap[0].Length - newSize % blockMap[0].Length;
|
|
|
|
// Recalculate number of blocks
|
|
blockMap[0].NumBlocks = newSize / blockMap[0].Length;
|
|
|
|
// Set new volume size
|
|
volumeHeader->FvLength = 0;
|
|
for (UINT8 i = 0; i < blockMapCount; i++) {
|
|
volumeHeader->FvLength += blockMap[i].NumBlocks * blockMap[i].Length;
|
|
}
|
|
|
|
// Recalculate volume header checksum
|
|
volumeHeader->Checksum = 0;
|
|
volumeHeader->Checksum = calculateChecksum16((const UINT16*)volumeHeader, volumeHeader->HeaderLength);
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::reconstructImageFile(QByteArray & reconstructed)
|
|
{
|
|
return reconstruct(model->index(0, 0), reconstructed);
|
|
}
|
|
|
|
// Search routines
|
|
UINT8 FfsEngine::findHexPattern(const QModelIndex & index, const QByteArray & hexPattern, const UINT8 mode)
|
|
{
|
|
if (!index.isValid())
|
|
return ERR_SUCCESS;
|
|
|
|
if (hexPattern.isEmpty())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
// Check for "all substrings" pattern
|
|
if (hexPattern.count('.') == hexPattern.length())
|
|
return ERR_SUCCESS;
|
|
|
|
bool hasChildren = (model->rowCount(index) > 0);
|
|
for (int i = 0; i < model->rowCount(index); i++) {
|
|
findHexPattern(index.child(i, index.column()), hexPattern, mode);
|
|
}
|
|
|
|
QByteArray data;
|
|
if (hasChildren) {
|
|
if (mode != SEARCH_MODE_BODY)
|
|
data = model->header(index);
|
|
}
|
|
else {
|
|
if (mode == SEARCH_MODE_HEADER)
|
|
data.append(model->header(index));
|
|
else if (mode == SEARCH_MODE_BODY)
|
|
data.append(model->body(index));
|
|
else
|
|
data.append(model->header(index)).append(model->body(index));
|
|
}
|
|
|
|
QString hexBody = QString(data.toHex());
|
|
QRegExp regexp = QRegExp(QString(hexPattern), Qt::CaseInsensitive);
|
|
INT32 offset = regexp.indexIn(hexBody);
|
|
while (offset >= 0) {
|
|
if (offset % 2 == 0) {
|
|
msg(tr("Hex pattern \"%1\" found as \"%2\" in %3 at %4-offset %5h")
|
|
.arg(QString(hexPattern))
|
|
.arg(hexBody.mid(offset, hexPattern.length()).toUpper())
|
|
.arg(model->name(index))
|
|
.arg(mode == SEARCH_MODE_BODY ? tr("body") : tr("header"))
|
|
.hexarg(offset / 2),
|
|
index);
|
|
}
|
|
offset = regexp.indexIn(hexBody, offset + 1);
|
|
}
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::findGuidPattern(const QModelIndex & index, const QByteArray & guidPattern, const UINT8 mode)
|
|
{
|
|
if (guidPattern.isEmpty())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
if (!index.isValid())
|
|
return ERR_SUCCESS;
|
|
|
|
bool hasChildren = (model->rowCount(index) > 0);
|
|
for (int i = 0; i < model->rowCount(index); i++) {
|
|
findGuidPattern(index.child(i, index.column()), guidPattern, mode);
|
|
}
|
|
|
|
QByteArray data;
|
|
if (hasChildren) {
|
|
if (mode != SEARCH_MODE_BODY)
|
|
data = model->header(index);
|
|
}
|
|
else {
|
|
if (mode == SEARCH_MODE_HEADER)
|
|
data.append(model->header(index));
|
|
else if (mode == SEARCH_MODE_BODY)
|
|
data.append(model->body(index));
|
|
else
|
|
data.append(model->header(index)).append(model->body(index));
|
|
}
|
|
|
|
QString hexBody = QString(data.toHex());
|
|
QList<QByteArray> list = guidPattern.split('-');
|
|
if (list.count() != 5)
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
