mirror of
https://github.com/LongSoft/UEFITool.git
synced 2024-11-25 01:18:22 +08:00
5592529b33
- UI reworked
2273 lines
94 KiB
C++
2273 lines
94 KiB
C++
/* ffsengine.cpp
|
|
|
|
Copyright (c) 2013, Nikolaj Schlej. All rights reserved.
|
|
This program and the accompanying materials
|
|
are licensed and made available under the terms and conditions of the BSD License
|
|
which accompanies this distribution. The full text of the license may be found at
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
WITHWARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
*/
|
|
|
|
#include <math.h>
|
|
|
|
#include "ffsengine.h"
|
|
#include "treeitem.h"
|
|
#include "treemodel.h"
|
|
#include "descriptor.h"
|
|
#include "ffs.h"
|
|
#include "gbe.h"
|
|
#include "me.h"
|
|
#include "Tiano/EfiTianoCompress.h"
|
|
#include "Tiano/EfiTianoDecompress.h"
|
|
#include "LZMA/LzmaCompress.h"
|
|
#include "LZMA/LzmaDecompress.h"
|
|
|
|
FfsEngine::FfsEngine(QObject *parent)
|
|
: QObject(parent)
|
|
{
|
|
rootItem = new TreeItem(TreeItem::Root);
|
|
rootItem->setName("Name");
|
|
rootItem->setTypeName("Type");
|
|
rootItem->setSubtypeName("Subtype");
|
|
rootItem->setText("Text");
|
|
treeModel = new TreeModel(rootItem);
|
|
}
|
|
|
|
FfsEngine::~FfsEngine(void)
|
|
{
|
|
delete treeModel;
|
|
delete rootItem;
|
|
}
|
|
|
|
TreeModel* FfsEngine::model() const
|
|
{
|
|
return treeModel;
|
|
}
|
|
|
|
void FfsEngine::msg(const QString & message, const QModelIndex index)
|
|
{
|
|
messageItems.enqueue(MessageListItem(message, NULL, 0, index));
|
|
}
|
|
|
|
QQueue<MessageListItem> FfsEngine::message()
|
|
{
|
|
return messageItems;
|
|
}
|
|
|
|
QModelIndex FfsEngine::findParentOfType(UINT8 type, const QModelIndex& index) const
|
|
{
|
|
if(!index.isValid())
|
|
return QModelIndex();
|
|
|
|
TreeItem *item;
|
|
QModelIndex parent = index;
|
|
|
|
for(item = static_cast<TreeItem*>(parent.internalPointer());
|
|
item != NULL && item != rootItem && item->type() != type;
|
|
item = static_cast<TreeItem*>(parent.internalPointer()))
|
|
parent = parent.parent();
|
|
if (item != NULL && item != rootItem)
|
|
return parent;
|
|
|
|
return QModelIndex();
|
|
}
|
|
|
|
bool FfsEngine::hasIntersection(const UINT32 begin1, const UINT32 end1, const UINT32 begin2, const UINT32 end2)
|
|
{
|
|
if (begin1 < begin2 && begin2 < end1)
|
|
return true;
|
|
if (begin1 < end2 && end2 < end1)
|
|
return true;
|
|
if (begin2 < begin1 && begin1 < end2)
|
|
return true;
|
|
if (begin2 < end1 && end1 < end2)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Firmware image parsing
|
|
UINT8 FfsEngine::parseInputFile(const QByteArray & buffer)
|
|
{
|
|
UINT32 capsuleHeaderSize = 0;
|
|
FLASH_DESCRIPTOR_HEADER* descriptorHeader = NULL;
|
|
QModelIndex index;
|
|
QByteArray flashImage;
|
|
|
|
// Check buffer size to be more or equal then sizeof(EFI_CAPSULE_HEADER)
|
|
if ((UINT32) buffer.size() <= sizeof(EFI_CAPSULE_HEADER))
|
|
{
|
|
msg(tr("parseInputFile: Input file is smaller then minimum size of %1 bytes").arg(sizeof(EFI_CAPSULE_HEADER)));
|
|
return ERR_INVALID_PARAMETER;
|
|
}
|
|
|
|
// Check buffer for being normal EFI capsule header
|
|
if (buffer.startsWith(EFI_CAPSULE_GUID)) {
|
|
// Get info
|
|
EFI_CAPSULE_HEADER* capsuleHeader = (EFI_CAPSULE_HEADER*) buffer.constData();
|
|
capsuleHeaderSize = capsuleHeader->HeaderSize;
|
|
QByteArray header = buffer.left(capsuleHeaderSize);
|
|
QByteArray body = buffer.right(buffer.size() - capsuleHeaderSize);
|
|
QString name = tr("UEFI capsule");
|
|
QString info = tr("Header size: %1\nFlags: %2\nImage size: %3")
|
|
.arg(capsuleHeader->HeaderSize, 8, 16, QChar('0'))
|
|
.arg(capsuleHeader->Flags, 8, 16, QChar('0'))
|
|
.arg(capsuleHeader->CapsuleImageSize, 8, 16, QChar('0'));
|
|
// Add tree item
|
|
index = treeModel->addItem(TreeItem::Capsule, TreeItem::UefiCapsule, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body);
|
|
}
|
|
|
|
// Check buffer for being extended Aptio capsule header
|
|
else if (buffer.startsWith(APTIO_CAPSULE_GUID)) {
|
|
// Get info
|
|
APTIO_CAPSULE_HEADER* aptioCapsuleHeader = (APTIO_CAPSULE_HEADER*) buffer.constData();
|
|
capsuleHeaderSize = aptioCapsuleHeader->RomImageOffset;
|
|
QByteArray header = buffer.left(capsuleHeaderSize);
|
|
QByteArray body = buffer.right(buffer.size() - capsuleHeaderSize);
|
|
QString name = tr("AMI Aptio capsule");
|
|
QString info = tr("Header size: %1\nFlags: %2\nImage size: %3")
|
|
.arg(aptioCapsuleHeader->RomImageOffset, 4, 16, QChar('0'))
|
|
.arg(aptioCapsuleHeader->CapsuleHeader.Flags, 8, 16, QChar('0'))
|
|
.arg(aptioCapsuleHeader->CapsuleHeader.CapsuleImageSize - aptioCapsuleHeader->RomImageOffset, 8, 16, QChar('0'));
|
|
//!TODO: more info about Aptio capsule
|
|
// Add tree item
|
|
index = treeModel->addItem(TreeItem::Capsule, TreeItem::AptioCapsule, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body);
|
|
}
|
|
|
|
// Skip capsule header to have flash chip image
|
|
flashImage = buffer.right(buffer.size() - capsuleHeaderSize);
|
|
|
|
// Check for Intel flash descriptor presence
|
|
descriptorHeader = (FLASH_DESCRIPTOR_HEADER*) flashImage.constData();
|
|
|
|
// Check descriptor signature
|
|
UINT8 result;
|
|
if (descriptorHeader->Signature == FLASH_DESCRIPTOR_SIGNATURE) {
|
|
// Parse as Intel image
