mirror of
https://github.com/LongSoft/UEFITool.git
synced 2024-11-25 09:28:22 +08:00
bb6f58f509
- UI reworked once again - Hex pattern and text string search implemented - Code slightly refactored
2269 lines
57 KiB
C
2269 lines
57 KiB
C
/* LzmaEnc.c -- LZMA Encoder
|
|
2010-04-16 : Igor Pavlov : Public doma*/
|
|
|
|
#include <string.h>
|
|
|
|
/* #define SHOW_STAT */
|
|
/* #define SHOW_STAT2 */
|
|
|
|
#if defined(SHOW_STAT) || defined(SHOW_STAT2)
|
|
#include <stdio.h>
|
|
#endif
|
|
|
|
#include "LzmaEnc.h"
|
|
|
|
#include "LzFind.h"
|
|
#ifndef _7ZIP_ST
|
|
#include "LzFindMt.h"
|
|
#endif
|
|
|
|
#ifdef SHOW_STAT
|
|
static int ttt = 0;
|
|
#endif
|
|
|
|
#define kBlockSizeMax ((1 << LZMA_NUM_BLOCK_SIZE_BITS) - 1)
|
|
|
|
#define kBlockSize (9 << 10)
|
|
#define kUnpackBlockSize (1 << 18)
|
|
#define kMatchArraySize (1 << 21)
|
|
#define kMatchRecordMaxSize ((LZMA_MATCH_LEN_MAX * 2 + 3) * LZMA_MATCH_LEN_MAX)
|
|
|
|
#define kNumMaxDirectBits (31)
|
|
|
|
#define kNumTopBits 24
|
|
#define kTopValue ((UInt32)1 << kNumTopBits)
|
|
|
|
#define kNumBitModelTotalBits 11
|
|
#define kBitModelTotal (1 << kNumBitModelTotalBits)
|
|
#define kNumMoveBits 5
|
|
#define kProbInitValue (kBitModelTotal >> 1)
|
|
|
|
#define kNumMoveReducingBits 4
|
|
#define kNumBitPriceShiftBits 4
|
|
#define kBitPrice (1 << kNumBitPriceShiftBits)
|
|
|
|
void LzmaEncProps_Init(CLzmaEncProps *p)
|
|
{
|
|
p->level = 5;
|
|
p->dictSize = p->mc = 0;
|
|
p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1;
|
|
p->writeEndMark = 0;
|
|
}
|
|
|
|
void LzmaEncProps_Normalize(CLzmaEncProps *p)
|
|
{
|
|
int level = p->level;
|
|
if (level < 0) level = 5;
|
|
p->level = level;
|
|
if (p->dictSize == 0) p->dictSize = (level <= 5 ? (1 << (level * 2 + 14)) : (level == 6 ? (1 << 25) : (1 << 26)));
|
|
if (p->lc < 0) p->lc = 3;
|
|
if (p->lp < 0) p->lp = 0;
|
|
if (p->pb < 0) p->pb = 2;
|
|
if (p->algo < 0) p->algo = (level < 5 ? 0 : 1);
|
|
if (p->fb < 0) p->fb = (level < 7 ? 32 : 64);
|
|
if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1);
|
|
if (p->numHashBytes < 0) p->numHashBytes = 4;
|
|
if (p->mc == 0) p->mc = (16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1);
|
|
if (p->numThreads < 0)
|
|
p->numThreads =
|
|
#ifndef _7ZIP_ST
|
|
((p->btMode && p->algo) ? 2 : 1);
|
|
#else
|
|
1;
|
|
#endif
|
|
}
|
|
|
|
UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2)
|
|
{
|
|
CLzmaEncProps props = *props2;
|
|
LzmaEncProps_Normalize(&props);
|
|
return props.dictSize;
|
|
}
|
|
|
|
/* #define LZMA_LOG_BSR */
|
|
/* Define it for Intel's CPU */
|
|
|
|
|
|
#ifdef LZMA_LOG_BSR
|
|
|
|
#define kDicLogSizeMaxCompress 30
|
|
|
|
#define BSR2_RET(pos, res) { unsigned long i; _BitScanReverse(&i, (pos)); res = (i + i) + ((pos >> (i - 1)) & 1); }
|
|
|
|
UInt32 GetPosSlot1(UInt32 pos)
|
|
{
|
|
UInt32 res;
|
|
BSR2_RET(pos, res);
|
|
return res;
|
|
}
|
|
#define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
|
|
#define GetPosSlot(pos, res) { if (pos < 2) res = pos; else BSR2_RET(pos, res); }
|
|
|
|
#else
|
|
|
|
#define kNumLogBits (9 + (int)sizeof(size_t) / 2)
|
|
#define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7)
|
|
|
|
void LzmaEnc_FastPosInit(Byte *g_FastPos)
|
|
{
|
|
int c = 2, slotFast;
|
|
g_FastPos[0] = 0;
|
|
g_FastPos[1] = 1;
|
|
|
|
for (slotFast = 2; slotFast < kNumLogBits * 2; slotFast++)
|
|
{
|
|
UInt32 k = (1 << ((slotFast >> 1) - 1));
|
|
UInt32 j;
|
|
for (j = 0; j < k; j++, c++)
|
|
g_FastPos[c] = (Byte)slotFast;
|
|
}
|
|
}
|
|
|
|
#define BSR2_RET(pos, res) { UInt32 i = 6 + ((kNumLogBits - 1) & \
|
|
(0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \
|
|
res = p->g_FastPos[pos >> i] + (i * 2); }
|
|
/*
|
|
#define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \
|
|
p->g_FastPos[pos >> 6] + 12 : \
|
|
p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; }
|
|
*/
|
|
|
|
#define GetPosSlot1(pos) p->g_FastPos[pos]
|
|
#define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
|
|
#define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos]; else BSR2_RET(pos, res); }
|
|
|
|
#endif
|
|
|
|
|
|
#define LZMA_NUM_REPS 4
|
|
|
|
typedef unsigned CState;
|
|
|
|
typedef struct
|
|
{
|
|
UInt32 price;
|
|
|
|
CState state;
|
|
int prev1IsChar;
|
|
int prev2;
|
|
|
|
UInt32 posPrev2;
|
|
UInt32 backPrev2;
|
|
|
|
UInt32 posPrev;
|
|
UInt32 backPrev;
|
|
UInt32 backs[LZMA_NUM_REPS];
|
|
} COptimal;
|
|
|
|
#define kNumOpts (1 << 12)
|
|
|
|
#define kNumLenToPosStates 4
|
|
#define kNumPosSlotBits 6
|
|
#define kDicLogSizeM0
|
|
#define kDicLogSizeMax 32
|
|
#define kDistTableSizeMax (kDicLogSizeMax * 2)
|
|
|
|
|
|
#define kNumAlignBits 4
|
|
#define kAlignTableSize (1 << kNumAlignBits)
|
|
#define kAlignMask (kAlignTableSize - 1)
|
|
|
|
#define kStartPosModelIndex 4
|
|
#define kEndPosModelIndex 14
|
|
#define kNumPosModels (kEndPosModelIndex - kStartPosModelIndex)
|
|
|
|
#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
|
|
|
|
#ifdef _LZMA_PROB32
|
|
#define CLzmaProb UInt32
|
|
#else
|
|
#define CLzmaProb UInt16
|
|
#endif
|
|
|
|
#define LZMA_PB_MAX 4
|
|
#define LZMA_LC_MAX 8
|
|
#define LZMA_LP_MAX 4
|
|
|
|
#define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX)
|
|
|
|
|
|
#define kLenNumLowBits 3
|
|
#define kLenNumLowSymbols (1 << kLenNumLowBits)
|
|
#define kLenNumMidBits 3
|
|
#define kLenNumMidSymbols (1 << kLenNumMidBits)
|
|
#define kLenNumHighBits 8
|
|
#define kLenNumHighSymbols (1 << kLenNumHighBits)
|
|
|
|
#define kLenNumSymbolsTotal (kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
|
|
|
|
#define LZMA_MATCH_LEN_MIN 2
|
|
#define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1)
|
|
|
|
#define kNumStates 12
|
|
|
|
typedef struct
|
|
{
|
|
CLzmaProb choice;
|
|
CLzmaProb choice2;
|
|
CLzmaProb low[LZMA_NUM_PB_STATES_MAX << kLenNumLowBits];
|
|
CLzmaProb mid[LZMA_NUM_PB_STATES_MAX << kLenNumMidBits];
|
|
CLzmaProb high[kLenNumHighSymbols];
|
|
} CLenEnc;
|
|
|
|
typedef struct
|
|
{
|
|
CLenEnc p;
|
|
UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal];
|
|
UInt32 tableSize;
|
|
UInt32 counters[LZMA_NUM_PB_STATES_MAX];
|
|
} CLenPriceEnc;
|
|
|
|
typedef struct
|
|
{
|
|
UInt32 range;
|
|
Byte cache;
|
|
UInt64 low;
|
|
UInt64 cacheSize;
|
|
Byte *buf;
|
|
Byte *bufLim;
|
|
Byte *bufBase;
|
|
ISeqOutStream *outStream;
|
|
UInt64 processed;
|
|
SRes res;
|
|
} CRangeEnc;
|
|
|
|
typedef struct
|
|
{
|
|
CLzmaProb *litProbs;
|
|
|
|
CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
|
|
CLzmaProb isRep[kNumStates];
|
|
CLzmaProb isRepG0[kNumStates];
|
|
CLzmaProb isRepG1[kNumStates];
|
|
CLzmaProb isRepG2[kNumStates];
|
|
CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
|
|
|
|
CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
|
|
CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
|
|
CLzmaProb posAlignEncoder[1 << kNumAlignBits];
|
|
|
|
CLenPriceEnc lenEnc;
|
|
CLenPriceEnc repLenEnc;
|
|
|
|
UInt32 reps[LZMA_NUM_REPS];
|
|
UInt32 state;
|
|
} CSaveState;
|
|
|
|
typedef struct
|
|
{
|
|
IMatchFinder matchFinder;
|
|
void *matchFinderObj;
|
|
|
|
#ifndef _7ZIP_ST
|
|
Bool mtMode;
|
|
CMatchFinderMt matchFinderMt;
|
|
#endif
|
|
|
|
CMatchFinder matchFinderBase;
|
|
|
|
#ifndef _7ZIP_ST
|
|
Byte pad[128];
|
|
#endif
|
|
|
|
UInt32 optimumEndIndex;
|
|
UInt32 optimumCurrentIndex;
|
|
|
|
UInt32 longestMatchLength;
|
|
UInt32 numPairs;
|
|
UInt32 numAvail;
|
|
COptimal opt[kNumOpts];
|
|
|
|
#ifndef LZMA_LOG_BSR
|
|
Byte g_FastPos[1 << kNumLogBits];
|
|
#endif
|
|
|
|
UInt32 ProbPrices[kBitModelTotal >> kNumMoveReducingBits];
|
|
UInt32 matches[LZMA_MATCH_LEN_MAX * 2 + 2 + 1];
|
|
UInt32 numFastBytes;
|
|
UInt32 additionalOffset;
|
|
UInt32 reps[LZMA_NUM_REPS];
|
|
UInt32 state;
|
|
|
|
UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax];