QByteArray hexPattern;
|
|
// Reverse first GUID block
|
|
hexPattern.append(list.at(0).mid(6, 2));
|
|
hexPattern.append(list.at(0).mid(4, 2));
|
|
hexPattern.append(list.at(0).mid(2, 2));
|
|
hexPattern.append(list.at(0).mid(0, 2));
|
|
// Reverse second GUID block
|
|
hexPattern.append(list.at(1).mid(2, 2));
|
|
hexPattern.append(list.at(1).mid(0, 2));
|
|
// Reverse third GUID block
|
|
hexPattern.append(list.at(2).mid(2, 2));
|
|
hexPattern.append(list.at(2).mid(0, 2));
|
|
// Append fourth and fifth GUID blocks as is
|
|
hexPattern.append(list.at(3)).append(list.at(4));
|
|
|
|
// Check for "all substrings" pattern
|
|
if (hexPattern.count('.') == hexPattern.length())
|
|
return ERR_SUCCESS;
|
|
|
|
QRegExp regexp = QRegExp(QString(hexPattern), Qt::CaseInsensitive);
|
|
INT32 offset = regexp.indexIn(hexBody);
|
|
while (offset >= 0) {
|
|
if (offset % 2 == 0) {
|
|
msg(tr("GUID pattern \"%1\" found as \"%2\" in %3 at %4-offset %5h")
|
|
.arg(QString(guidPattern))
|
|
.arg(hexBody.mid(offset, hexPattern.length()).toUpper())
|
|
.arg(model->name(index))
|
|
.arg(mode == SEARCH_MODE_BODY ? tr("body") : tr("header"))
|
|
.hexarg(offset / 2),
|
|
index);
|
|
}
|
|
offset = regexp.indexIn(hexBody, offset + 1);
|
|
}
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::findTextPattern(const QModelIndex & index, const QString & pattern, const bool unicode, const Qt::CaseSensitivity caseSensitive)
|
|
{
|
|
if (pattern.isEmpty())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
if (!index.isValid())
|
|
return ERR_SUCCESS;
|
|
|
|
bool hasChildren = (model->rowCount(index) > 0);
|
|
for (int i = 0; i < model->rowCount(index); i++) {
|
|
findTextPattern(index.child(i, index.column()), pattern, unicode, caseSensitive);
|
|
}
|
|
|
|
if (hasChildren)
|
|
return ERR_SUCCESS;
|
|
|
|
QString data;
|
|
if (unicode)
|
|
data = QString::fromUtf16((const ushort*)model->body(index).data(), model->body(index).length() / 2);
|
|
else
|
|
data = QString::fromLatin1((const char*)model->body(index).data(), model->body(index).length());
|
|
|
|
int offset = -1;
|
|
while ((offset = data.indexOf(pattern, offset + 1, caseSensitive)) >= 0) {
|
|
msg(tr("%1 text \"%2\" found in %3 at offset %4h")
|
|
.arg(unicode ? "Unicode" : "ASCII")
|
|
.arg(pattern)
|
|
.arg(model->name(index))
|
|
.hexarg(unicode ? offset * 2 : offset),
|
|
index);
|
|
}
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::rebase(QByteArray &executable, const UINT32 base, const QModelIndex & index)
|
|
{
|
|
UINT32 delta; // Difference between old and new base addresses
|
|
UINT32 relocOffset; // Offset of relocation region
|
|
UINT32 relocSize; // Size of relocation region
|
|
UINT32 teFixup = 0; // Bytes removed form PE header for TE images
|
|
|
|
// Copy input data to local storage
|
|
QByteArray file = executable;
|
|
|
|
// Populate DOS header
|
|
if ((UINT32)file.size() < sizeof(EFI_IMAGE_DOS_HEADER))
|
|
return ERR_INVALID_FILE;
|
|
EFI_IMAGE_DOS_HEADER* dosHeader = (EFI_IMAGE_DOS_HEADER*)file.data();
|
|
|
|
// Check signature
|
|
if (dosHeader->e_magic == EFI_IMAGE_DOS_SIGNATURE){
|
|
UINT32 offset = dosHeader->e_lfanew;
|
|
if ((UINT32)file.size() < offset + sizeof(EFI_IMAGE_PE_HEADER))
|
|
return ERR_UNKNOWN_IMAGE_TYPE;