|
|
result = parseIntelImage(flashImage, index);
|
|
if (result != ERR_INVALID_FLASH_DESCRIPTOR)
|
|
return result;
|
|
}
|
|
|
|
// Get info
|
|
QString name = tr("BIOS image");
|
|
QString info = tr("Size: %1")
|
|
.arg(flashImage.size(), 8, 16, QChar('0'));
|
|
|
|
// Add tree item
|
|
index = treeModel->addItem(TreeItem::Image, TreeItem::BiosImage, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), flashImage, QByteArray(), index);
|
|
return parseBios(flashImage, index);
|
|
}
|
|
|
|
UINT8 FfsEngine::parseIntelImage(const QByteArray & flashImage, const QModelIndex & parent)
|
|
{
|
|
FLASH_DESCRIPTOR_MAP* descriptorMap;
|
|
FLASH_DESCRIPTOR_REGION_SECTION* regionSection;
|
|
//FLASH_DESCRIPTOR_COMPONENT_SECTION* componentSection;
|
|
|
|
// Store the beginning of descriptor as descriptor base address
|
|
UINT8* descriptor = (UINT8*) flashImage.constData();
|
|
UINT32 descriptorBegin = 0;
|
|
UINT32 descriptorEnd = FLASH_DESCRIPTOR_SIZE;
|
|
|
|
// Check for buffer size to be greater or equal to descriptor region size
|
|
if (flashImage.size() < FLASH_DESCRIPTOR_SIZE) {
|
|
msg(tr("parseInputFile: Input file is smaller then minimum descriptor size of %1 bytes").arg(FLASH_DESCRIPTOR_SIZE));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
|
|
// Parse descriptor map
|
|
descriptorMap = (FLASH_DESCRIPTOR_MAP*) (descriptor + sizeof(FLASH_DESCRIPTOR_HEADER));
|
|
regionSection = (FLASH_DESCRIPTOR_REGION_SECTION*) calculateAddress8(descriptor, descriptorMap->RegionBase);
|
|
//componentSection = (FLASH_DESCRIPTOR_COMPONENT_SECTION*) calculateAddress8(descriptor, descriptorMap->ComponentBase);
|
|
|
|
// GbE region
|
|
QByteArray gbe;
|
|
UINT32 gbeBegin = 0;
|
|
UINT32 gbeEnd = 0;
|
|
if (regionSection->GbeLimit) {
|
|
gbeBegin = calculateRegionOffset(regionSection->GbeBase);
|
|
gbeEnd = calculateRegionSize(regionSection->GbeBase, regionSection->GbeLimit);
|
|
gbe = flashImage.mid(gbeBegin, gbeEnd);
|
|
gbeEnd += gbeBegin;
|
|
}
|
|
// ME region
|
|
QByteArray me;
|
|
UINT32 meBegin = 0;
|
|
UINT32 meEnd = 0;
|
|
if (regionSection->MeLimit) {
|
|
meBegin = calculateRegionOffset(regionSection->MeBase);
|
|
meEnd = calculateRegionSize(regionSection->MeBase, regionSection->MeLimit);
|
|
me = flashImage.mid(meBegin, meEnd);
|
|
meEnd += meBegin;
|
|
}
|
|
// PDR region
|
|
QByteArray pdr;
|
|
UINT32 pdrBegin = 0;
|
|
UINT32 pdrEnd = 0;
|
|
if (regionSection->PdrLimit) {
|
|
pdrBegin = calculateRegionOffset(regionSection->PdrBase);
|
|
pdrEnd = calculateRegionSize(regionSection->PdrBase, regionSection->PdrLimit);
|
|
pdr = flashImage.mid(pdrBegin, pdrEnd);
|
|
pdrEnd += pdrBegin;
|
|
}
|
|
// BIOS region
|
|
QByteArray bios;
|
|
UINT32 biosBegin = 0;
|
|
UINT32 biosEnd = 0;
|
|
if (regionSection->BiosLimit) {
|
|
biosBegin = calculateRegionOffset(regionSection->BiosBase);
|
|
biosEnd = calculateRegionSize(regionSection->BiosBase, regionSection->BiosLimit);
|
|
bios = flashImage.mid(biosBegin, biosEnd);
|
|
biosEnd += biosBegin;
|
|
}
|
|
else {
|
|
msg(tr("parseInputFile: descriptor parsing failed, BIOS region not found in descriptor"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
|
|
// Check for intersections between regions
|
|
if (hasIntersection(descriptorBegin, descriptorEnd, gbeBegin, gbeEnd)) {
|
|
msg(tr("parseInputFile: descriptor parsing failed, descriptor region has intersection with GbE region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (hasIntersection(descriptorBegin, descriptorEnd, meBegin, meEnd)) {
|
|
msg(tr("parseInputFile: descriptor parsing failed, descriptor region has intersection with ME region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (hasIntersection(descriptorBegin, descriptorEnd, biosBegin, biosEnd)) {
|
|
msg(tr("parseInputFile: descriptor parsing failed, descriptor region has intersection with BIOS region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (hasIntersection(descriptorBegin, descriptorEnd, pdrBegin, pdrEnd)) {
|
|
msg(tr("parseInputFile: descriptor parsing failed, descriptor region has intersection with PDR region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (hasIntersection(gbeBegin, gbeEnd, meBegin, meEnd)) {
|
|
msg(tr("parseInputFile: descriptor parsing failed, GbE region has intersection with ME region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (hasIntersection(gbeBegin, gbeEnd, biosBegin, biosEnd)) {
|
|
msg(tr("parseInputFile: descriptor parsing failed, GbE region has intersection with BIOS region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (hasIntersection(gbeBegin, gbeEnd, pdrBegin, pdrEnd)) {
|
|
msg(tr("parseInputFile: descriptor parsing failed, GbE region has intersection with PDR region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (hasIntersection(meBegin, meEnd, biosBegin, biosEnd)) {
|
|
msg(tr("parseInputFile: descriptor parsing failed, ME region has intersection with BIOS region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (hasIntersection(meBegin, meEnd, pdrBegin, pdrEnd)) {
|
|
msg(tr("parseInputFile: descriptor parsing failed, ME region has intersection with PDR region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (hasIntersection(biosBegin, biosEnd, pdrBegin, pdrEnd)) {
|
|