|
|
UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances];
|
|
UInt32 alignPrices[kAlignTableSize];
|
|
UInt32 alignPriceCount;
|
|
|
|
UInt32 distTableSize;
|
|
|
|
unsigned lc, lp, pb;
|
|
unsigned lpMask, pbMask;
|
|
|
|
CLzmaProb *litProbs;
|
|
|
|
CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
|
|
CLzmaProb isRep[kNumStates];
|
|
CLzmaProb isRepG0[kNumStates];
|
|
CLzmaProb isRepG1[kNumStates];
|
|
CLzmaProb isRepG2[kNumStates];
|
|
CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
|
|
|
|
CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
|
|
CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
|
|
CLzmaProb posAlignEncoder[1 << kNumAlignBits];
|
|
|
|
CLenPriceEnc lenEnc;
|
|
CLenPriceEnc repLenEnc;
|
|
|
|
unsigned lclp;
|
|
|
|
Bool fastMode;
|
|
|
|
CRangeEnc rc;
|
|
|
|
Bool writeEndMark;
|
|
UInt64 nowPos64;
|
|
UInt32 matchPriceCount;
|
|
Bool finished;
|
|
Bool multiThread;
|
|
|
|
SRes result;
|
|
UInt32 dictSize;
|
|
UInt32 matchFinderCycles;
|
|
|
|
int needInit;
|
|
|
|
CSaveState saveState;
|
|
} CLzmaEnc;
|
|
|
|
void LzmaEnc_SaveState(CLzmaEncHandle pp)
|
|
{
|
|
CLzmaEnc *p = (CLzmaEnc *)pp;
|
|
CSaveState *dest = &p->saveState;
|
|
int i;
|
|
dest->lenEnc = p->lenEnc;
|
|
dest->repLenEnc = p->repLenEnc;
|
|
dest->state = p->state;
|
|
|
|
for (i = 0; i < kNumStates; i++)
|
|
{
|
|
memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
|
|
memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
|
|
}
|
|
for (i = 0; i < kNumLenToPosStates; i++)
|
|
memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
|
|
memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
|
|
memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
|
|
memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
|
|
memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
|
|
memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
|
|
memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
|
|
memcpy(dest->reps, p->reps, sizeof(p->reps));
|
|
memcpy(dest->litProbs, p->litProbs, (0x300 << p->lclp) * sizeof(CLzmaProb));
|
|
}
|
|
|
|
void LzmaEnc_RestoreState(CLzmaEncHandle pp)
|
|
{
|
|
CLzmaEnc *dest = (CLzmaEnc *)pp;
|
|
const CSaveState *p = &dest->saveState;
|
|
int i;
|
|
dest->lenEnc = p->lenEnc;
|
|
dest->repLenEnc = p->repLenEnc;
|
|
dest->state = p->state;
|
|
|
|
for (i = 0; i < kNumStates; i++)
|
|
{
|
|
memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
|
|
memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
|
|
}
|
|
for (i = 0; i < kNumLenToPosStates; i++)
|
|
memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
|
|
memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
|
|
memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
|
|
memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
|
|
memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
|
|
memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
|
|
memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
|
|
memcpy(dest->reps, p->reps, sizeof(p->reps));
|
|
memcpy(dest->litProbs, p->litProbs, (0x300 << dest->lclp) * sizeof(CLzmaProb));
|
|
}
|
|
|
|
SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const CLzmaEncProps *props2)
|
|
{
|
|
CLzmaEnc *p = (CLzmaEnc *)pp;
|
|
CLzmaEncProps props = *props2;
|
|
LzmaEncProps_Normalize(&props);
|
|
|
|
if (props.lc > LZMA_LC_MAX || props.lp > LZMA_LP_MAX || props.pb > LZMA_PB_MAX ||
|
|
props.dictSize > ((UInt32)1 << kDicLogSizeMaxCompress) || props.dictSize > ((UInt32)1 << 30))
|
|
return SZ_ERROR_PARAM;
|
|
p->dictSize = props.dictSize;
|
|
p->matchFinderCycles = props.mc;
|
|
{
|
|
unsigned fb = props.fb;
|
|
if (fb < 5)
|
|
fb = 5;
|
|
if (fb > LZMA_MATCH_LEN_MAX)
|
|
fb = LZMA_MATCH_LEN_MAX;
|
|
p->numFastBytes = fb;
|
|
}
|
|
p->lc = props.lc;
|
|
p->lp = props.lp;
|
|
p->pb = props.pb;
|
|
p->fastMode = (props.algo == 0);
|
|
p->matchFinderBase.btMode = props.btMode;
|
|
{
|
|
UInt32 numHashBytes = 4;
|
|
if (props.btMode)
|
|
{
|
|
if (props.numHashBytes < 2)
|
|
numHashBytes = 2;
|
|
else if (props.numHashBytes < 4)
|
|
numHashBytes = props.numHashBytes;
|
|
}
|
|
p->matchFinderBase.numHashBytes = numHashBytes;
|
|
}
|
|
|
|
p->matchFinderBase.cutValue = props.mc;
|
|
|
|
p->writeEndMark = props.writeEndMark;
|
|
|
|
#ifndef _7ZIP_ST
|
|
/*
|
|
if (newMultiThread != _multiThread)
|
|
{
|
|
ReleaseMatchFinder();
|
|
_multiThread = newMultiThread;
|
|
}
|
|
*/
|
|
p->multiThread = (props.numThreads > 1);
|
|
#endif
|
|
|
|
return SZ_OK;
|
|
}
|
|
|
|
static const int kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5};
|
|
static const int kMatchNextStates[kNumStates] = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10};
|
|
static const int kRepNextStates[kNumStates] = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11};
|
|
static const int kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11};
|
|
|
|
#define IsCharState(s) ((s) < 7)
|
|
|
|
#define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1)
|
|
|
|
#define kInfinityPrice (1 << 30)
|
|
|
|
static void RangeEnc_Construct(CRangeEnc *p)
|
|
{
|
|
p->outStream = 0;
|
|
p->bufBase = 0;
|
|
}
|
|
|
|
#define RangeEnc_GetProcessed(p) ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize)
|
|
|
|
#define RC_BUF_SIZE (1 << 16)
|
|
static int RangeEnc_Alloc(CRangeEnc *p, ISzAlloc *alloc)
|
|
{
|
|
if (p->bufBase == 0)
|
|
{
|
|
p->bufBase = (Byte *)alloc->Alloc(alloc, RC_BUF_SIZE);
|
|
if (p->bufBase == 0)
|
|
return 0;
|
|
p->bufLim = p->bufBase + RC_BUF_SIZE;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static void RangeEnc_Free(CRangeEnc *p, ISzAlloc *alloc)
|
|
{
|
|
alloc->Free(alloc, p->bufBase);
|
|
p->bufBase = 0;
|
|
}
|
|
|
|
static void RangeEnc_Init(CRangeEnc *p)
|
|
{
|
|
/* Stream.Init(); */
|
|
p->low = 0;
|
|
p->range = 0xFFFFFFFF;
|
|
p->cacheSize = 1;
|
|
p->cache = 0;
|
|
|
|
p->buf = p->bufBase;
|
|
|
|
p->processed = 0;
|
|
p->res = SZ_OK;
|
|
}
|
|
|
|
static void RangeEnc_FlushStream(CRangeEnc *p)
|
|
{
|
|
size_t num;
|
|
if (p->res != SZ_OK)
|
|
return;
|
|
num = p->buf - p->bufBase;
|
|
if (num != p->outStream->Write(p->outStream, p->bufBase, num))
|
|
p->res = SZ_ERROR_WRITE;
|
|
p->processed += num;
|
|
p->buf = p->bufBase;
|
|
}
|
|
|
|
static void MY_FAST_CALL RangeEnc_ShiftLow(CRangeEnc *p)
|
|
{
|
|
if ((UInt32)p->low < (UInt32)0xFF000000 || (int)(p->low >> 32) != 0)
|
|
{
|
|
Byte temp = p->cache;
|
|
do
|
|
{
|
|
Byte *buf = p->buf;
|
|
*buf++ = (Byte)(temp + (Byte)(p->low >> 32));
|
|
p->buf = buf;
|
|
if (buf == p->bufLim)
|
|
RangeEnc_FlushStream(p);
|
|
temp = 0xFF;
|
|
}
|
|
while (--p->cacheSize != 0);
|
|
p->cache = (Byte)((UInt32)p->low >> 24);
|
|
}
|
|
p->cacheSize++;
|
|
p->low = (UInt32)p->low << 8;
|
|
}
|
|
|
|
static void RangeEnc_FlushData(CRangeEnc *p)
|
|
{
|
|
int i;
|
|
for (i = 0; i < 5; i++)
|
|
RangeEnc_ShiftLow(p);
|
|
}
|
|
|
|
static void RangeEnc_EncodeDirectBits(CRangeEnc *p, UInt32 value, int numBits)
|
|
{
|
|
do
|
|
{
|
|
p->range >>= 1;
|
|
p->low += p->range & (0 - ((value >> --numBits) & 1));
|
|
if (p->range < kTopValue)
|
|
{
|
|
p->range <<= 8;
|
|
RangeEnc_ShiftLow(p);
|
|
}
|
|
}
|
|
while (numBits != 0);
|
|
}
|
|
|
|
static void RangeEnc_EncodeBit(CRangeEnc *p, CLzmaProb *prob, UInt32 symbol)
|
|
{
|
|
UInt32 ttt = *prob;
|
|
UInt32 newBound = (p->range >> kNumBitModelTotalBits) * ttt;
|
|
if (symbol == 0)
|
|
{
|
|
p->range = newBound;
|
|
ttt += (kBitModelTotal - ttt) >> kNumMoveBits;
|
|
}
|
|
else
|
|
{
|
|
p->low += newBound;
|
|
p->range -= newBound;
|
|
ttt -= ttt >> kNumMoveBits;
|
|
}
|
|
*prob = (CLzmaProb)ttt;
|
|
if (p->range < kTopValue)
|
|
{
|
|
p->range <<= 8;
|
|
RangeEnc_ShiftLow(p);
|
|
}
|
|
}
|
|
|
|
static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol)
|
|
{
|
|
symbol |= 0x100;
|
|