|
|
EFI_IMAGE_PE_HEADER* peHeader = (EFI_IMAGE_PE_HEADER*)(file.data() + offset);
|
|
if (peHeader->Signature != EFI_IMAGE_PE_SIGNATURE)
|
|
return ERR_UNKNOWN_IMAGE_TYPE;
|
|
offset += sizeof(EFI_IMAGE_PE_HEADER);
|
|
// Skip file header
|
|
offset += sizeof(EFI_IMAGE_FILE_HEADER);
|
|
// Check optional header magic
|
|
if ((UINT32)file.size() < offset + sizeof(UINT16))
|
|
return ERR_UNKNOWN_IMAGE_TYPE;
|
|
UINT16 magic = *(UINT16*)(file.data() + offset);
|
|
if (magic == EFI_IMAGE_PE_OPTIONAL_HDR32_MAGIC) {
|
|
if ((UINT32)file.size() < offset + sizeof(EFI_IMAGE_OPTIONAL_HEADER32))
|
|
return ERR_UNKNOWN_PE_OPTIONAL_HEADER_TYPE;
|
|
EFI_IMAGE_OPTIONAL_HEADER32* optHeader = (EFI_IMAGE_OPTIONAL_HEADER32*)(file.data() + offset);
|
|
delta = base - optHeader->ImageBase;
|
|
if (!delta)
|
|
// No need to rebase
|
|
return ERR_SUCCESS;
|
|
relocOffset = optHeader->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress;
|
|
relocSize = optHeader->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].Size;
|
|
// Set new base
|
|
optHeader->ImageBase = base;
|
|
}
|
|
else if (magic == EFI_IMAGE_PE_OPTIONAL_HDR64_MAGIC) {
|
|
if ((UINT32)file.size() < offset + sizeof(EFI_IMAGE_OPTIONAL_HEADER64))
|
|
return ERR_UNKNOWN_PE_OPTIONAL_HEADER_TYPE;
|
|
EFI_IMAGE_OPTIONAL_HEADER64* optHeader = (EFI_IMAGE_OPTIONAL_HEADER64*)(file.data() + offset);
|
|
delta = base - optHeader->ImageBase;
|
|
if (!delta)
|
|
// No need to rebase
|
|
return ERR_SUCCESS;
|
|
relocOffset = optHeader->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress;
|
|
relocSize = optHeader->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].Size;
|
|
// Set new base
|
|
optHeader->ImageBase = base;
|
|
}
|
|
else
|
|
return ERR_UNKNOWN_PE_OPTIONAL_HEADER_TYPE;
|
|
}
|
|
else if (dosHeader->e_magic == EFI_IMAGE_TE_SIGNATURE){
|
|
// Populate TE header
|
|
if ((UINT32)file.size() < sizeof(EFI_IMAGE_TE_HEADER))
|
|
return ERR_INVALID_FILE;
|
|
EFI_IMAGE_TE_HEADER* teHeader = (EFI_IMAGE_TE_HEADER*)file.data();
|
|
delta = base - teHeader->ImageBase;
|
|
if (!delta)
|
|
// No need to rebase
|
|
return ERR_SUCCESS;
|
|
relocOffset = teHeader->DataDirectory[EFI_IMAGE_TE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress;
|
|
teFixup = teHeader->StrippedSize - sizeof(EFI_IMAGE_TE_HEADER);
|
|
relocSize = teHeader->DataDirectory[EFI_IMAGE_TE_DIRECTORY_ENTRY_BASERELOC].Size;
|
|
// Set new base
|
|
teHeader->ImageBase = base;
|
|
|
|
// Warn the user about possible outcome of incorrect rebase of TE image
|
|
msg(tr("rebase: can't determine if TE image base is adjusted or not, rebased TE image may stop working"), index);
|
|
}
|
|
else
|
|
return ERR_UNKNOWN_IMAGE_TYPE;
|
|
|
|
// No relocations
|
|
if (relocOffset == 0) {
|
|
// No need to fix relocations
|
|
executable = file;
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
EFI_IMAGE_BASE_RELOCATION *RelocBase;
|
|
EFI_IMAGE_BASE_RELOCATION *RelocBaseEnd;
|
|
UINT16 *Reloc;
|
|
UINT16 *RelocEnd;
|
|
UINT16 *F16;
|
|
UINT32 *F32;
|
|
UINT64 *F64;
|
|
|
|
// Run the whole relocation block
|
|
RelocBase = (EFI_IMAGE_BASE_RELOCATION*)(file.data() + relocOffset - teFixup);
|
|
RelocBaseEnd = (EFI_IMAGE_BASE_RELOCATION*)(file.data() + relocOffset - teFixup + relocSize);