msg(tr("parseInputFile: descriptor parsing failed, BIOS region has intersection with PDR region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
|
|
// Region map is consistent
|
|
QByteArray body;
|
|
QString name;
|
|
QString info;
|
|
|
|
// Intel image
|
|
name = tr("Intel image");
|
|
info = tr("Size: %1\nFlash chips: %2\nRegions: %3\nMasters: %4\nPCH straps: %5\nPROC straps: %6\nICC table entries: %7")
|
|
.arg(flashImage.size(), 8, 16, QChar('0'))
|
|
.arg(descriptorMap->NumberOfFlashChips + 1) //
|
|
.arg(descriptorMap->NumberOfRegions + 1) // Zero-based numbers in storage
|
|
.arg(descriptorMap->NumberOfMasters + 1) //
|
|
.arg(descriptorMap->NumberOfPchStraps)
|
|
.arg(descriptorMap->NumberOfProcStraps)
|
|
.arg(descriptorMap->NumberOfIccTableEntries);
|
|
|
|
// Add Intel image tree item
|
|
QModelIndex index = treeModel->addItem(TreeItem::Image, TreeItem::IntelImage, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), flashImage, QByteArray(), parent);
|
|
|
|
// Descriptor
|
|
// Get descriptor info
|
|
body = flashImage.left(FLASH_DESCRIPTOR_SIZE);
|
|
name = tr("Descriptor region");
|
|
info = tr("Size: %1").arg(FLASH_DESCRIPTOR_SIZE, 4, 16, QChar('0'));
|
|
|
|
// Check regions presence once again
|
|
QVector<UINT32> offsets;
|
|
if (regionSection->GbeLimit) {
|
|
offsets.append(gbeBegin);
|
|
info += tr("\nGbE region offset: %1").arg(gbeBegin, 8, 16, QChar('0'));
|
|
}
|
|
if (regionSection->MeLimit) {
|
|
offsets.append(meBegin);
|
|
info += tr("\nME region offset: %1").arg(meBegin, 8, 16, QChar('0'));
|
|
}
|
|
if (regionSection->BiosLimit) {
|
|
offsets.append(biosBegin);
|
|
info += tr("\nBIOS region offset: %1").arg(biosBegin, 8, 16, QChar('0'));
|
|
}
|
|
if (regionSection->PdrLimit) {
|
|
offsets.append(pdrBegin);
|
|
info += tr("\nPDR region offset: %1").arg(pdrBegin, 8, 16, QChar('0'));
|
|
}
|
|
|
|
// Add descriptor tree item
|
|
treeModel->addItem(TreeItem::Region, TreeItem::DescriptorRegion, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), body, QByteArray(), index);
|
|
|
|
// Sort regions in ascending order
|
|
qSort(offsets);
|
|
|
|
// Parse regions
|
|
UINT8 result = 0;
|
|
for (int i = 0; i < offsets.count(); i++) {
|
|
// Parse GbE region
|
|
if (offsets.at(i) == gbeBegin) {
|
|
result = parseGbeRegion(gbe, index);
|
|
}
|
|
// Parse ME region
|
|
else if (offsets.at(i) == meBegin) {
|
|
result = parseMeRegion(me, index);
|
|
}
|
|
// Parse BIOS region
|
|
else if (offsets.at(i) == biosBegin) {
|
|
result = parseBiosRegion(bios, index);
|
|
}
|
|
// Parse PDR region
|
|
else if (offsets.at(i) == pdrBegin) {
|
|
result = parsePdrRegion(pdr, index);
|
|
}
|
|
if (result)
|
|
return result;
|
|
}
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::parseGbeRegion(const QByteArray & gbe, const QModelIndex & parent)
|
|
{
|
|
if (gbe.isEmpty())
|
|
return ERR_EMPTY_REGION;
|
|
|
|
// Get info
|
|
QString name = tr("GbE region");
|
|
GBE_MAC* mac = (GBE_MAC*) gbe.constData();
|
|
GBE_VERSION* version = (GBE_VERSION*) (gbe.constData() + GBE_VERSION_OFFSET);
|
|
QString info = tr("Size: %1\nMAC: %2:%3:%4:%5:%6:%7\nVersion: %8.%9")
|
|
.arg(gbe.size(), 8, 16, QChar('0'))
|
|
.arg(mac->vendor[0], 2, 16, QChar('0'))
|
|
.arg(mac->vendor[1], 2, 16, QChar('0'))
|
|
.arg(mac->vendor[2], 2, 16, QChar('0'))
|
|
.arg(mac->device[0], 2, 16, QChar('0'))
|
|
.arg(mac->device[1], 2, 16, QChar('0'))
|
|
.arg(mac->device[2], 2, 16, QChar('0'))
|
|
.arg(version->major)
|
|
.arg(version->minor);
|
|
|
|
// Add tree item
|
|
treeModel->addItem(TreeItem::Region, TreeItem::GbeRegion, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), gbe, QByteArray(), parent);
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::parseMeRegion(const QByteArray & me, const QModelIndex & parent)
|
|
{
|
|
if (me.isEmpty())
|
|
return ERR_EMPTY_REGION;
|
|
|
|
// Get info
|
|
QString name = tr("ME region");
|
|
QString info = tr("Size: %1").
|
|
arg(me.size(), 8, 16, QChar('0'));
|
|
|
|
ME_VERSION* version;
|
|
INT32 versionOffset = me.indexOf(ME_VERSION_SIGNATURE);
|
|
if (versionOffset < 0){
|
|
info += tr("\nVersion: unknown");
|
|
msg(tr("parseRegion: ME region version is unknown, it can be damaged"), parent);
|
|
}
|
|
else {
|
|
version = (ME_VERSION*) (me.constData() + versionOffset);
|
|
info += tr("\nVersion: %1.%2.%3.%4")
|
|
.arg(version->major)
|
|
.arg(version->minor)
|
|
.arg(version->bugfix)
|
|
.arg(version->build);
|
|
}
|
|
|
|
// Add tree item
|
|
treeModel->addItem(TreeItem::Region, TreeItem::MeRegion, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), me, QByteArray(), parent);
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::parsePdrRegion(const QByteArray & pdr, const QModelIndex & parent)
|
|
{
|
|
if (pdr.isEmpty())
|
|
return ERR_EMPTY_REGION;
|
|
|
|
// Get info
|
|
QString name = tr("PDR region");
|
|
QString info = tr("Size: %1").
|
|
arg(pdr.size(), 8, 16, QChar('0'));
|
|
|
|
// Add tree item
|
|
treeModel->addItem(TreeItem::Region, TreeItem::PdrRegion, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), pdr, QByteArray(), parent);
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::parseBiosRegion(const QByteArray & bios, const QModelIndex & parent)
|
|
{
|
|
if (bios.isEmpty())
|
|
return ERR_EMPTY_REGION;
|
|
|
|
// Get info
|
|
QString name = tr("BIOS region");
|
|
QString info = tr("Size: %1").