do
|
|
{
|
|
RangeEnc_EncodeBit(p, probs + (symbol >> 8), (symbol >> 7) & 1);
|
|
symbol <<= 1;
|
|
}
|
|
while (symbol < 0x10000);
|
|
}
|
|
|
|
static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol, UInt32 matchByte)
|
|
{
|
|
UInt32 offs = 0x100;
|
|
symbol |= 0x100;
|
|
do
|
|
{
|
|
matchByte <<= 1;
|
|
RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (symbol >> 8)), (symbol >> 7) & 1);
|
|
symbol <<= 1;
|
|
offs &= ~(matchByte ^ symbol);
|
|
}
|
|
while (symbol < 0x10000);
|
|
}
|
|
|
|
void LzmaEnc_InitPriceTables(UInt32 *ProbPrices)
|
|
{
|
|
UInt32 i;
|
|
for (i = (1 << kNumMoveReducingBits) / 2; i < kBitModelTotal; i += (1 << kNumMoveReducingBits))
|
|
{
|
|
const int kCyclesBits = kNumBitPriceShiftBits;
|
|
UInt32 w = i;
|
|
UInt32 bitCount = 0;
|
|
int j;
|
|
for (j = 0; j < kCyclesBits; j++)
|
|
{
|
|
w = w * w;
|
|
bitCount <<= 1;
|
|
while (w >= ((UInt32)1 << 16))
|
|
{
|
|
w >>= 1;
|
|
bitCount++;
|
|
}
|
|
}
|
|
ProbPrices[i >> kNumMoveReducingBits] = ((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount);
|
|
}
|
|
}
|
|
|
|
|
|
#define GET_PRICE(prob, symbol) \
|
|
p->ProbPrices[((prob) ^ (((-(int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
|
|
|
|
#define GET_PRICEa(prob, symbol) \
|
|
ProbPrices[((prob) ^ ((-((int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
|
|
|
|
#define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits]
|
|
#define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
|
|
|
|
#define GET_PRICE_0a(prob) ProbPrices[(prob) >> kNumMoveReducingBits]
|
|
#define GET_PRICE_1a(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
|
|
|
|
static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 symbol, UInt32 *ProbPrices)
|
|
{
|
|
UInt32 price = 0;
|
|
symbol |= 0x100;
|
|
do
|
|
{
|
|
price += GET_PRICEa(probs[symbol >> 8], (symbol >> 7) & 1);
|
|
symbol <<= 1;
|
|
}
|
|
while (symbol < 0x10000);
|
|
return price;
|
|
}
|
|
|
|
static UInt32 LitEnc_GetPriceMatched(const CLzmaProb *probs, UInt32 symbol, UInt32 matchByte, UInt32 *ProbPrices)
|
|
{
|
|
UInt32 price = 0;
|
|
UInt32 offs = 0x100;
|
|
symbol |= 0x100;
|
|
do
|
|
{
|
|
matchByte <<= 1;
|
|
price += GET_PRICEa(probs[offs + (matchByte & offs) + (symbol >> 8)], (symbol >> 7) & 1);
|
|
symbol <<= 1;
|
|
offs &= ~(matchByte ^ symbol);
|
|
}
|
|
while (symbol < 0x10000);
|
|
return price;
|
|
}
|
|
|
|
|
|
static void RcTree_Encode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
|
|
{
|
|
UInt32 m = 1;
|
|
int i;
|
|
for (i = numBitLevels; i != 0;)
|
|
{
|
|
UInt32 bit;
|
|
i--;
|
|
bit = (symbol >> i) & 1;
|
|
RangeEnc_EncodeBit(rc, probs + m, bit);
|
|
m = (m << 1) | bit;
|
|
}
|
|
}
|
|
|
|
static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
|
|
{
|
|
UInt32 m = 1;
|
|
int i;
|
|
for (i = 0; i < numBitLevels; i++)
|
|
{
|
|
UInt32 bit = symbol & 1;
|
|
RangeEnc_EncodeBit(rc, probs + m, bit);
|
|
m = (m << 1) | bit;
|
|
symbol >>= 1;
|
|
}
|
|
}
|
|
|
|
static UInt32 RcTree_GetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
|
|
{
|
|
UInt32 price = 0;
|
|
symbol |= (1 << numBitLevels);
|
|
while (symbol != 1)
|
|
{
|
|
price += GET_PRICEa(probs[symbol >> 1], symbol & 1);
|
|
symbol >>= 1;
|
|
}
|
|
return price;
|
|
}
|
|
|
|
static UInt32 RcTree_ReverseGetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
|
|
{
|
|
UInt32 price = 0;
|
|
UInt32 m = 1;
|
|
int i;
|
|
for (i = numBitLevels; i != 0; i--)
|
|
{
|
|
UInt32 bit = symbol & 1;
|
|
symbol >>= 1;
|
|
price += GET_PRICEa(probs[m], bit);
|
|
m = (m << 1) | bit;
|
|
}
|
|
return price;
|
|
}
|
|
|
|
|
|
static void LenEnc_Init(CLenEnc *p)
|
|
{
|
|
unsigned i;
|
|
p->choice = p->choice2 = kProbInitValue;
|
|
for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumLowBits); i++)
|
|
p->low[i] = kProbInitValue;
|
|
for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumMidBits); i++)
|
|
p->mid[i] = kProbInitValue;
|
|
for (i = 0; i < kLenNumHighSymbols; i++)
|
|
p->high[i] = kProbInitValue;
|
|
}
|
|
|
|
static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState)
|
|
{
|
|
if (symbol < kLenNumLowSymbols)
|
|
{
|
|
RangeEnc_EncodeBit(rc, &p->choice, 0);
|
|
RcTree_Encode(rc, p->low + (posState << kLenNumLowBits), kLenNumLowBits, symbol);
|
|
}
|
|
else
|
|
{
|
|
RangeEnc_EncodeBit(rc, &p->choice, 1);
|
|
if (symbol < kLenNumLowSymbols + kLenNumMidSymbols)
|
|
{
|
|
RangeEnc_EncodeBit(rc, &p->choice2, 0);
|
|
RcTree_Encode(rc, p->mid + (posState << kLenNumMidBits), kLenNumMidBits, symbol - kLenNumLowSymbols);
|
|
}
|
|
else
|
|
{
|
|
RangeEnc_EncodeBit(rc, &p->choice2, 1);
|
|
RcTree_Encode(rc, p->high, kLenNumHighBits, symbol - kLenNumLowSymbols - kLenNumMidSymbols);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void LenEnc_SetPrices(CLenEnc *p, UInt32 posState, UInt32 numSymbols, UInt32 *prices, UInt32 *ProbPrices)
|
|
{
|
|
UInt32 a0 = GET_PRICE_0a(p->choice);
|
|
UInt32 a1 = GET_PRICE_1a(p->choice);
|
|
UInt32 b0 = a1 + GET_PRICE_0a(p->choice2);
|
|
UInt32 b1 = a1 + GET_PRICE_1a(p->choice2);
|
|
UInt32 i = 0;
|
|
for (i = 0; i < kLenNumLowSymbols; i++)
|
|
{
|
|
if (i >= numSymbols)
|
|
return;
|
|
prices[i] = a0 + RcTree_GetPrice(p->low + (posState << kLenNumLowBits), kLenNumLowBits, i, ProbPrices);
|
|
}
|
|
for (; i < kLenNumLowSymbols + kLenNumMidSymbols; i++)
|
|
{
|
|
if (i >= numSymbols)
|
|
return;
|
|
prices[i] = b0 + RcTree_GetPrice(p->mid + (posState << kLenNumMidBits), kLenNumMidBits, i - kLenNumLowSymbols, ProbPrices);
|
|
}
|
|
for (; i < numSymbols; i++)
|
|
prices[i] = b1 + RcTree_GetPrice(p->high, kLenNumHighBits, i - kLenNumLowSymbols - kLenNumMidSymbols, ProbPrices);
|
|
}
|
|
|
|
static void MY_FAST_CALL LenPriceEnc_UpdateTable(CLenPriceEnc *p, UInt32 posState, UInt32 *ProbPrices)
|
|
{
|
|
LenEnc_SetPrices(&p->p, posState, p->tableSize, p->prices[posState], ProbPrices);
|
|
p->counters[posState] = p->tableSize;
|
|
}
|
|
|
|
static void LenPriceEnc_UpdateTables(CLenPriceEnc *p, UInt32 numPosStates, UInt32 *ProbPrices)
|
|
{
|
|
UInt32 posState;
|
|
for (posState = 0; posState < numPosStates; posState++)
|
|
LenPriceEnc_UpdateTable(p, posState, ProbPrices);
|
|
}
|
|
|
|
static void LenEnc_Encode2(CLenPriceEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState, Bool updatePrice, UInt32 *ProbPrices)
|
|
{
|
|
LenEnc_Encode(&p->p, rc, symbol, posState);
|
|
if (updatePrice)
|
|
if (--p->counters[posState] == 0)
|
|
LenPriceEnc_UpdateTable(p, posState, ProbPrices);
|
|
}
|
|
|
|
|
|
|
|
|
|
static void MovePos(CLzmaEnc *p, UInt32 num)
|
|
{
|
|
#ifdef SHOW_STAT
|
|
ttt += num;
|
|
printf("\n MovePos %d", num);
|
|
#endif
|
|
if (num != 0)
|
|
{
|
|
p->additionalOffset += num;
|
|
p->matchFinder.Skip(p->matchFinderObj, num);
|
|
}
|
|
}
|
|
|
|
static UInt32 ReadMatchDistances(CLzmaEnc *p, UInt32 *numDistancePairsRes)
|
|
{
|
|
UInt32 lenRes = 0, numPairs;
|
|
p->numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
|
|
numPairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matches);
|
|
#ifdef SHOW_STAT
|
|
printf("\n i = %d numPairs = %d ", ttt, numPairs / 2);
|
|
ttt++;
|
|
{
|
|
UInt32 i;
|
|
for (i = 0; i < numPairs; i += 2)
|
|
printf("%2d %6d | ", p->matches[i], p->matches[i + 1]);
|
|
}
|
|
#endif
|
|
if (numPairs > 0)
|
|
{
|
|
lenRes = p->matches[numPairs - 2];
|
|
if (lenRes == p->numFastBytes)
|
|
{
|
|
const Byte *pby = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
|
|
UInt32 distance = p->matches[numPairs - 1] + 1;
|
|
UInt32 numAvail = p->numAvail;
|
|
if (numAvail > LZMA_MATCH_LEN_MAX)
|
|
numAvail = LZMA_MATCH_LEN_MAX;
|
|
{
|
|
const Byte *pby2 = pby - distance;
|
|
for (; lenRes < numAvail && pby[lenRes] == pby2[lenRes]; lenRes++);
|
|
}
|
|
}
|
|
}
|
|
p->additionalOffset++;
|
|
*numDistancePairsRes = numPairs;
|
|
return lenRes;
|
|
}
|
|
|
|
|
|