|
|
|
|
while (RelocBase < RelocBaseEnd) {
|
|
Reloc = (UINT16*)((UINT8*)RelocBase + sizeof(EFI_IMAGE_BASE_RELOCATION));
|
|
RelocEnd = (UINT16*)((UINT8*)RelocBase + RelocBase->SizeOfBlock);
|
|
|
|
// Run this relocation record
|
|
while (Reloc < RelocEnd) {
|
|
if (*Reloc == 0x0000) {
|
|
// Skip last emtpy reloc entry
|
|
Reloc += 1;
|
|
continue;
|
|
}
|
|
|
|
UINT32 RelocLocation = RelocBase->VirtualAddress - teFixup + (*Reloc & 0x0FFF);
|
|
if ((UINT32)file.size() < RelocLocation)
|
|
return ERR_BAD_RELOCATION_ENTRY;
|
|
UINT8* data = (UINT8*)(file.data() + RelocLocation);
|
|
switch ((*Reloc) >> 12) {
|
|
case EFI_IMAGE_REL_BASED_ABSOLUTE:
|
|
// Do nothing
|
|
break;
|
|
|
|
case EFI_IMAGE_REL_BASED_HIGH:
|
|
// Add second 16 bits of delta
|
|
F16 = (UINT16*)data;
|
|
*F16 = (UINT16)(*F16 + (UINT16)(((UINT32)delta) >> 16));
|
|
break;
|
|
|
|
case EFI_IMAGE_REL_BASED_LOW:
|
|
// Add first 16 bits of delta
|
|
F16 = (UINT16*)data;
|
|
*F16 = (UINT16)(*F16 + (UINT16)delta);
|
|
break;
|
|
|
|
case EFI_IMAGE_REL_BASED_HIGHLOW:
|
|
// Add first 32 bits of delta
|
|
F32 = (UINT32*)data;
|
|
*F32 = *F32 + (UINT32)delta;
|
|
break;
|
|
|
|
case EFI_IMAGE_REL_BASED_DIR64:
|
|
// Add all 64 bits of delta
|
|
F64 = (UINT64*)data;
|
|
*F64 = *F64 + (UINT64)delta;
|
|
break;
|
|
|
|
default:
|
|
return ERR_UNKNOWN_RELOCATION_TYPE;
|
|
}
|
|
|
|
// Next relocation record
|
|
Reloc += 1;
|
|
}
|
|
|
|
// Next relocation block
|
|
RelocBase = (EFI_IMAGE_BASE_RELOCATION*)RelocEnd;
|
|
}
|
|
|
|
executable = file;
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::patchVtf(QByteArray &vtf)
|
|
{
|
|
if (!oldPeiCoreEntryPoint) {
|
|
msg(tr("patchVtf: PEI Core entry point can't be determined. VTF can't be patched."));
|
|
return ERR_PEI_CORE_ENTRY_POINT_NOT_FOUND;
|
|
}
|
|
|
|
if (!newPeiCoreEntryPoint || oldPeiCoreEntryPoint == newPeiCoreEntryPoint)
|
|
// No need to patch anything
|
|
return ERR_SUCCESS;
|
|
|
|
// Replace last occurrence of oldPeiCoreEntryPoint with newPeiCoreEntryPoint
|
|
QByteArray old((char*)&oldPeiCoreEntryPoint, sizeof(oldPeiCoreEntryPoint));
|
|
int i = vtf.lastIndexOf(old);
|
|
if (i == -1) {
|
|
msg(tr("patchVtf: PEI Core entry point can't be found in VTF. VTF not patched."));
|
|
return ERR_SUCCESS;
|
|
}
|
|
UINT32* data = (UINT32*)(vtf.data() + i);
|
|
*data = newPeiCoreEntryPoint;
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::getEntryPoint(const QByteArray &file, UINT32& entryPoint)
|
|
{
|
|
if (file.isEmpty())
|
|
return ERR_INVALID_FILE;
|
|
|
|
// Populate DOS header
|
|
if ((UINT32)file.size() < sizeof(EFI_IMAGE_DOS_HEADER))
|
|
return ERR_INVALID_FILE;
|
|
const EFI_IMAGE_DOS_HEADER* dosHeader = (const EFI_IMAGE_DOS_HEADER*)file.constData();
|
|
|
|
// Check signature
|
|
if (dosHeader->e_magic == EFI_IMAGE_DOS_SIGNATURE){
|
|
UINT32 offset = dosHeader->e_lfanew;
|
|
if ((UINT32)file.size() < offset + sizeof(EFI_IMAGE_PE_HEADER))
|
|
return ERR_UNKNOWN_IMAGE_TYPE;
|
|
const EFI_IMAGE_PE_HEADER* peHeader = (const EFI_IMAGE_PE_HEADER*)(file.constData() + offset);
|
|
if (peHeader->Signature != EFI_IMAGE_PE_SIGNATURE)
|
|
return ERR_UNKNOWN_IMAGE_TYPE;
|
|
offset += sizeof(EFI_IMAGE_PE_HEADER);
|
|
|
|
// Skip file header
|
|