|
|
arg(bios.size(), 8, 16, QChar('0'));
|
|
|
|
// Add tree item
|
|
QModelIndex index = treeModel->addItem(TreeItem::Region, TreeItem::BiosRegion, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), bios, QByteArray(), parent);
|
|
|
|
return parseBios(bios, index);
|
|
}
|
|
|
|
UINT8 FfsEngine::parseBios(const QByteArray & bios, const QModelIndex & parent)
|
|
{
|
|
// Search for first volume
|
|
UINT32 prevVolumeOffset;
|
|
UINT8 result;
|
|
result = findNextVolume(bios, 0, prevVolumeOffset);
|
|
if (result) {
|
|
return result;
|
|
}
|
|
|
|
// First volume is not at the beginning of BIOS space
|
|
QString name;
|
|
QString info;
|
|
if (prevVolumeOffset > 0) {
|
|
// Get info
|
|
QByteArray padding = bios.left(prevVolumeOffset);
|
|
name = tr("Padding");
|
|
info = tr("Size: %1")
|
|
.arg(padding.size(), 8, 16, QChar('0'));
|
|
// Add tree item
|
|
treeModel->addItem(TreeItem::Padding, 0, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), padding, QByteArray(), parent);
|
|
}
|
|
|
|
// Search for and parse all volumes
|
|
UINT32 volumeOffset = prevVolumeOffset;
|
|
UINT32 prevVolumeSize = 0;
|
|
UINT32 volumeSize = 0;
|
|
|
|
while(true)
|
|
{
|
|
// Padding between volumes
|
|
if (volumeOffset > prevVolumeOffset + prevVolumeSize) {
|
|
UINT32 paddingSize = volumeOffset - prevVolumeOffset - prevVolumeSize;
|
|
QByteArray padding = bios.mid(prevVolumeOffset + prevVolumeSize, paddingSize);
|
|
// Get info
|
|
name = tr("Padding");
|
|
info = tr("Size: %1")
|
|
.arg(padding.size(), 8, 16, QChar('0'));
|
|
// Add tree item
|
|
treeModel->addItem(TreeItem::Padding, 0, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), padding, QByteArray(), parent);
|
|
}
|
|
|
|
// Get volume size
|
|
result = getVolumeSize(bios, volumeOffset, volumeSize);
|
|
if (result)
|
|
return result;
|
|
|
|
//Check that volume is fully present in input
|
|
if (volumeOffset + volumeSize > (UINT32) bios.size()) {
|
|
msg(tr("parseBios: Volume overlaps the end of input buffer"), parent);
|
|
return ERR_INVALID_VOLUME;
|
|
}
|
|
|
|
// Check volume revision and alignment
|
|
EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (EFI_FIRMWARE_VOLUME_HEADER*) (bios.constData() + volumeOffset);
|
|
UINT32 alignment;
|
|
if (volumeHeader->Revision == 1) {
|
|
// Acquire alignment bits
|
|
bool alignmentCap = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_CAP;
|
|
bool alignment2 = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_2;
|
|
bool alignment4 = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_4;
|
|
bool alignment8 = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_8;
|
|
bool alignment16 = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_16;
|
|
bool alignment32 = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_32;
|
|
bool alignment64 = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_64;
|
|
bool alignment128 = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_128;
|
|
bool alignment256 = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_256;
|
|
bool alignment512 = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_512;
|
|
bool alignment1k = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_1K;
|
|
bool alignment2k = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_2K;
|
|
bool alignment4k = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_4K;
|
|
bool alignment8k = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_8K;
|
|
bool alignment16k = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_16K;
|
|
bool alignment32k = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_32K;
|
|
bool alignment64k = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_64K;
|
|
|
|
// Check alignment setup
|
|
if (!alignmentCap &&
|
|
( alignment2 || alignment4 || alignment8 || alignment16
|
|
|| alignment32 || alignment64 || alignment128 || alignment256
|
|
|| alignment512 || alignment1k || alignment2k || alignment4k
|
|
|| alignment8k || alignment16k || alignment32k || alignment64k))
|
|
msg("parseBios: Incompatible revision 1 volume alignment setup", parent);
|
|
|
|
// Assume that smaller alignment value consumes greater
|
|
//!TODO: refactor this code
|
|
alignment = 0x01;
|
|
if (alignment2)
|
|
alignment = 0x02;
|
|
else if (alignment4)
|
|
alignment = 0x04;
|
|
else if (alignment8)
|
|
alignment = 0x08;
|
|
else if (alignment16)
|
|
alignment = 0x10;
|
|
else if (alignment32)
|
|
alignment = 0x20;
|
|
else if (alignment64)
|
|
alignment = 0x40;
|
|
else if (alignment128)
|
|
alignment = 0x80;
|
|
else if (alignment256)
|
|
alignment = 0x100;
|
|
else if (alignment512)
|
|
alignment = 0x200;
|
|
else if (alignment1k)
|
|
alignment = 0x400;
|
|
else if (alignment2k)
|
|
alignment = 0x800;
|
|
else if (alignment4k)
|
|
alignment = 0x1000;
|
|
else if (alignment8k)
|
|
alignment = 0x2000;
|
|
else if (alignment16k)
|
|
alignment = 0x4000;
|
|
else if (alignment32k)
|
|
alignment = 0x8000;
|
|
else if (alignment64k)
|
|
alignment = 0x10000;
|
|
|
|
// Check alignment
|
|
if (volumeOffset % alignment) {
|
|
msg(tr("parseBios: Unaligned revision 1 volume"), parent);
|
|
}
|
|
}
|
|
else if (volumeHeader->Revision == 2) {
|
|
// Acquire alignment
|
|
alignment = (UINT32) pow(2.0, (int) (volumeHeader->Attributes & EFI_FVB2_ALIGNMENT) >> 16);