#define MakeAsChar(p) (p)->backPrev = (UInt32)(-1); (p)->prev1IsChar = False;
|
|
#define MakeAsShortRep(p) (p)->backPrev = 0; (p)->prev1IsChar = False;
|
|
#define IsShortRep(p) ((p)->backPrev == 0)
|
|
|
|
static UInt32 GetRepLen1Price(CLzmaEnc *p, UInt32 state, UInt32 posState)
|
|
{
|
|
return
|
|
GET_PRICE_0(p->isRepG0[state]) +
|
|
GET_PRICE_0(p->isRep0Long[state][posState]);
|
|
}
|
|
|
|
static UInt32 GetPureRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 state, UInt32 posState)
|
|
{
|
|
UInt32 price;
|
|
if (repIndex == 0)
|
|
{
|
|
price = GET_PRICE_0(p->isRepG0[state]);
|
|
price += GET_PRICE_1(p->isRep0Long[state][posState]);
|
|
}
|
|
else
|
|
{
|
|
price = GET_PRICE_1(p->isRepG0[state]);
|
|
if (repIndex == 1)
|
|
price += GET_PRICE_0(p->isRepG1[state]);
|
|
else
|
|
{
|
|
price += GET_PRICE_1(p->isRepG1[state]);
|
|
price += GET_PRICE(p->isRepG2[state], repIndex - 2);
|
|
}
|
|
}
|
|
return price;
|
|
}
|
|
|
|
static UInt32 GetRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 len, UInt32 state, UInt32 posState)
|
|
{
|
|
return p->repLenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN] +
|
|
GetPureRepPrice(p, repIndex, state, posState);
|
|
}
|
|
|
|
static UInt32 Backward(CLzmaEnc *p, UInt32 *backRes, UInt32 cur)
|
|
{
|
|
UInt32 posMem = p->opt[cur].posPrev;
|
|
UInt32 backMem = p->opt[cur].backPrev;
|
|
p->optimumEndIndex = cur;
|
|
do
|
|
{
|
|
if (p->opt[cur].prev1IsChar)
|
|
{
|
|
MakeAsChar(&p->opt[posMem])
|
|
p->opt[posMem].posPrev = posMem - 1;
|
|
if (p->opt[cur].prev2)
|
|
{
|
|
p->opt[posMem - 1].prev1IsChar = False;
|
|
p->opt[posMem - 1].posPrev = p->opt[cur].posPrev2;
|
|
p->opt[posMem - 1].backPrev = p->opt[cur].backPrev2;
|
|
}
|
|
}
|
|
{
|
|
UInt32 posPrev = posMem;
|
|
UInt32 backCur = backMem;
|
|
|
|
backMem = p->opt[posPrev].backPrev;
|
|
posMem = p->opt[posPrev].posPrev;
|
|
|
|
p->opt[posPrev].backPrev = backCur;
|
|
p->opt[posPrev].posPrev = cur;
|
|
cur = posPrev;
|
|
}
|
|
}
|
|
while (cur != 0);
|
|
*backRes = p->opt[0].backPrev;
|
|
p->optimumCurrentIndex = p->opt[0].posPrev;
|
|
return p->optimumCurrentIndex;
|
|
}
|
|
|
|
#define LIT_PROBS(pos, prevByte) (p->litProbs + ((((pos) & p->lpMask) << p->lc) + ((prevByte) >> (8 - p->lc))) * 0x300)
|
|
|
|
static UInt32 GetOptimum(CLzmaEnc *p, UInt32 position, UInt32 *backRes)
|
|
{
|
|
UInt32 numAvail, mainLen, numPairs, repMaxIndex, i, posState, lenEnd, len, cur;
|
|
UInt32 matchPrice, repMatchPrice, normalMatchPrice;
|
|
UInt32 reps[LZMA_NUM_REPS], repLens[LZMA_NUM_REPS];
|
|
UInt32 *matches;
|
|
const Byte *data;
|
|
Byte curByte, matchByte;
|
|
if (p->optimumEndIndex != p->optimumCurrentIndex)
|
|
{
|
|
const COptimal *opt = &p->opt[p->optimumCurrentIndex];
|
|
UInt32 lenRes = opt->posPrev - p->optimumCurrentIndex;
|
|
*backRes = opt->backPrev;
|
|
p->optimumCurrentIndex = opt->posPrev;
|
|
return lenRes;
|
|
}
|
|
p->optimumCurrentIndex = p->optimumEndIndex = 0;
|
|
|
|
if (p->additionalOffset == 0)
|
|
mainLen = ReadMatchDistances(p, &numPairs);
|
|
else
|
|
{
|
|
mainLen = p->longestMatchLength;
|
|
numPairs = p->numPairs;
|
|
}
|
|
|
|
numAvail = p->numAvail;
|
|
if (numAvail < 2)
|
|
{
|
|
*backRes = (UInt32)(-1);
|
|
return 1;
|
|
}
|
|
if (numAvail > LZMA_MATCH_LEN_MAX)
|
|
numAvail = LZMA_MATCH_LEN_MAX;
|
|
|
|
data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
|
|
repMaxIndex = 0;
|
|
for (i = 0; i < LZMA_NUM_REPS; i++)
|
|
{
|
|
UInt32 lenTest;
|
|
const Byte *data2;
|
|
reps[i] = p->reps[i];
|
|
data2 = data - (reps[i] + 1);
|
|
if (data[0] != data2[0] || data[1] != data2[1])
|
|
{
|
|
repLens[i] = 0;
|
|
continue;
|
|
}
|
|
for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
|
|
repLens[i] = lenTest;
|
|
if (lenTest > repLens[repMaxIndex])
|
|
repMaxIndex = i;
|
|
}
|
|
if (repLens[repMaxIndex] >= p->numFastBytes)
|
|
{
|
|
UInt32 lenRes;
|
|
*backRes = repMaxIndex;
|
|
lenRes = repLens[repMaxIndex];
|
|
MovePos(p, lenRes - 1);
|
|
return lenRes;
|
|
}
|
|
|
|
matches = p->matches;
|
|
if (mainLen >= p->numFastBytes)
|
|
{
|
|
*backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
|
|
MovePos(p, mainLen - 1);
|
|
return mainLen;
|
|
}
|
|
curByte = *data;
|
|
matchByte = *(data - (reps[0] + 1));
|
|
|
|
if (mainLen < 2 && curByte != matchByte && repLens[repMaxIndex] < 2)
|
|
{
|
|
*backRes = (UInt32)-1;
|
|
return 1;
|
|
}
|
|
|
|
p->opt[0].state = (CState)p->state;
|
|
|
|
posState = (position & p->pbMask);
|
|
|
|
{
|
|
const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
|
|
p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) +
|
|
(!IsCharState(p->state) ?
|
|
LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) :
|
|
LitEnc_GetPrice(probs, curByte, p->ProbPrices));
|
|
}
|
|
|
|
MakeAsChar(&p->opt[1]);
|
|
|
|
matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]);
|
|
repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]);
|
|
|
|
if (matchByte == curByte)
|
|
{
|
|
UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, p->state, posState);
|
|
if (shortRepPrice < p->opt[1].price)
|
|
{
|
|
p->opt[1].price = shortRepPrice;
|
|
MakeAsShortRep(&p->opt[1]);
|
|
}
|
|
}
|
|
lenEnd = ((mainLen >= repLens[repMaxIndex]) ? mainLen : repLens[repMaxIndex]);
|
|
|
|
if (lenEnd < 2)
|
|
{
|
|
*backRes = p->opt[1].backPrev;
|
|
return 1;
|
|
}
|
|
|
|
p->opt[1].posPrev = 0;
|
|
for (i = 0; i < LZMA_NUM_REPS; i++)
|
|
p->opt[0].backs[i] = reps[i];
|
|
|
|
len = lenEnd;
|
|
do
|
|
p->opt[len--].price = kInfinityPrice;
|
|
while (len >= 2);
|
|
|
|
for (i = 0; i < LZMA_NUM_REPS; i++)
|
|
{
|
|
UInt32 repLen = repLens[i];
|
|
UInt32 price;
|
|
if (repLen < 2)
|
|
continue;
|
|
price = repMatchPrice + GetPureRepPrice(p, i, p->state, posState);
|
|
do
|
|
{
|
|
UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][repLen - 2];
|
|
COptimal *opt = &p->opt[repLen];
|
|
if (curAndLenPrice < opt->price)
|
|
{
|
|
opt->price = curAndLenPrice;
|
|
opt->posPrev = 0;
|
|
opt->backPrev = i;
|
|
opt->prev1IsChar = False;
|
|
}
|
|
}
|
|
while (--repLen >= 2);
|
|
}
|
|
|
|
normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]);
|
|
|
|
len = ((repLens[0] >= 2) ? repLens[0] + 1 : 2);
|
|
if (len <= mainLen)
|
|
{
|
|
UInt32 offs = 0;
|
|
while (len > matches[offs])
|
|
offs += 2;
|
|
for (; ; len++)
|
|
{
|
|
COptimal *opt;
|
|
UInt32 distance = matches[offs + 1];
|
|
|
|
UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN];
|
|
UInt32 lenToPosState = GetLenToPosState(len);
|
|
if (distance < kNumFullDistances)
|
|
curAndLenPrice += p->distancesPrices[lenToPosState][distance];
|
|
else
|
|
{
|
|
UInt32 slot;
|
|
GetPosSlot2(distance, slot);
|
|
curAndLenPrice += p->alignPrices[distance & kAlignMask] + p->posSlotPrices[lenToPosState][slot];
|
|
}
|
|
opt = &p->opt[len];
|
|
if (curAndLenPrice < opt->price)
|
|
{
|
|
opt->price = curAndLenPrice;
|
|
opt->posPrev = 0;
|
|
opt->backPrev = distance + LZMA_NUM_REPS;
|
|
opt->prev1IsChar = False;
|
|
}
|
|
if (len == matches[offs])
|
|
{
|
|
offs += 2;
|
|
if (offs == numPairs)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
cur = 0;
|
|
|
|
#ifdef SHOW_STAT2
|
|
if (position >= 0)
|
|
{
|
|
unsigned i;
|
|
printf("\n pos = %4X", position);
|
|
for (i = cur; i <= lenEnd; i++)
|
|
printf("\nprice[%4X] = %d", position - cur + i, p->opt[i].price);
|
|
}
|
|
#endif
|
|
|
|
for (;;)
|
|
{
|
|
UInt32 numAvailFull, newLen, numPairs, posPrev, state, posState, startLen;
|
|
UInt32 curPrice, curAnd1Price, matchPrice, repMatchPrice;
|
|
Bool nextIsChar;
|
|
Byte curByte, matchByte;
|
|
const Byte *data;
|
|
COptimal *curOpt;
|
|
COptimal *nextOpt;
|
|
|
|
cur++;
|
|
if (cur == lenEnd)
|
|
return Backward(p, backRes, cur);
|
|
|
|
newLen = ReadMatchDistances(p, &numPairs);
|
|
if (newLen >= p->numFastBytes)
|
|
{
|
|
p->numPairs = numPairs;
|
|
p->longestMatchLength = newLen;