offset += sizeof(EFI_IMAGE_FILE_HEADER);
|
|
|
|
// Check optional header magic
|
|
const UINT16 magic = *(const UINT16*)(file.constData() + offset);
|
|
if (magic == EFI_IMAGE_PE_OPTIONAL_HDR32_MAGIC) {
|
|
if ((UINT32)file.size() < offset + sizeof(EFI_IMAGE_OPTIONAL_HEADER32))
|
|
return ERR_UNKNOWN_PE_OPTIONAL_HEADER_TYPE;
|
|
const EFI_IMAGE_OPTIONAL_HEADER32* optHeader = (const EFI_IMAGE_OPTIONAL_HEADER32*)(file.constData() + offset);
|
|
entryPoint = optHeader->ImageBase + optHeader->AddressOfEntryPoint;
|
|
}
|
|
else if (magic == EFI_IMAGE_PE_OPTIONAL_HDR64_MAGIC) {
|
|
if ((UINT32)file.size() < offset + sizeof(EFI_IMAGE_OPTIONAL_HEADER64))
|
|
return ERR_UNKNOWN_PE_OPTIONAL_HEADER_TYPE;
|
|
const EFI_IMAGE_OPTIONAL_HEADER64* optHeader = (const EFI_IMAGE_OPTIONAL_HEADER64*)(file.constData() + offset);
|
|
entryPoint = optHeader->ImageBase + optHeader->AddressOfEntryPoint;
|
|
}
|
|
else
|
|
return ERR_UNKNOWN_PE_OPTIONAL_HEADER_TYPE;
|
|
}
|
|
else if (dosHeader->e_magic == EFI_IMAGE_TE_SIGNATURE){
|
|
// Populate TE header
|
|
if ((UINT32)file.size() < sizeof(EFI_IMAGE_TE_HEADER))
|
|
return ERR_INVALID_FILE;
|
|
const EFI_IMAGE_TE_HEADER* teHeader = (const EFI_IMAGE_TE_HEADER*)file.constData();
|
|
UINT32 teFixup = teHeader->StrippedSize - sizeof(EFI_IMAGE_TE_HEADER);
|
|
entryPoint = teHeader->ImageBase + teHeader->AddressOfEntryPoint - teFixup;
|
|
}
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::getBase(const QByteArray& file, UINT32& base)
|
|
{
|
|
if (file.isEmpty())
|
|
return ERR_INVALID_FILE;
|
|
|
|
// Populate DOS header
|
|
if ((UINT32)file.size() < sizeof(EFI_IMAGE_DOS_HEADER))
|
|
return ERR_INVALID_FILE;
|
|
const EFI_IMAGE_DOS_HEADER* dosHeader = (const EFI_IMAGE_DOS_HEADER*)file.constData();
|
|
|
|
// Check signature
|
|
if (dosHeader->e_magic == EFI_IMAGE_DOS_SIGNATURE){
|
|
UINT32 offset = dosHeader->e_lfanew;
|
|
if ((UINT32)file.size() < offset + sizeof(EFI_IMAGE_PE_HEADER))
|
|
return ERR_UNKNOWN_IMAGE_TYPE;
|
|
const EFI_IMAGE_PE_HEADER* peHeader = (const EFI_IMAGE_PE_HEADER*)(file.constData() + offset);
|
|
if (peHeader->Signature != EFI_IMAGE_PE_SIGNATURE)
|
|
return ERR_UNKNOWN_IMAGE_TYPE;
|
|
offset += sizeof(EFI_IMAGE_PE_HEADER);
|
|
|
|
// Skip file header
|
|
offset += sizeof(EFI_IMAGE_FILE_HEADER);
|
|
|
|
// Check optional header magic
|
|
const UINT16 magic = *(const UINT16*)(file.constData() + offset);
|
|
if (magic == EFI_IMAGE_PE_OPTIONAL_HDR32_MAGIC) {
|
|
if ((UINT32)file.size() < offset + sizeof(EFI_IMAGE_OPTIONAL_HEADER32))
|
|
return ERR_UNKNOWN_PE_OPTIONAL_HEADER_TYPE;
|
|
const EFI_IMAGE_OPTIONAL_HEADER32* optHeader = (const EFI_IMAGE_OPTIONAL_HEADER32*)(file.constData() + offset);
|
|
base = optHeader->ImageBase;
|
|
}
|
|
else if (magic == EFI_IMAGE_PE_OPTIONAL_HDR64_MAGIC) {
|
|
if ((UINT32)file.size() < offset + sizeof(EFI_IMAGE_OPTIONAL_HEADER64))
|
|
return ERR_UNKNOWN_PE_OPTIONAL_HEADER_TYPE;
|
|
const EFI_IMAGE_OPTIONAL_HEADER64* optHeader = (const EFI_IMAGE_OPTIONAL_HEADER64*)(file.constData() + offset);
|
|
base = optHeader->ImageBase;
|
|
}
|
|
else
|
|
return ERR_UNKNOWN_PE_OPTIONAL_HEADER_TYPE;
|
|
}
|
|
else if (dosHeader->e_magic == EFI_IMAGE_TE_SIGNATURE){
|
|
// Populate TE header
|
|