|
|
|
|
// Check alignment
|
|
if (volumeOffset % alignment) {
|
|
msg(tr("parseBios: Unaligned revision 2 volume"), parent);
|
|
}
|
|
}
|
|
else
|
|
msg(tr("parseBios: Unknown volume revision (%1)").arg(volumeHeader->Revision), parent);
|
|
|
|
// Parse volume
|
|
UINT8 result = parseVolume(bios.mid(volumeOffset, volumeSize), parent);
|
|
if (result)
|
|
msg(tr("parseBios: Volume parsing failed (%1)").arg(result), parent);
|
|
|
|
// Go to next volume
|
|
prevVolumeOffset = volumeOffset;
|
|
prevVolumeSize = volumeSize;
|
|
|
|
result = findNextVolume(bios, volumeOffset + prevVolumeSize, volumeOffset);
|
|
if (result) {
|
|
UINT32 endPaddingSize = bios.size() - prevVolumeOffset - prevVolumeSize;
|
|
// Padding at the end of BIOS space
|
|
if (endPaddingSize > 0) {
|
|
QByteArray padding = bios.right(endPaddingSize);
|
|
// Get info
|
|
name = tr("Padding");
|
|
info = tr("Size: %2")
|
|
.arg(padding.size(), 8, 16, QChar('0'));
|
|
// Add tree item
|
|
treeModel->addItem(TreeItem::Padding, 0, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), padding, QByteArray(), parent);
|
|
}
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::findNextVolume(const QByteArray & bios, UINT32 volumeOffset, UINT32 & nextVolumeOffset)
|
|
{
|
|
int nextIndex = bios.indexOf(EFI_FV_SIGNATURE, volumeOffset);
|
|
if (nextIndex < EFI_FV_SIGNATURE_OFFSET) {
|
|
return ERR_VOLUMES_NOT_FOUND;
|
|
}
|
|
|
|
nextVolumeOffset = nextIndex - EFI_FV_SIGNATURE_OFFSET;
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::getVolumeSize(const QByteArray & bios, UINT32 volumeOffset, UINT32 & volumeSize)
|
|
{
|
|
// Populate volume header
|
|
EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (EFI_FIRMWARE_VOLUME_HEADER*) (bios.constData() + volumeOffset);
|
|
|
|
// Check volume signature
|
|
if (QByteArray((const char*) &volumeHeader->Signature, sizeof(volumeHeader->Signature)) != EFI_FV_SIGNATURE)
|
|
return ERR_INVALID_VOLUME;
|
|
|
|
// Use BlockMap to determine volume size
|
|
EFI_FV_BLOCK_MAP_ENTRY* entry = (EFI_FV_BLOCK_MAP_ENTRY*) (bios.constData() + volumeOffset + sizeof(EFI_FIRMWARE_VOLUME_HEADER));
|
|
volumeSize = 0;
|
|
while(entry->NumBlocks != 0 && entry->Length != 0) {
|
|
if ((void*) entry > bios.constData() + bios.size()) {
|
|
return ERR_INVALID_VOLUME;
|
|
}
|
|
volumeSize += entry->NumBlocks * entry->Length;
|
|
entry += 1;
|
|
}
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::parseVolume(const QByteArray & volume, const QModelIndex & parent, const UINT8 mode)
|
|
{
|
|
// Populate volume header
|
|
EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (EFI_FIRMWARE_VOLUME_HEADER*) (volume.constData());
|
|
|
|
// Check filesystem GUID to be known
|
|
// Do not parse volume with unknown FFS, because parsing will fail
|
|
bool parseCurrentVolume = true;
|
|
// FFS GUID v1
|
|
if (QByteArray((const char*) &volumeHeader->FileSystemGuid, sizeof(EFI_GUID)) == EFI_FIRMWARE_FILE_SYSTEM_GUID) {
|
|
// Code can be added here
|
|
}
|
|
// FFS GUID v2
|
|
else if (QByteArray((const char*) &volumeHeader->FileSystemGuid, sizeof(EFI_GUID)) == EFI_FIRMWARE_FILE_SYSTEM2_GUID) {
|
|
// Code can be added here
|
|
}
|
|
// Other GUID
|
|
else {
|
|
msg(tr("parseBios: Unknown file system (%1)").arg(guidToQString(volumeHeader->FileSystemGuid)), parent);
|
|
parseCurrentVolume = false;
|
|
}
|
|
|
|
// Check attributes
|
|
// Determine value of empty byte
|
|
char empty = volumeHeader->Attributes & EFI_FVB_ERASE_POLARITY ? '\xFF' : '\x00';
|
|
|
|
// Check header checksum by recalculating it
|
|
if (calculateChecksum16((UINT16*) volumeHeader, volumeHeader->HeaderLength)) {
|
|
msg(tr("parseBios: Volume header checksum is invalid"), parent);
|
|
}
|
|
|
|
// Check for presence of extended header, only if header revision is greater then 1
|
|
UINT32 headerSize;
|
|
if (volumeHeader->Revision > 1 && volumeHeader->ExtHeaderOffset) {
|
|
EFI_FIRMWARE_VOLUME_EXT_HEADER* extendedHeader = (EFI_FIRMWARE_VOLUME_EXT_HEADER*) ((UINT8*) volumeHeader + volumeHeader->ExtHeaderOffset);
|
|
headerSize = volumeHeader->ExtHeaderOffset + extendedHeader->ExtHeaderSize;
|
|
} else {
|
|
headerSize = volumeHeader->HeaderLength;
|
|
}
|
|
|
|
// Get volume size
|
|
UINT8 result;
|
|
UINT32 volumeSize;
|
|
|
|
result = getVolumeSize(volume, 0, volumeSize);
|
|
if (result)
|
|
return result;
|
|
|
|
// Check reported size
|
|
if (volumeSize != volumeHeader->FvLength) {
|
|
msg(tr("%1: volume size stored in header %2 differs from calculated size %3")
|
|
.arg(guidToQString(volumeHeader->FileSystemGuid))
|
|
.arg(volumeHeader->FvLength, 8, 16, QChar('0'))
|
|
.arg(volumeSize, 8, 16, QChar('0')), parent);
|
|
}
|
|
|
|
// Get info
|
|
QString name = guidToQString(volumeHeader->FileSystemGuid);
|
|
QString info = tr("Size: %1\nRevision: %2\nAttributes: %3\nHeader size: %4")
|
|
.arg(volumeSize, 8, 16, QChar('0'))
|
|
.arg(volumeHeader->Revision)
|
|
.arg(volumeHeader->Attributes, 8, 16, QChar('0'))
|
|
.arg(volumeHeader->HeaderLength, 4, 16, QChar('0'));
|
|
|
|
// Add tree item
|
|
QByteArray header = volume.left(headerSize);
|
|
QByteArray body = volume.mid(headerSize, volumeSize - headerSize);
|
|
QModelIndex index = treeModel->addItem(TreeItem::Volume, 0, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body, QByteArray(), parent, mode);