|
|
return Backward(p, backRes, cur);
|
|
}
|
|
position++;
|
|
curOpt = &p->opt[cur];
|
|
posPrev = curOpt->posPrev;
|
|
if (curOpt->prev1IsChar)
|
|
{
|
|
posPrev--;
|
|
if (curOpt->prev2)
|
|
{
|
|
state = p->opt[curOpt->posPrev2].state;
|
|
if (curOpt->backPrev2 < LZMA_NUM_REPS)
|
|
state = kRepNextStates[state];
|
|
else
|
|
state = kMatchNextStates[state];
|
|
}
|
|
else
|
|
state = p->opt[posPrev].state;
|
|
state = kLiteralNextStates[state];
|
|
}
|
|
else
|
|
state = p->opt[posPrev].state;
|
|
if (posPrev == cur - 1)
|
|
{
|
|
if (IsShortRep(curOpt))
|
|
state = kShortRepNextStates[state];
|
|
else
|
|
state = kLiteralNextStates[state];
|
|
}
|
|
else
|
|
{
|
|
UInt32 pos;
|
|
const COptimal *prevOpt;
|
|
if (curOpt->prev1IsChar && curOpt->prev2)
|
|
{
|
|
posPrev = curOpt->posPrev2;
|
|
pos = curOpt->backPrev2;
|
|
state = kRepNextStates[state];
|
|
}
|
|
else
|
|
{
|
|
pos = curOpt->backPrev;
|
|
if (pos < LZMA_NUM_REPS)
|
|
state = kRepNextStates[state];
|
|
else
|
|
state = kMatchNextStates[state];
|
|
}
|
|
prevOpt = &p->opt[posPrev];
|
|
if (pos < LZMA_NUM_REPS)
|
|
{
|
|
UInt32 i;
|
|
reps[0] = prevOpt->backs[pos];
|
|
for (i = 1; i <= pos; i++)
|
|
reps[i] = prevOpt->backs[i - 1];
|
|
for (; i < LZMA_NUM_REPS; i++)
|
|
reps[i] = prevOpt->backs[i];
|
|
}
|
|
else
|
|
{
|
|
UInt32 i;
|
|
reps[0] = (pos - LZMA_NUM_REPS);
|
|
for (i = 1; i < LZMA_NUM_REPS; i++)
|
|
reps[i] = prevOpt->backs[i - 1];
|
|
}
|
|
}
|
|
curOpt->state = (CState)state;
|
|
|
|
curOpt->backs[0] = reps[0];
|
|
curOpt->backs[1] = reps[1];
|
|
curOpt->backs[2] = reps[2];
|
|
curOpt->backs[3] = reps[3];
|
|
|
|
curPrice = curOpt->price;
|
|
nextIsChar = False;
|
|
data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
|
|
curByte = *data;
|
|
matchByte = *(data - (reps[0] + 1));
|
|
|
|
posState = (position & p->pbMask);
|
|
|
|
curAnd1Price = curPrice + GET_PRICE_0(p->isMatch[state][posState]);
|
|
{
|
|
const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
|
|
curAnd1Price +=
|
|
(!IsCharState(state) ?
|
|
LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) :
|
|
LitEnc_GetPrice(probs, curByte, p->ProbPrices));
|
|
}
|
|
|
|
nextOpt = &p->opt[cur + 1];
|
|
|
|
if (curAnd1Price < nextOpt->price)
|
|
{
|
|
nextOpt->price = curAnd1Price;
|
|
nextOpt->posPrev = cur;
|
|
MakeAsChar(nextOpt);
|
|
nextIsChar = True;
|
|
}
|
|
|
|
matchPrice = curPrice + GET_PRICE_1(p->isMatch[state][posState]);
|
|
repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]);
|
|
|
|
if (matchByte == curByte && !(nextOpt->posPrev < cur && nextOpt->backPrev == 0))
|
|
{
|
|
UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, state, posState);
|
|
if (shortRepPrice <= nextOpt->price)
|
|
{
|
|
nextOpt->price = shortRepPrice;
|
|
nextOpt->posPrev = cur;
|
|
MakeAsShortRep(nextOpt);
|
|
nextIsChar = True;
|
|
}
|
|
}
|
|
numAvailFull = p->numAvail;
|
|
{
|
|
UInt32 temp = kNumOpts - 1 - cur;
|
|
if (temp < numAvailFull)
|
|
numAvailFull = temp;
|
|
}
|
|
|
|
if (numAvailFull < 2)
|
|
continue;
|
|
numAvail = (numAvailFull <= p->numFastBytes ? numAvailFull : p->numFastBytes);
|
|
|
|
if (!nextIsChar && matchByte != curByte) /* speed optimization */
|
|
{
|
|
/* try Literal + rep0 */
|
|
UInt32 temp;
|
|
UInt32 lenTest2;
|
|
const Byte *data2 = data - (reps[0] + 1);
|
|
UInt32 limit = p->numFastBytes + 1;
|
|
if (limit > numAvailFull)
|
|
limit = numAvailFull;
|
|
|
|
for (temp = 1; temp < limit && data[temp] == data2[temp]; temp++);
|
|
lenTest2 = temp - 1;
|
|
if (lenTest2 >= 2)
|
|
{
|
|
UInt32 state2 = kLiteralNextStates[state];
|
|
UInt32 posStateNext = (position + 1) & p->pbMask;
|
|
UInt32 nextRepMatchPrice = curAnd1Price +
|
|
GET_PRICE_1(p->isMatch[state2][posStateNext]) +
|
|
GET_PRICE_1(p->isRep[state2]);
|
|
/* for (; lenTest2 >= 2; lenTest2--) */
|
|
{
|
|
UInt32 curAndLenPrice;
|
|
COptimal *opt;
|
|
UInt32 offset = cur + 1 + lenTest2;
|
|
while (lenEnd < offset)
|
|
p->opt[++lenEnd].price = kInfinityPrice;
|
|
curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
|
|
opt = &p->opt[offset];
|
|
if (curAndLenPrice < opt->price)
|
|
{
|
|
opt->price = curAndLenPrice;
|
|
opt->posPrev = cur + 1;
|
|
opt->backPrev = 0;
|
|
opt->prev1IsChar = True;
|
|
opt->prev2 = False;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
startLen = 2; /* speed optimization */
|
|
{
|
|
UInt32 repIndex;
|
|
for (repIndex = 0; repIndex < LZMA_NUM_REPS; repIndex++)
|
|
{
|
|
UInt32 lenTest;
|
|
UInt32 lenTestTemp;
|
|
UInt32 price;
|
|
const Byte *data2 = data - (reps[repIndex] + 1);
|
|
if (data[0] != data2[0] || data[1] != data2[1])
|
|
continue;
|
|
for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
|
|
while (lenEnd < cur + lenTest)
|
|
p->opt[++lenEnd].price = kInfinityPrice;
|
|
lenTestTemp = lenTest;
|
|
price = repMatchPrice + GetPureRepPrice(p, repIndex, state, posState);
|
|
do
|
|
{
|
|
UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][lenTest - 2];
|
|
COptimal *opt = &p->opt[cur + lenTest];
|
|
if (curAndLenPrice < opt->price)
|
|
{
|
|
opt->price = curAndLenPrice;
|
|
opt->posPrev = cur;
|
|
opt->backPrev = repIndex;
|
|
opt->prev1IsChar = False;
|
|
}
|
|
}
|
|
while (--lenTest >= 2);
|
|
lenTest = lenTestTemp;
|
|
|
|
if (repIndex == 0)
|
|
startLen = lenTest + 1;
|
|
|
|
/* if (_maxMode) */
|
|
{
|
|
UInt32 lenTest2 = lenTest + 1;
|
|
UInt32 limit = lenTest2 + p->numFastBytes;
|
|
UInt32 nextRepMatchPrice;
|
|
if (limit > numAvailFull)
|
|
limit = numAvailFull;
|
|
for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
|
|
lenTest2 -= lenTest + 1;
|
|
if (lenTest2 >= 2)
|
|
{
|
|
UInt32 state2 = kRepNextStates[state];
|
|
UInt32 posStateNext = (position + lenTest) & p->pbMask;
|
|
UInt32 curAndLenCharPrice =
|
|
price + p->repLenEnc.prices[posState][lenTest - 2] +
|
|
GET_PRICE_0(p->isMatch[state2][posStateNext]) +
|
|
LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
|
|
data[lenTest], data2[lenTest], p->ProbPrices);
|
|
state2 = kLiteralNextStates[state2];
|
|
posStateNext = (position + lenTest + 1) & p->pbMask;
|
|
nextRepMatchPrice = curAndLenCharPrice +
|
|
GET_PRICE_1(p->isMatch[state2][posStateNext]) +
|
|
GET_PRICE_1(p->isRep[state2]);
|
|
|
|
/* for (; lenTest2 >= 2; lenTest2--) */
|
|
{
|
|
UInt32 curAndLenPrice;
|
|
COptimal *opt;
|
|
UInt32 offset = cur + lenTest + 1 + lenTest2;
|
|
while (lenEnd < offset)
|
|
p->opt[++lenEnd].price = kInfinityPrice;
|
|
curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
|
|
opt = &p->opt[offset];
|
|
if (curAndLenPrice < opt->price)
|
|
{
|
|
opt->price = curAndLenPrice;
|
|
opt->posPrev = cur + lenTest + 1;
|
|
opt->backPrev = 0;
|
|
opt->prev1IsChar = True;
|
|
opt->prev2 = True;
|
|
opt->posPrev2 = cur;
|
|
opt->backPrev2 = repIndex;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* for (UInt32 lenTest = 2; lenTest <= newLen; lenTest++) */
|
|
if (newLen > numAvail)
|
|
{
|
|
newLen = numAvail;
|
|
for (numPairs = 0; newLen > matches[numPairs]; numPairs += 2);
|
|
matches[numPairs] = newLen;
|
|
numPairs += 2;
|
|
}
|
|
if (newLen >= startLen)
|
|
{
|
|
UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]);
|
|
UInt32 offs, curBack, posSlot;
|
|
UInt32 lenTest;
|
|
while (lenEnd < cur + newLen)
|
|
p->opt[++lenEnd].price = kInfinityPrice;
|
|
|
|
offs = 0;
|
|
while (startLen > matches[offs])
|
|
offs += 2;
|
|
curBack = matches[offs + 1];
|
|
GetPosSlot2(curBack, posSlot);
|
|
for (lenTest = /*2*/ startLen; ; lenTest++)
|
|
{
|
|
UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][lenTest - LZMA_MATCH_LEN_MIN];
|
|
UInt32 lenToPosState = GetLenToPosState(lenTest);
|
|
COptimal *opt;
|
|
if (curBack < kNumFullDistances)
|
|
curAndLenPrice += p->distancesPrices[lenToPosState][curBack];
|
|
else
|
|
curAndLenPrice += p->posSlotPrices[lenToPosState][posSlot] + p->alignPrices[curBack & kAlignMask];