if ((UINT32)file.size() < sizeof(EFI_IMAGE_TE_HEADER))
|
|
return ERR_INVALID_FILE;
|
|
const EFI_IMAGE_TE_HEADER* teHeader = (const EFI_IMAGE_TE_HEADER*)file.constData();
|
|
//!TODO: add handling
|
|
base = teHeader->ImageBase;
|
|
}
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT32 FfsEngine::crc32(UINT32 initial, const UINT8* buffer, UINT32 length)
|
|
{
|
|
static const UINT32 crcTable[256] = {
|
|
0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535,
|
|
0x9E6495A3, 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD,
|
|
0xE7B82D07, 0x90BF1D91, 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D,
|
|
0x6DDDE4EB, 0xF4D4B551, 0x83D385C7, 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC,
|
|
0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5, 0x3B6E20C8, 0x4C69105E, 0xD56041E4,
|
|
0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, 0x35B5A8FA, 0x42B2986C,
|
|
0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59, 0x26D930AC,
|
|
0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F,
|
|
0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB,
|
|
0xB6662D3D, 0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F,
|
|
0x9FBFE4A5, 0xE8B8D433, 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB,
|
|
0x086D3D2D, 0x91646C97, 0xE6635C01, 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E,
|
|
0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457, 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA,
|
|
0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65, 0x4DB26158, 0x3AB551CE,
|
|
0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB, 0x4369E96A,
|
|
0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9,
|
|
0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409,
|
|
0xCE61E49F, 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81,
|
|
0xB7BD5C3B, 0xC0BA6CAD, 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739,
|
|
0x9DD277AF, 0x04DB2615, 0x73DC1683, 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8,
|
|
0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1, 0xF00F9344, 0x8708A3D2, 0x1E01F268,
|
|
0x6906C2FE, 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7, 0xFED41B76, 0x89D32BE0,
|
|
0x10DA7A5A, 0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, 0xD6D6A3E8,
|
|
0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B,
|
|
0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF,
|
|
0x4669BE79, 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703,
|
|
0x220216B9, 0x5505262F, 0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7,
|
|
0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D, 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A,
|
|
0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713, 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE,
|
|
0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, 0x86D3D2D4, 0xF1D4E242,
|
|
0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777, 0x88085AE6,
|
|
0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45,
|
|
0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D,
|
|
0x3E6E77DB, 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5,
|
|
0x47B2CF7F, 0x30B5FFE9, 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605,
|
|