|
|
|
|
// Do not parse volumes with unknown FS
|
|
if (!parseCurrentVolume)
|
|
return ERR_SUCCESS;
|
|
|
|
// Search for and parse all files
|
|
UINT32 fileOffset = headerSize;
|
|
UINT32 fileSize;
|
|
QQueue<QByteArray> files;
|
|
|
|
while (true) {
|
|
result = getFileSize(volume, fileOffset, fileSize);
|
|
if (result)
|
|
return result;
|
|
|
|
// Check file size to be at least sizeof(EFI_FFS_FILE_HEADER)
|
|
if (fileSize < sizeof(EFI_FFS_FILE_HEADER)) {
|
|
msg(tr("parseVolume: File with invalid size"), index);
|
|
return ERR_INVALID_FILE;
|
|
}
|
|
|
|
QByteArray file = volume.mid(fileOffset, fileSize);
|
|
QByteArray header = file.left(sizeof(EFI_FFS_FILE_HEADER));
|
|
|
|
// If we are at empty space in the end of volume
|
|
if (header.count(empty) == header.size())
|
|
break; // Exit from loop
|
|
|
|
// Check file alignment
|
|
EFI_FFS_FILE_HEADER* fileHeader = (EFI_FFS_FILE_HEADER*) header.constData();
|
|
UINT8 alignmentPower = ffsAlignmentTable[(fileHeader->Attributes & FFS_ATTRIB_DATA_ALIGNMENT) >> 3];
|
|
UINT32 alignment = (UINT32) pow(2.0, alignmentPower);
|
|
if ((fileOffset + sizeof(EFI_FFS_FILE_HEADER)) % alignment) {
|
|
msg(tr("parseVolume: %1, unaligned file").arg(guidToQString(fileHeader->Name)), index);
|
|
}
|
|
|
|
// Check file GUID
|
|
if (fileHeader->Type != EFI_FV_FILETYPE_PAD && files.indexOf(header.left(sizeof(EFI_GUID))) != -1)
|
|
msg(tr("%1: file with duplicate GUID").arg(guidToQString(fileHeader->Name)), index);
|
|
|
|
// Add file GUID to queue
|
|
files.enqueue(header.left(sizeof(EFI_GUID)));
|
|
|
|
// Parse file
|
|
result = parseFile(file, volumeHeader->Revision, empty, index);
|
|
if (result)
|
|
msg(tr("parseVolume: Parse FFS file failed (%1)").arg(result), index);
|
|
|
|
// Move to next file
|
|
fileOffset += fileSize;
|
|
fileOffset = ALIGN8(fileOffset);
|
|
|
|
// Exit from loop if no files left
|
|
if (fileOffset >= (UINT32) volume.size())
|
|
break;
|
|
}
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::getFileSize(const QByteArray & volume, const UINT32 fileOffset, UINT32 & fileSize)
|
|
{
|
|
EFI_FFS_FILE_HEADER* fileHeader = (EFI_FFS_FILE_HEADER*) (volume.constData() + fileOffset);
|
|
fileSize = uint24ToUint32(fileHeader->Size);
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::parseFile(const QByteArray & file, UINT8 revision, const UINT8 erasePolarity, const QModelIndex & parent, const UINT8 mode)
|
|
{
|
|
// Populate file header
|
|
EFI_FFS_FILE_HEADER* fileHeader = (EFI_FFS_FILE_HEADER*) file.constData();
|
|
|
|
// Check file state
|
|
// Determine file erase polarity
|
|
bool fileErasePolarity = fileHeader->State | EFI_FILE_ERASE_POLARITY;
|
|
|
|
// Check file erase polarity to be the same as parent erase polarity
|
|
if (erasePolarity != ERASE_POLARITY_UNKNOWN && (bool) erasePolarity != fileErasePolarity) {
|
|
msg(tr("parseFile: %1, erase polarity differs from parent erase polarity"), parent);
|
|
}
|
|
|
|
// Construct empty byte for this file
|
|
char empty = fileErasePolarity ? '\xFF' : '\x00';
|
|
|
|
// Check header checksum
|
|
QByteArray header = file.left(sizeof(EFI_FFS_FILE_HEADER));
|
|
QByteArray tempHeader = header;
|
|
EFI_FFS_FILE_HEADER* tempFileHeader = (EFI_FFS_FILE_HEADER*) (tempHeader.data());
|
|
tempFileHeader->IntegrityCheck.Checksum.Header = 0;
|
|
tempFileHeader->IntegrityCheck.Checksum.File = 0;
|
|
UINT8 calculated = calculateChecksum8((UINT8*) tempFileHeader, sizeof(EFI_FFS_FILE_HEADER) - 1);
|
|
if (fileHeader->IntegrityCheck.Checksum.Header != calculated)
|
|
{
|
|
msg(tr("parseFile: %1, stored header checksum %2 differs from calculated %3")
|
|
.arg(guidToQString(fileHeader->Name))
|
|
.arg(fileHeader->IntegrityCheck.Checksum.Header, 2, 16, QChar('0'))
|
|
.arg(calculated, 2, 16, QChar('0')), parent);
|
|
}
|
|
|
|
// Check data checksum
|
|
// Data checksum must be calculated
|
|
if (fileHeader->Attributes & FFS_ATTRIB_CHECKSUM) {
|
|
UINT32 bufferSize = file.size() - sizeof(EFI_FFS_FILE_HEADER);
|
|
// Exclude file tail from data checksum calculation
|
|
if(revision == 1 && fileHeader->Attributes & FFS_ATTRIB_TAIL_PRESENT)
|
|
bufferSize -= sizeof(UINT16);
|
|
calculated = calculateChecksum8((UINT8*)(file.constData() + sizeof(EFI_FFS_FILE_HEADER)), bufferSize);
|
|
if (fileHeader->IntegrityCheck.Checksum.File != calculated) {
|
|
msg(tr("parseFile: %1, stored data checksum %2 differs from calculated %3")
|
|
.arg(guidToQString(fileHeader->Name))
|
|
.arg(fileHeader->IntegrityCheck.Checksum.File, 2, 16, QChar('0'))
|
|
.arg(calculated, 2, 16, QChar('0')), parent);
|
|
}
|
|
}
|
|
// Data checksum must be one of predefined values
|
|
else {
|
|
if (fileHeader->IntegrityCheck.Checksum.File != FFS_FIXED_CHECKSUM && fileHeader->IntegrityCheck.Checksum.File != FFS_FIXED_CHECKSUM2) {
|
|
msg(tr("parseVolume: %1, stored data checksum %2 differs from standard value")
|
|
.arg(guidToQString(fileHeader->Name))
|
|
.arg(fileHeader->IntegrityCheck.Checksum.File, 2, 16, QChar('0')), parent);
|
|
}
|
|
}
|
|
|
|
// Get file body
|
|
QByteArray body = file.right(file.size() - sizeof(EFI_FFS_FILE_HEADER));
|
|
// For files in Revision 1 volumes, check for file tail presence
|
|
QByteArray tail;