|
|
|
|
opt = &p->opt[cur + lenTest];
|
|
if (curAndLenPrice < opt->price)
|
|
{
|
|
opt->price = curAndLenPrice;
|
|
opt->posPrev = cur;
|
|
opt->backPrev = curBack + LZMA_NUM_REPS;
|
|
opt->prev1IsChar = False;
|
|
}
|
|
|
|
if (/*_maxMode && */lenTest == matches[offs])
|
|
{
|
|
/* Try Match + Literal + Rep0 */
|
|
const Byte *data2 = data - (curBack + 1);
|
|
UInt32 lenTest2 = lenTest + 1;
|
|
UInt32 limit = lenTest2 + p->numFastBytes;
|
|
UInt32 nextRepMatchPrice;
|
|
if (limit > numAvailFull)
|
|
limit = numAvailFull;
|
|
for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
|
|
lenTest2 -= lenTest + 1;
|
|
if (lenTest2 >= 2)
|
|
{
|
|
UInt32 state2 = kMatchNextStates[state];
|
|
UInt32 posStateNext = (position + lenTest) & p->pbMask;
|
|
UInt32 curAndLenCharPrice = curAndLenPrice +
|
|
GET_PRICE_0(p->isMatch[state2][posStateNext]) +
|
|
LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
|
|
data[lenTest], data2[lenTest], p->ProbPrices);
|
|
state2 = kLiteralNextStates[state2];
|
|
posStateNext = (posStateNext + 1) & p->pbMask;
|
|
nextRepMatchPrice = curAndLenCharPrice +
|
|
GET_PRICE_1(p->isMatch[state2][posStateNext]) +
|
|
GET_PRICE_1(p->isRep[state2]);
|
|
|
|
/* for (; lenTest2 >= 2; lenTest2--) */
|
|
{
|
|
UInt32 offset = cur + lenTest + 1 + lenTest2;
|
|
UInt32 curAndLenPrice;
|
|
COptimal *opt;
|
|
while (lenEnd < offset)
|
|
p->opt[++lenEnd].price = kInfinityPrice;
|
|
curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
|
|
opt = &p->opt[offset];
|
|
if (curAndLenPrice < opt->price)
|
|
{
|
|
opt->price = curAndLenPrice;
|
|
opt->posPrev = cur + lenTest + 1;
|
|
opt->backPrev = 0;
|
|
opt->prev1IsChar = True;
|
|
opt->prev2 = True;
|
|
opt->posPrev2 = cur;
|
|
opt->backPrev2 = curBack + LZMA_NUM_REPS;
|
|
}
|
|
}
|
|
}
|
|
offs += 2;
|
|
if (offs == numPairs)
|
|
break;
|
|
curBack = matches[offs + 1];
|
|
if (curBack >= kNumFullDistances)
|
|
GetPosSlot2(curBack, posSlot);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist))
|
|
|
|
static UInt32 GetOptimumFast(CLzmaEnc *p, UInt32 *backRes)
|
|
{
|
|
UInt32 numAvail, mainLen, mainDist, numPairs, repIndex, repLen, i;
|
|
const Byte *data;
|
|
const UInt32 *matches;
|
|
|
|
if (p->additionalOffset == 0)
|
|
mainLen = ReadMatchDistances(p, &numPairs);
|
|
else
|
|
{
|
|
mainLen = p->longestMatchLength;
|
|
numPairs = p->numPairs;
|
|
}
|
|
|
|
numAvail = p->numAvail;
|
|
*backRes = (UInt32)-1;
|
|
if (numAvail < 2)
|
|
return 1;
|
|
if (numAvail > LZMA_MATCH_LEN_MAX)
|
|
numAvail = LZMA_MATCH_LEN_MAX;
|
|
data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
|
|
|
|
repLen = repIndex = 0;
|
|
for (i = 0; i < LZMA_NUM_REPS; i++)
|
|
{
|
|
UInt32 len;
|
|
const Byte *data2 = data - (p->reps[i] + 1);
|
|
if (data[0] != data2[0] || data[1] != data2[1])
|
|
continue;
|
|
for (len = 2; len < numAvail && data[len] == data2[len]; len++);
|
|
if (len >= p->numFastBytes)
|
|
{
|
|
*backRes = i;
|
|
MovePos(p, len - 1);
|
|
return len;
|
|
}
|
|
if (len > repLen)
|
|
{
|
|
repIndex = i;
|
|
repLen = len;
|
|
}
|
|
}
|
|
|
|
matches = p->matches;
|
|
if (mainLen >= p->numFastBytes)
|
|
{
|
|
*backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
|
|
MovePos(p, mainLen - 1);
|
|
return mainLen;
|
|
}
|
|
|
|
mainDist = 0; /* for GCC */
|
|
if (mainLen >= 2)
|
|
{
|
|
mainDist = matches[numPairs - 1];
|
|
while (numPairs > 2 && mainLen == matches[numPairs - 4] + 1)
|
|
{
|
|
if (!ChangePair(matches[numPairs - 3], mainDist))
|
|
break;
|
|
numPairs -= 2;
|
|
mainLen = matches[numPairs - 2];
|
|
mainDist = matches[numPairs - 1];
|
|
}
|
|
if (mainLen == 2 && mainDist >= 0x80)
|
|
mainLen = 1;
|
|
}
|
|
|
|
if (repLen >= 2 && (
|
|
(repLen + 1 >= mainLen) ||
|
|
(repLen + 2 >= mainLen && mainDist >= (1 << 9)) ||
|
|
(repLen + 3 >= mainLen && mainDist >= (1 << 15))))
|
|
{
|
|
*backRes = repIndex;
|
|
MovePos(p, repLen - 1);
|
|
return repLen;
|
|
}
|
|
|
|
if (mainLen < 2 || numAvail <= 2)
|
|
return 1;
|
|
|
|
p->longestMatchLength = ReadMatchDistances(p, &p->numPairs);
|
|
if (p->longestMatchLength >= 2)
|
|
{
|
|
UInt32 newDistance = matches[p->numPairs - 1];
|
|
if ((p->longestMatchLength >= mainLen && newDistance < mainDist) ||
|
|
(p->longestMatchLength == mainLen + 1 && !ChangePair(mainDist, newDistance)) ||
|
|
(p->longestMatchLength > mainLen + 1) ||
|
|
(p->longestMatchLength + 1 >= mainLen && mainLen >= 3 && ChangePair(newDistance, mainDist)))
|
|
return 1;
|
|
}
|
|
|
|
data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
|
|
for (i = 0; i < LZMA_NUM_REPS; i++)
|
|
{
|
|
UInt32 len, limit;
|
|
const Byte *data2 = data - (p->reps[i] + 1);
|
|
if (data[0] != data2[0] || data[1] != data2[1])
|
|
continue;
|
|
limit = mainLen - 1;
|
|
for (len = 2; len < limit && data[len] == data2[len]; len++);
|
|
if (len >= limit)
|
|
return 1;
|
|
}
|
|
*backRes = mainDist + LZMA_NUM_REPS;
|
|
MovePos(p, mainLen - 2);
|
|
return mainLen;
|
|
}
|
|
|
|
static void WriteEndMarker(CLzmaEnc *p, UInt32 posState)
|
|
{
|
|
UInt32 len;
|
|
RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
|
|
RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
|
|
p->state = kMatchNextStates[p->state];
|
|
len = LZMA_MATCH_LEN_MIN;
|
|
LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
|
|
RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, (1 << kNumPosSlotBits) - 1);
|
|
RangeEnc_EncodeDirectBits(&p->rc, (((UInt32)1 << 30) - 1) >> kNumAlignBits, 30 - kNumAlignBits);
|
|
RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask);
|
|
}
|
|
|
|
static SRes CheckErrors(CLzmaEnc *p)
|
|
{
|
|
if (p->result != SZ_OK)
|
|
return p->result;
|
|
if (p->rc.res != SZ_OK)
|
|
p->result = SZ_ERROR_WRITE;
|
|
if (p->matchFinderBase.result != SZ_OK)
|
|
p->result = SZ_ERROR_READ;
|
|
if (p->result != SZ_OK)
|
|
p->finished = True;
|
|
return p->result;
|
|
}
|
|
|
|
static SRes Flush(CLzmaEnc *p, UInt32 nowPos)
|
|
{
|
|
/* ReleaseMFStream(); */
|
|
p->finished = True;
|
|
if (p->writeEndMark)
|
|
WriteEndMarker(p, nowPos & p->pbMask);
|
|
RangeEnc_FlushData(&p->rc);
|
|
RangeEnc_FlushStream(&p->rc);
|
|
return CheckErrors(p);
|
|
}
|
|
|
|
static void FillAlignPrices(CLzmaEnc *p)
|
|
{
|
|
UInt32 i;
|
|
for (i = 0; i < kAlignTableSize; i++)
|
|
p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices);
|
|
p->alignPriceCount = 0;
|
|
}
|
|
|
|
static void FillDistancesPrices(CLzmaEnc *p)
|
|
{
|
|
UInt32 tempPrices[kNumFullDistances];
|
|
UInt32 i, lenToPosState;
|
|
for (i = kStartPosModelIndex; i < kNumFullDistances; i++)
|
|
{
|
|
UInt32 posSlot = GetPosSlot1(i);
|
|
UInt32 footerBits = ((posSlot >> 1) - 1);
|
|
UInt32 base = ((2 | (posSlot & 1)) << footerBits);
|
|
tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base - posSlot - 1, footerBits, i - base, p->ProbPrices);
|
|
}
|
|
|
|
for (lenToPosState = 0; lenToPosState < kNumLenToPosStates; lenToPosState++)
|
|
{
|
|
UInt32 posSlot;
|
|
const CLzmaProb *encoder = p->posSlotEncoder[lenToPosState];
|
|
UInt32 *posSlotPrices = p->posSlotPrices[lenToPosState];
|
|
for (posSlot = 0; posSlot < p->distTableSize; posSlot++)
|
|
posSlotPrices[posSlot] = RcTree_GetPrice(encoder, kNumPosSlotBits, posSlot, p->ProbPrices);
|
|
for (posSlot = kEndPosModelIndex; posSlot < p->distTableSize; posSlot++)
|
|
posSlotPrices[posSlot] += ((((posSlot >> 1) - 1) - kNumAlignBits) << kNumBitPriceShiftBits);
|
|
|
|
{
|
|
UInt32 *distancesPrices = p->distancesPrices[lenToPosState];
|
|
UInt32 i;
|
|
for (i = 0; i < kStartPosModelIndex; i++)
|
|
distancesPrices[i] = posSlotPrices[i];
|
|
for (; i < kNumFullDistances; i++)
|
|
distancesPrices[i] = posSlotPrices[GetPosSlot1(i)] + tempPrices[i];
|
|
}
|
|
}
|
|
p->matchPriceCount = 0;
|
|
}
|
|
|
|
void LzmaEnc_Construct(CLzmaEnc *p)
|
|
{
|
|
RangeEnc_Construct(&p->rc);
|
|