0xCDD70693, 0x54DE5729, 0x23D967BF, 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94,
|
|
0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D };
|
|
UINT32 crc32;
|
|
UINT32 i;
|
|
|
|
// Accumulate crc32 for buffer
|
|
crc32 = initial ^ 0xFFFFFFFF;
|
|
for (i = 0; i < length; i++) {
|
|
crc32 = (crc32 >> 8) ^ crcTable[(crc32 ^ buffer[i]) & 0xFF];
|
|
}
|
|
|
|
return(crc32 ^ 0xFFFFFFFF);
|
|
}
|
|
|
|
UINT8 FfsEngine::dump(const QModelIndex & index, const QString & path, const QString & guid)
|
|
{
|
|
dumped = false;
|
|
UINT8 result = recursiveDump(index, path, guid);
|
|
if (result)
|
|
return result;
|
|
else if (!dumped)
|
|
return ERR_ITEM_NOT_FOUND;
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::recursiveDump(const QModelIndex & index, const QString & path, const QString & guid)
|
|
{
|
|
if (!index.isValid())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
QDir dir;
|
|
if (guid.isEmpty() ||
|
|
guidToQString(*(const EFI_GUID*)model->header(index).constData()) == guid ||
|
|
guidToQString(*(const EFI_GUID*)model->header(model->findParentOfType(index, Types::File)).constData()) == guid) {
|
|
|
|
if (dir.cd(path))
|
|
return ERR_DIR_ALREADY_EXIST;
|
|
|
|
if (!dir.mkpath(path))
|
|
return ERR_DIR_CREATE;
|
|
|
|
QFile file;
|
|
if (!model->header(index).isEmpty()) {
|
|
file.setFileName(tr("%1/header.bin").arg(path));
|
|
if (!file.open(QFile::WriteOnly))
|
|
return ERR_FILE_OPEN;
|
|
file.write(model->header(index));
|
|
file.close();
|
|
}
|
|
|
|
if (!model->body(index).isEmpty()) {
|
|
file.setFileName(tr("%1/body.bin").arg(path));
|
|
if (!file.open(QFile::WriteOnly))
|
|
return ERR_FILE_OPEN;
|
|
file.write(model->body(index));
|
|
file.close();
|
|
}
|
|
|
|
QString info = tr("Type: %1\nSubtype: %2\n%3%4")
|
|
.arg(itemTypeToQString(model->type(index)))
|
|
.arg(itemSubtypeToQString(model->type(index), model->subtype(index)))
|
|
.arg(model->text(index).isEmpty() ? "" : tr("Text: %1\n").arg(model->text(index)))
|
|
.arg(model->info(index));
|
|
file.setFileName(tr("%1/info.txt").arg(path));
|
|
if (!file.open(QFile::Text | QFile::WriteOnly))
|
|
return ERR_FILE_OPEN;
|
|
file.write(info.toLatin1());
|
|
file.close();
|
|
dumped = true;
|
|
}
|
|
|
|
UINT8 result;
|
|
for (int i = 0; i < model->rowCount(index); i++) {
|
|
QModelIndex childIndex = index.child(i, 0);
|
|
QString childPath = QString("%1/%2 %3").arg(path).arg(i).arg(model->text(childIndex).isEmpty() ? model->name(childIndex) : model->text(childIndex));
|
|
result = recursiveDump(childIndex, childPath, guid);
|
|
if (result)
|
|
return result;
|
|
}
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::patch(const QModelIndex & index, const QVector<PatchData> & patches)
|
|
{
|
|
if (!index.isValid() || patches.isEmpty() || model->rowCount(index))
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
// Skip removed items
|
|
if (model->action(index) == Actions::Remove)
|
|
return ERR_NOTHING_TO_PATCH;
|
|
|
|
UINT8 result;
|
|
|
|
// Apply patches to item's body
|
|
QByteArray body = model->body(index);
|
|
PatchData current;
|
|
Q_FOREACH(current, patches)
|
|
{
|
|
if (current.type == PATCH_TYPE_OFFSET) {
|
|
result = patchViaOffset(body, current.offset, current.hexReplacePattern);