|
|
if (revision == 1 && fileHeader->Attributes & FFS_ATTRIB_TAIL_PRESENT)
|
|
{
|
|
//Check file tail;
|
|
tail = body.right(sizeof(UINT16));
|
|
if (!fileHeader->IntegrityCheck.TailReference == *(UINT16*)tail.constData())
|
|
msg(tr("parseFile: %1, file tail value %2 is not a bitwise not of %3 stored in file header")
|
|
.arg(guidToQString(fileHeader->Name))
|
|
.arg(*tail, 4, 16, QChar('0'))
|
|
.arg(fileHeader->IntegrityCheck.TailReference, 4, 16, QChar('0')), parent);
|
|
|
|
// Remove tail from file body
|
|
body = body.left(body.size() - sizeof(UINT16));
|
|
}
|
|
|
|
// Parse current file by default
|
|
bool parseCurrentFile = true;
|
|
bool parseAsBios = false;
|
|
|
|
// Check file type
|
|
//!TODO: add more file specific checks
|
|
switch (fileHeader->Type)
|
|
{
|
|
case EFI_FV_FILETYPE_ALL:
|
|
parseAsBios = true;
|
|
break;
|
|
case EFI_FV_FILETYPE_RAW:
|
|
parseAsBios = true;
|
|
break;
|
|
case EFI_FV_FILETYPE_FREEFORM:
|
|
break;
|
|
case EFI_FV_FILETYPE_SECURITY_CORE:
|
|
break;
|
|
case EFI_FV_FILETYPE_PEI_CORE:
|
|
break;
|
|
case EFI_FV_FILETYPE_DXE_CORE:
|
|
break;
|
|
case EFI_FV_FILETYPE_PEIM:
|
|
break;
|
|
case EFI_FV_FILETYPE_DRIVER:
|
|
break;
|
|
case EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER:
|
|
break;
|
|
case EFI_FV_FILETYPE_APPLICATION:
|
|
break;
|
|
case EFI_FV_FILETYPE_SMM:
|
|
break;
|
|
case EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE:
|
|
break;
|
|
case EFI_FV_FILETYPE_COMBINED_SMM_DXE:
|
|
break;
|
|
case EFI_FV_FILETYPE_SMM_CORE:
|
|
break;
|
|
case EFI_FV_FILETYPE_PAD:
|
|
parseCurrentFile = false;
|
|
break;
|
|
default:
|
|
parseCurrentFile = false;
|
|
msg(tr("parseFile: Unknown file type (%1)").arg(fileHeader->Type, 2, 16, QChar('0')), parent);
|
|
};
|
|
|
|
// Check for empty file
|
|
if (body.count(empty) == body.size()) {
|
|
// No need to parse empty files
|
|
parseCurrentFile = false;
|
|
}
|
|
|
|
// Get info
|
|
QString name;
|
|
QString info;
|
|
if (fileHeader->Type != EFI_FV_FILETYPE_PAD)
|
|
name = guidToQString(fileHeader->Name);
|
|
else
|
|
name = tr("Padding");
|
|
info = tr("Type: %1\nAttributes: %2\nSize: %3\nState: %4")
|
|
.arg(fileHeader->Type, 2, 16, QChar('0'))
|
|
.arg(fileHeader->Attributes, 2, 16, QChar('0'))
|
|
.arg(uint24ToUint32(fileHeader->Size), 6, 16, QChar('0'))
|
|
.arg(fileHeader->State, 2, 16, QChar('0'));
|
|
|
|
// Add tree item
|
|
QModelIndex index = treeModel->addItem(TreeItem::File, fileHeader->Type, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body, tail, parent, mode);
|
|
|
|
if (!parseCurrentFile)
|
|
return ERR_SUCCESS;
|
|
|
|
// Parse file as BIOS space
|
|
UINT8 result;
|
|
if (parseAsBios) {
|
|
result = parseBios(body, index);
|
|
if (result && result != ERR_VOLUMES_NOT_FOUND)
|
|
msg(tr("parseFile: Parse file as BIOS failed (%1)").arg(result), index);
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
// Parse sections
|
|
result = parseSections(body, index);
|
|
if (result)
|
|
return result;
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::getSectionSize(const QByteArray & file, const UINT32 sectionOffset, UINT32 & sectionSize)
|
|
{
|
|
EFI_COMMON_SECTION_HEADER* sectionHeader = (EFI_COMMON_SECTION_HEADER*) (file.constData() + sectionOffset);
|
|
sectionSize = uint24ToUint32(sectionHeader->Size);
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::parseSections(const QByteArray & body, const QModelIndex & parent)
|
|
{
|
|
// Search for and parse all sections
|
|
UINT32 sectionOffset = 0;
|
|
UINT32 sectionSize;
|
|
UINT32 bodySize = body.size();
|
|
UINT8 result;
|
|
while (true) {
|
|
// Get section size
|
|
result = getSectionSize(body, sectionOffset, sectionSize);
|
|
if (result)
|
|
return result;
|
|
|
|
// Parse section
|
|
result = parseSection(body.mid(sectionOffset, sectionSize), parent);
|
|
if (result)
|
|
return result;
|
|
|
|
// Move to next section
|
|
sectionOffset += sectionSize;
|
|
sectionOffset = ALIGN4(sectionOffset);
|
|
|
|
// Exit from loop if no sections left
|
|
if (sectionOffset >= bodySize)
|
|
break;
|
|
}
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::parseSection(const QByteArray & section, const QModelIndex & parent, const UINT8 mode)
|
|
{
|
|
EFI_COMMON_SECTION_HEADER* sectionHeader = (EFI_COMMON_SECTION_HEADER*) (section.constData());
|
|
UINT32 sectionSize = uint24ToUint32(sectionHeader->Size);
|
|
QString name = sectionTypeToQString(sectionHeader->Type) + tr(" section");
|
|
QString info;
|
|
QByteArray header;
|
|
QByteArray body;
|
|
UINT32 headerSize;
|
|
UINT8 result;
|
|
QModelIndex index;
|
|
|
|
|
|
switch (sectionHeader->Type) {
|
|
// Encapsulated sections
|
|
case EFI_SECTION_COMPRESSION:
|
|
{
|
|
bool parseCurrentSection = true;
|
|
QByteArray decompressed;
|
|
UINT8 algorithm;
|
|
EFI_COMPRESSION_SECTION* compressedSectionHeader = (EFI_COMPRESSION_SECTION*) sectionHeader;
|
|
header = section.left(sizeof(EFI_COMPRESSION_SECTION));
|
|
body = section.mid(sizeof(EFI_COMPRESSION_SECTION), sectionSize - sizeof(EFI_COMPRESSION_SECTION));
|
|
algorithm = COMPRESSION_ALGORITHM_UNKNOWN;
|
|
// Decompress section
|
|
result = decompress(body, compressedSectionHeader->CompressionType, decompressed, &algorithm);
|
|
if (result) {
|
|