MatchFinder_Construct(&p->matchFinderBase);
|
|
#ifndef _7ZIP_ST
|
|
MatchFinderMt_Construct(&p->matchFinderMt);
|
|
p->matchFinderMt.MatchFinder = &p->matchFinderBase;
|
|
#endif
|
|
|
|
{
|
|
CLzmaEncProps props;
|
|
LzmaEncProps_Init(&props);
|
|
LzmaEnc_SetProps(p, &props);
|
|
}
|
|
|
|
#ifndef LZMA_LOG_BSR
|
|
LzmaEnc_FastPosInit(p->g_FastPos);
|
|
#endif
|
|
|
|
LzmaEnc_InitPriceTables(p->ProbPrices);
|
|
p->litProbs = 0;
|
|
p->saveState.litProbs = 0;
|
|
}
|
|
|
|
CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc)
|
|
{
|
|
void *p;
|
|
p = alloc->Alloc(alloc, sizeof(CLzmaEnc));
|
|
if (p != 0)
|
|
LzmaEnc_Construct((CLzmaEnc *)p);
|
|
return p;
|
|
}
|
|
|
|
void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAlloc *alloc)
|
|
{
|
|
alloc->Free(alloc, p->litProbs);
|
|
alloc->Free(alloc, p->saveState.litProbs);
|
|
p->litProbs = 0;
|
|
p->saveState.litProbs = 0;
|
|
}
|
|
|
|
void LzmaEnc_Destruct(CLzmaEnc *p, ISzAlloc *alloc, ISzAlloc *allocBig)
|
|
{
|
|
#ifndef _7ZIP_ST
|
|
MatchFinderMt_Destruct(&p->matchFinderMt, allocBig);
|
|
#endif
|
|
MatchFinder_Free(&p->matchFinderBase, allocBig);
|
|
LzmaEnc_FreeLits(p, alloc);
|
|
RangeEnc_Free(&p->rc, alloc);
|
|
}
|
|
|
|
void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig)
|
|
{
|
|
LzmaEnc_Destruct((CLzmaEnc *)p, alloc, allocBig);
|
|
alloc->Free(alloc, p);
|
|
}
|
|
|
|
static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, Bool useLimits, UInt32 maxPackSize, UInt32 maxUnpackSize)
|
|
{
|
|
UInt32 nowPos32, startPos32;
|
|
if (p->needInit)
|
|
{
|
|
p->matchFinder.Init(p->matchFinderObj);
|
|
p->needInit = 0;
|
|
}
|
|
|
|
if (p->finished)
|
|
return p->result;
|
|
RINOK(CheckErrors(p));
|
|
|
|
nowPos32 = (UInt32)p->nowPos64;
|
|
startPos32 = nowPos32;
|
|
|
|
if (p->nowPos64 == 0)
|
|
{
|
|
UInt32 numPairs;
|
|
Byte curByte;
|
|
if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
|
|
return Flush(p, nowPos32);
|
|
ReadMatchDistances(p, &numPairs);
|
|
RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][0], 0);
|
|
p->state = kLiteralNextStates[p->state];
|
|
curByte = p->matchFinder.GetIndexByte(p->matchFinderObj, 0 - p->additionalOffset);
|
|
LitEnc_Encode(&p->rc, p->litProbs, curByte);
|
|
p->additionalOffset--;
|
|
nowPos32++;
|
|
}
|
|
|
|
if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0)
|
|
for (;;)
|
|
{
|
|
UInt32 pos, len, posState;
|
|
|
|
if (p->fastMode)
|
|
len = GetOptimumFast(p, &pos);
|
|
else
|
|
len = GetOptimum(p, nowPos32, &pos);
|
|
|
|
#ifdef SHOW_STAT2
|
|
printf("\n pos = %4X, len = %d pos = %d", nowPos32, len, pos);
|
|
#endif
|
|
|
|
posState = nowPos32 & p->pbMask;
|
|
if (len == 1 && pos == (UInt32)-1)
|
|
{
|
|
Byte curByte;
|
|
CLzmaProb *probs;
|
|
const Byte *data;
|
|
|
|
RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 0);
|
|
data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
|
|
curByte = *data;
|
|
probs = LIT_PROBS(nowPos32, *(data - 1));
|
|
if (IsCharState(p->state))
|
|
LitEnc_Encode(&p->rc, probs, curByte);
|
|
else
|
|
LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0] - 1));
|
|
p->state = kLiteralNextStates[p->state];
|
|
}
|
|
else
|
|
{
|
|
RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
|
|
if (pos < LZMA_NUM_REPS)
|
|
{
|
|
RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 1);
|
|
if (pos == 0)
|
|
{
|
|
RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 0);
|
|
RangeEnc_EncodeBit(&p->rc, &p->isRep0Long[p->state][posState], ((len == 1) ? 0 : 1));
|
|
}
|
|
else
|
|
{
|
|
UInt32 distance = p->reps[pos];
|
|
RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 1);
|
|
if (pos == 1)
|
|
RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 0);
|
|
else
|
|
{
|
|
RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 1);
|
|
RangeEnc_EncodeBit(&p->rc, &p->isRepG2[p->state], pos - 2);
|
|
if (pos == 3)
|
|
p->reps[3] = p->reps[2];
|
|
p->reps[2] = p->reps[1];
|
|
}
|
|
p->reps[1] = p->reps[0];
|
|
p->reps[0] = distance;
|
|
}
|
|
if (len == 1)
|
|
p->state = kShortRepNextStates[p->state];
|
|
else
|
|
{
|
|
LenEnc_Encode2(&p->repLenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
|
|
p->state = kRepNextStates[p->state];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
UInt32 posSlot;
|
|
RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
|
|
p->state = kMatchNextStates[p->state];
|
|
LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
|
|
pos -= LZMA_NUM_REPS;
|
|
GetPosSlot(pos, posSlot);
|
|
RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, posSlot);
|
|
|
|
if (posSlot >= kStartPosModelIndex)
|
|
{
|
|
UInt32 footerBits = ((posSlot >> 1) - 1);
|
|
UInt32 base = ((2 | (posSlot & 1)) << footerBits);
|
|
UInt32 posReduced = pos - base;
|
|
|
|
if (posSlot < kEndPosModelIndex)
|
|
RcTree_ReverseEncode(&p->rc, p->posEncoders + base - posSlot - 1, footerBits, posReduced);
|
|
else
|
|
{
|
|
RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits);
|
|
RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask);
|
|
p->alignPriceCount++;
|
|
}
|
|
}
|
|
p->reps[3] = p->reps[2];
|
|
p->reps[2] = p->reps[1];
|
|
p->reps[1] = p->reps[0];
|
|
p->reps[0] = pos;
|
|
p->matchPriceCount++;
|
|
}
|
|
}
|
|
p->additionalOffset -= len;
|
|
nowPos32 += len;
|
|
if (p->additionalOffset == 0)
|
|
{
|
|
UInt32 processed;
|
|
if (!p->fastMode)
|
|
{
|
|
if (p->matchPriceCount >= (1 << 7))
|
|
FillDistancesPrices(p);
|
|
if (p->alignPriceCount >= kAlignTableSize)
|
|
FillAlignPrices(p);
|
|
}
|
|
if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
|
|
break;
|
|
processed = nowPos32 - startPos32;
|
|
if (useLimits)
|
|
{
|
|
if (processed + kNumOpts + 300 >= maxUnpackSize ||
|
|
RangeEnc_GetProcessed(&p->rc) + kNumOpts * 2 >= maxPackSize)
|
|
break;
|
|
}
|
|
else if (processed >= (1 << 15))
|
|
{
|
|
p->nowPos64 += nowPos32 - startPos32;
|
|
return CheckErrors(p);
|
|
}
|
|
}
|
|
}
|
|
p->nowPos64 += nowPos32 - startPos32;
|
|
return Flush(p, nowPos32);
|
|
}
|
|
|
|
#define kBigHashDicLimit ((UInt32)1 << 24)
|
|
|
|
static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
|
|
{
|
|
UInt32 beforeSize = kNumOpts;
|
|
Bool btMode;
|
|
if (!RangeEnc_Alloc(&p->rc, alloc))
|
|
return SZ_ERROR_MEM;
|
|
btMode = (p->matchFinderBase.btMode != 0);
|
|
#ifndef _7ZIP_ST
|
|
p->mtMode = (p->multiThread && !p->fastMode && btMode);
|
|
#endif
|
|
|
|
{
|
|
unsigned lclp = p->lc + p->lp;
|
|
if (p->litProbs == 0 || p->saveState.litProbs == 0 || p->lclp != lclp)
|
|
{
|
|
LzmaEnc_FreeLits(p, alloc);
|
|
p->litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
|
|
p->saveState.litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
|
|
if (p->litProbs == 0 || p->saveState.litProbs == 0)
|
|
{
|
|
LzmaEnc_FreeLits(p, alloc);
|
|
return SZ_ERROR_MEM;
|
|
}
|
|
p->lclp = lclp;
|
|
}
|
|
}
|
|
|
|
p->matchFinderBase.bigHash = (p->dictSize > kBigHashDicLimit);
|
|
|
|
if (beforeSize + p->dictSize < keepWindowSize)
|
|
beforeSize = keepWindowSize - p->dictSize;
|
|
|
|
#ifndef _7ZIP_ST
|
|
if (p->mtMode)
|
|
{
|
|
RINOK(MatchFinderMt_Create(&p->matchFinderMt, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig));
|
|
p->matchFinderObj = &p->matchFinderMt;
|
|
MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig))
|
|
return SZ_ERROR_MEM;
|
|
p->matchFinderObj = &p->matchFinderBase;
|
|
MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder);
|
|
}
|
|
return SZ_OK;
|
|
}
|
|
|
|
void LzmaEnc_Init(CLzmaEnc *p)
|
|
{
|
|
UInt32 i;
|
|
p->state = 0;
|
|
for (i = 0 ; i < LZMA_NUM_REPS; i++)
|
|
p->reps[i] = 0;
|
|
|
|
RangeEnc_Init(&p->rc);
|
|
|
|
|
|
for (i = 0; i < kNumStates; i++)
|
|
{
|
|
UInt32 j;
|
|
for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++)
|
|
{
|
|
p->isMatch[i][j] = kProbInitValue;
|
|
p->isRep0Long[i][j] = kProbInitValue;
|
|
}
|
|