|
|
if (result)
|
|
return result;
|
|
}
|
|
else if (current.type == PATCH_TYPE_PATTERN) {
|
|
result = patchViaPattern(body, current.hexFindPattern, current.hexReplacePattern);
|
|
if (result)
|
|
return result;
|
|
}
|
|
else
|
|
return ERR_UNKNOWN_PATCH_TYPE;
|
|
}
|
|
|
|
if (body != model->body(index)) {
|
|
QByteArray patched = model->header(index);
|
|
patched.append(body);
|
|
return replace(index, patched, REPLACE_MODE_AS_IS);
|
|
}
|
|
|
|
return ERR_NOTHING_TO_PATCH;
|
|
}
|
|
|
|
UINT8 FfsEngine::patchViaOffset(QByteArray & data, const UINT32 offset, const QByteArray & hexReplacePattern)
|
|
{
|
|
QByteArray body = data;
|
|
|
|
// Skip patterns with odd length
|
|
if (hexReplacePattern.length() % 2 > 0)
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
// Check offset bounds
|
|
if (offset > (UINT32)(body.length() - hexReplacePattern.length() / 2))
|
|
return ERR_PATCH_OFFSET_OUT_OF_BOUNDS;
|
|
|
|
// Parse replace pattern
|
|
QByteArray replacePattern;
|
|
bool converted;
|
|
for (int i = 0; i < hexReplacePattern.length() / 2; i++) {
|
|
QByteArray hex = hexReplacePattern.mid(2 * i, 2);
|
|
UINT8 value = 0;
|
|
|
|
if (!hex.contains('.')) { // Normal byte pattern
|
|
value = (UINT8)hex.toUShort(&converted, 16);
|
|
if (!converted)
|
|
return ERR_INVALID_SYMBOL;
|
|
}
|
|
else { // Placeholder byte pattern
|
|
if (hex[0] == '.' && hex[1] == '.') { // Full byte placeholder
|
|
value = body.at(offset + i);
|
|
}
|
|
else if (hex[0] == '.') {// Upper byte part placeholder
|
|
hex[0] = '0';
|
|
value = (UINT8)(body.at(offset + i) & 0xF0);
|
|
value += (UINT8)hex.toUShort(&converted, 16);
|
|
if (!converted)
|
|
return ERR_INVALID_SYMBOL;
|
|
}
|
|
else if (hex[1] == '.') { // Lower byte part placeholder
|
|
hex[1] = '0';
|
|
value = (UINT8)(body.at(offset + i) & 0x0F);
|
|
value += (UINT8)hex.toUShort(&converted, 16);
|
|
if (!converted)
|
|
return ERR_INVALID_SYMBOL;
|
|
}
|
|
else
|
|
return ERR_INVALID_SYMBOL;
|
|
}
|
|
|
|
// Append calculated value to real pattern
|
|
replacePattern.append(value);
|
|
}
|
|
|
|
body.replace(offset, replacePattern.length(), replacePattern);
|
|
msg(tr("patch: replaced %1 bytes at offset %2h %3 -> %4")
|
|
.arg(replacePattern.length())
|
|
.hexarg(offset)
|
|
.arg(QString(data.mid(offset, replacePattern.length()).toHex()).toUpper())
|
|
.arg(QString(replacePattern.toHex()).toUpper()));
|
|
data = body;
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::patchViaPattern(QByteArray & data, const QByteArray & hexFindPattern, const QByteArray & hexReplacePattern)
|
|
{
|
|
QByteArray body = data;
|
|
|
|
// Skip patterns with odd length
|
|
if (hexFindPattern.length() % 2 > 0 || hexReplacePattern.length() % 2 > 0)
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
// Convert file body to hex;
|
|
QString hexBody = QString(body.toHex());
|
|
QRegExp regexp = QRegExp(QString(hexFindPattern), Qt::CaseInsensitive);
|
|
INT32 offset = regexp.indexIn(hexBody);
|
|
while (offset >= 0) {
|
|
if (offset % 2 == 0) {
|
|
UINT8 result = patchViaOffset(body, offset / 2, hexReplacePattern);
|
|
if (result)
|
|
return result;
|
|
}
|
|
offset = regexp.indexIn(hexBody, offset + 1);
|
|
}
|
|
|
|
data = body;
|
|
return ERR_SUCCESS;
|
|
}
|
|
|