p->isRep[i] = kProbInitValue;
|
|
p->isRepG0[i] = kProbInitValue;
|
|
p->isRepG1[i] = kProbInitValue;
|
|
p->isRepG2[i] = kProbInitValue;
|
|
}
|
|
|
|
{
|
|
UInt32 num = 0x300 << (p->lp + p->lc);
|
|
for (i = 0; i < num; i++)
|
|
p->litProbs[i] = kProbInitValue;
|
|
}
|
|
|
|
{
|
|
for (i = 0; i < kNumLenToPosStates; i++)
|
|
{
|
|
CLzmaProb *probs = p->posSlotEncoder[i];
|
|
UInt32 j;
|
|
for (j = 0; j < (1 << kNumPosSlotBits); j++)
|
|
probs[j] = kProbInitValue;
|
|
}
|
|
}
|
|
{
|
|
for (i = 0; i < kNumFullDistances - kEndPosModelIndex; i++)
|
|
p->posEncoders[i] = kProbInitValue;
|
|
}
|
|
|
|
LenEnc_Init(&p->lenEnc.p);
|
|
LenEnc_Init(&p->repLenEnc.p);
|
|
|
|
for (i = 0; i < (1 << kNumAlignBits); i++)
|
|
p->posAlignEncoder[i] = kProbInitValue;
|
|
|
|
p->optimumEndIndex = 0;
|
|
p->optimumCurrentIndex = 0;
|
|
p->additionalOffset = 0;
|
|
|
|
p->pbMask = (1 << p->pb) - 1;
|
|
p->lpMask = (1 << p->lp) - 1;
|
|
}
|
|
|
|
void LzmaEnc_InitPrices(CLzmaEnc *p)
|
|
{
|
|
if (!p->fastMode)
|
|
{
|
|
FillDistancesPrices(p);
|
|
FillAlignPrices(p);
|
|
}
|
|
|
|
p->lenEnc.tableSize =
|
|
p->repLenEnc.tableSize =
|
|
p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN;
|
|
LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, p->ProbPrices);
|
|
LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, p->ProbPrices);
|
|
}
|
|
|
|
static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
|
|
{
|
|
UInt32 i;
|
|
for (i = 0; i < (UInt32)kDicLogSizeMaxCompress; i++)
|
|
if (p->dictSize <= ((UInt32)1 << i))
|
|
break;
|
|
p->distTableSize = i * 2;
|
|
|
|
p->finished = False;
|
|
p->result = SZ_OK;
|
|
RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig));
|
|
LzmaEnc_Init(p);
|
|
LzmaEnc_InitPrices(p);
|
|
p->nowPos64 = 0;
|
|
return SZ_OK;
|
|
}
|
|
|
|
static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream,
|
|
ISzAlloc *alloc, ISzAlloc *allocBig)
|
|
{
|
|
CLzmaEnc *p = (CLzmaEnc *)pp;
|
|
p->matchFinderBase.stream = inStream;
|
|
p->needInit = 1;
|
|
p->rc.outStream = outStream;
|
|
return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig);
|
|
}
|
|
|
|
SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp,
|
|
ISeqInStream *inStream, UInt32 keepWindowSize,
|
|
ISzAlloc *alloc, ISzAlloc *allocBig)
|
|
{
|
|
CLzmaEnc *p = (CLzmaEnc *)pp;
|
|
p->matchFinderBase.stream = inStream;
|
|
p->needInit = 1;
|
|
return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
|
|
}
|
|
|
|
static void LzmaEnc_SetInputBuf(CLzmaEnc *p, const Byte *src, SizeT srcLen)
|
|
{
|
|
p->matchFinderBase.directInput = 1;
|
|
p->matchFinderBase.bufferBase = (Byte *)src;
|
|
p->matchFinderBase.directInputRem = srcLen;
|
|
}
|
|
|
|
SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen,
|
|
UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
|
|
{
|
|
CLzmaEnc *p = (CLzmaEnc *)pp;
|
|
LzmaEnc_SetInputBuf(p, src, srcLen);
|
|
p->needInit = 1;
|
|
|
|
return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
|
|
}
|
|
|
|
void LzmaEnc_Finish(CLzmaEncHandle pp)
|
|
{
|
|
#ifndef _7ZIP_ST
|
|
CLzmaEnc *p = (CLzmaEnc *)pp;
|
|
if (p->mtMode)
|
|
MatchFinderMt_ReleaseStream(&p->matchFinderMt);
|
|
#else
|
|
pp = pp;
|
|
#endif
|
|
}
|
|
|
|
typedef struct
|
|
{
|
|
ISeqOutStream funcTable;
|
|
Byte *data;
|
|
SizeT rem;
|
|
Bool overflow;
|
|
} CSeqOutStreamBuf;
|
|
|
|
static size_t MyWrite(void *pp, const void *data, size_t size)
|
|
{
|
|
CSeqOutStreamBuf *p = (CSeqOutStreamBuf *)pp;
|
|
if (p->rem < size)
|
|
{
|
|
size = p->rem;
|
|
p->overflow = True;
|
|
}
|
|
memcpy(p->data, data, size);
|
|
p->rem -= size;
|
|
p->data += size;
|
|
return size;
|
|
}
|
|
|
|
|
|
UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp)
|
|
{
|
|
const CLzmaEnc *p = (CLzmaEnc *)pp;
|
|
return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
|
|
}
|
|
|
|
const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp)
|
|
{
|
|
const CLzmaEnc *p = (CLzmaEnc *)pp;
|
|
return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
|
|
}
|
|
|
|
SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, Bool reInit,
|
|
Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize)
|
|
{
|
|
CLzmaEnc *p = (CLzmaEnc *)pp;
|
|
UInt64 nowPos64;
|
|
SRes res;
|
|
CSeqOutStreamBuf outStream;
|
|
|
|
outStream.funcTable.Write = MyWrite;
|
|
outStream.data = dest;
|
|
outStream.rem = *destLen;
|
|
outStream.overflow = False;
|
|
|
|
p->writeEndMark = False;
|
|
p->finished = False;
|
|
p->result = SZ_OK;
|
|
|
|
if (reInit)
|
|
LzmaEnc_Init(p);
|
|
LzmaEnc_InitPrices(p);
|
|
nowPos64 = p->nowPos64;
|
|
RangeEnc_Init(&p->rc);
|
|
p->rc.outStream = &outStream.funcTable;
|
|
|
|
res = LzmaEnc_CodeOneBlock(p, True, desiredPackSize, *unpackSize);
|
|
|
|
*unpackSize = (UInt32)(p->nowPos64 - nowPos64);
|
|
*destLen -= outStream.rem;
|
|
if (outStream.overflow)
|
|
return SZ_ERROR_OUTPUT_EOF;
|
|
|
|
return res;
|
|
}
|
|
|
|
static SRes LzmaEnc_Encode2(CLzmaEnc *p, ICompressProgress *progress)
|
|
{
|
|
SRes res = SZ_OK;
|
|
|
|
#ifndef _7ZIP_ST
|
|
Byte allocaDummy[0x300];
|
|
int i = 0;
|
|
for (i = 0; i < 16; i++)
|
|
allocaDummy[i] = (Byte)i;
|
|
#endif
|
|
|
|
for (;;)
|
|
{
|
|
res = LzmaEnc_CodeOneBlock(p, False, 0, 0);
|
|
if (res != SZ_OK || p->finished != 0)
|
|
break;
|
|
if (progress != 0)
|
|
{
|
|
res = progress->Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc));
|
|
if (res != SZ_OK)
|
|
{
|
|
res = SZ_ERROR_PROGRESS;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
LzmaEnc_Finish(p);
|
|
return res;
|
|
}
|
|
|
|
SRes LzmaEnc_Encode(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress,
|
|
ISzAlloc *alloc, ISzAlloc *allocBig)
|
|
{
|
|
RINOK(LzmaEnc_Prepare(pp, outStream, inStream, alloc, allocBig));
|
|
return LzmaEnc_Encode2((CLzmaEnc *)pp, progress);
|
|
}
|
|
|
|
SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, Byte *props, SizeT *size)
|
|
{
|
|
CLzmaEnc *p = (CLzmaEnc *)pp;
|
|
int i;
|
|
UInt32 dictSize = p->dictSize;
|
|
if (*size < LZMA_PROPS_SIZE)
|
|
return SZ_ERROR_PARAM;
|
|
*size = LZMA_PROPS_SIZE;
|
|
props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc);
|
|
|
|
for (i = 11; i <= 30; i++)
|
|
{
|
|
if (dictSize <= ((UInt32)2 << i))
|
|
{
|
|
dictSize = (2 << i);
|
|
break;
|
|
}
|
|
if (dictSize <= ((UInt32)3 << i))
|
|
{
|
|
dictSize = (3 << i);
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 4; i++)
|
|
props[1 + i] = (Byte)(dictSize >> (8 * i));
|
|
return SZ_OK;
|
|
}
|
|
|
|
SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
|
|
int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
|
|
{
|
|
SRes res;
|
|
CLzmaEnc *p = (CLzmaEnc *)pp;
|
|
|
|
CSeqOutStreamBuf outStream;
|
|
|
|
LzmaEnc_SetInputBuf(p, src, srcLen);
|
|
|
|
outStream.funcTable.Write = MyWrite;
|
|
outStream.data = dest;
|
|
outStream.rem = *destLen;
|
|
outStream.overflow = False;
|
|
|
|
p->writeEndMark = writeEndMark;
|
|
|
|
p->rc.outStream = &outStream.funcTable;
|
|
res = LzmaEnc_MemPrepare(pp, src, srcLen, 0, alloc, allocBig);
|
|
if (res == SZ_OK)
|
|
res = LzmaEnc_Encode2(p, progress);
|
|
|
|
*destLen -= outStream.rem;
|
|
if (outStream.overflow)
|
|
return SZ_ERROR_OUTPUT_EOF;
|
|
return res;
|
|
}
|
|
|
|
SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
|
|
const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
|
|
ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
|
|
{
|
|
CLzmaEnc *p = (CLzmaEnc *)LzmaEnc_Create(alloc);
|
|
SRes res;
|
|
if (p == 0)
|
|
return SZ_ERROR_MEM;
|
|
|
|
res = LzmaEnc_SetProps(p, props);
|
|
if (res == SZ_OK)
|
|
{
|
|
res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize);
|
|
if (res == SZ_OK)
|
|
res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen,
|
|
writeEndMark, progress, alloc, allocBig);
|
|
}
|
|
|
|
LzmaEnc_Destroy(p, alloc, allocBig);
|
|
return res;
|
|
}
|