msg(tr("parseSection: Section decompression failed (%1)").arg(result), parent);
|
|
parseCurrentSection = false;
|
|
}
|
|
|
|
// Get info
|
|
info = tr("Type: %1\nSize: %2\nCompression type: %3\nDecompressed size: %4")
|
|
.arg(sectionHeader->Type, 2, 16, QChar('0'))
|
|
.arg(body.size(), 8, 16, QChar('0'))
|
|
.arg(compressionTypeToQString(algorithm))
|
|
.arg(compressedSectionHeader->UncompressedLength, 8, 16, QChar('0'));
|
|
|
|
// Add tree item
|
|
index = treeModel->addItem(TreeItem::Section, sectionHeader->Type, algorithm, name, "", info, header, body, QByteArray(), parent, mode);
|
|
|
|
// Parse decompressed data
|
|
if (parseCurrentSection) {
|
|
result = parseSections(decompressed, index);
|
|
if (result)
|
|
return result;
|
|
}
|
|
}
|
|
break;
|
|
case EFI_SECTION_GUID_DEFINED:
|
|
{
|
|
bool parseCurrentSection = true;
|
|
EFI_GUID_DEFINED_SECTION* guidDefinedSectionHeader;
|
|
header = section.left(sizeof(EFI_GUID_DEFINED_SECTION));
|
|
guidDefinedSectionHeader = (EFI_GUID_DEFINED_SECTION*) (header.constData());
|
|
header = section.left(guidDefinedSectionHeader->DataOffset);
|
|
guidDefinedSectionHeader = (EFI_GUID_DEFINED_SECTION*) (header.constData());
|
|
body = section.mid(guidDefinedSectionHeader->DataOffset, sectionSize - guidDefinedSectionHeader->DataOffset);
|
|
QByteArray decompressed = body;
|
|
UINT8 algorithm = COMPRESSION_ALGORITHM_NONE;
|
|
// Check if section requires processing
|
|
if (guidDefinedSectionHeader->Attributes & EFI_GUIDED_SECTION_PROCESSING_REQUIRED) {
|
|
// Try to decompress section body using both known compression algorithms
|
|
algorithm = COMPRESSION_ALGORITHM_UNKNOWN;
|
|
// Tiano
|
|
result = decompress(body, EFI_STANDARD_COMPRESSION, decompressed, &algorithm);
|
|
if (result) {
|
|
result = decompress(body, EFI_CUSTOMIZED_COMPRESSION, decompressed, &algorithm);
|
|
if (result) {
|
|
msg(tr("parseSection: GUID defined section can not be decompressed (%1)").arg(result), parent);
|
|
parseCurrentSection = false;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
// Get info
|
|
name = guidToQString(guidDefinedSectionHeader->SectionDefinitionGuid);
|
|
info = tr("Type: %1\nSize: %2\nData offset: %3\nAttributes: %4\nCompression type: %5")
|
|
.arg(sectionHeader->Type, 2, 16, QChar('0'))
|
|
.arg(body.size(), 8, 16, QChar('0'))
|
|
.arg(guidDefinedSectionHeader->DataOffset, 4, 16, QChar('0'))
|
|
.arg(guidDefinedSectionHeader->Attributes, 4, 16, QChar('0'))
|
|
.arg(compressionTypeToQString(algorithm));
|
|
|
|
// Add tree item
|
|
index = treeModel->addItem(TreeItem::Section, sectionHeader->Type, algorithm, name, "", info, header, body, QByteArray(), parent, mode);
|
|
|
|
// Parse decompressed data
|
|
if (parseCurrentSection) {
|
|
result = parseSections(decompressed, index);
|
|
if (result)
|
|
return result;
|
|
}
|
|
}
|
|
break;
|
|
case EFI_SECTION_DISPOSABLE:
|
|
{
|
|
header = section.left(sizeof(EFI_DISPOSABLE_SECTION));
|
|
body = section.mid(sizeof(EFI_DISPOSABLE_SECTION), sectionSize - sizeof(EFI_DISPOSABLE_SECTION));
|
|
|
|
// Get info
|
|
info = tr("parseSection: %1\nSize: %2")
|
|
.arg(sectionHeader->Type, 2, 16, QChar('0'))
|
|
.arg(body.size(), 8, 16, QChar('0'));
|
|
|
|
// Add tree item
|
|
index = treeModel->addItem(TreeItem::Section, sectionHeader->Type, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body, QByteArray(), parent, mode);
|
|
|
|
// Parse section body
|
|
result = parseSections(body, index);
|
|
if (result)
|
|
return result;
|
|
}
|
|
break;
|
|
|
|
// Leaf sections
|
|
case EFI_SECTION_PE32:
|
|
case EFI_SECTION_PIC:
|
|
case EFI_SECTION_TE:
|
|
case EFI_SECTION_VERSION:
|
|
case EFI_SECTION_FREEFORM_SUBTYPE_GUID:
|
|
case EFI_SECTION_DXE_DEPEX:
|
|
case EFI_SECTION_PEI_DEPEX:
|
|
case EFI_SECTION_SMM_DEPEX:
|
|
case EFI_SECTION_COMPATIBILITY16:
|
|
headerSize = sizeOfSectionHeaderOfType(sectionHeader->Type);
|
|
header = section.left(headerSize);
|
|
body = section.mid(headerSize, sectionSize - headerSize);
|
|
|
|
// Get info
|
|
info = tr("Type: %1\nSize: %2")
|
|
.arg(sectionHeader->Type, 2, 16, QChar('0'))
|
|
.arg(body.size(), 8, 16, QChar('0'));
|
|
|
|
// Add tree item
|
|
index = treeModel->addItem(TreeItem::Section, sectionHeader->Type, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body, QByteArray(), parent, mode);
|
|
break;
|
|
case EFI_SECTION_USER_INTERFACE:
|
|
{
|
|
header = section.left(sizeof(EFI_USER_INTERFACE_SECTION));
|
|
body = section.mid(sizeof(EFI_USER_INTERFACE_SECTION), sectionSize - sizeof(EFI_USER_INTERFACE_SECTION));
|
|
|
|
// Get info
|
|
info = tr("Type: %1\nSize: %2")
|
|
.arg(sectionHeader->Type, 2, 16, QChar('0'))
|
|
.arg(body.size(), 8, 16, QChar('0'));
|
|
|
|
// Add tree item
|
|
index = treeModel->addItem(TreeItem::Section, sectionHeader->Type, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body, QByteArray(), parent, mode);
|
|
|
|
// Rename parent file
|
|
QString text = QString::fromUtf16((const ushort*)body.constData());
|
|
treeModel->setItemText(text, findParentOfType(TreeItem::File, parent));
|
|
}
|
|
break;
|
|
case EFI_SECTION_FIRMWARE_VOLUME_IMAGE:
|
|
header = section.left(sizeof(EFI_FIRMWARE_VOLUME_IMAGE_SECTION));
|
|
body = section.mid(sizeof(EFI_FIRMWARE_VOLUME_IMAGE_SECTION), sectionSize - sizeof(EFI_FIRMWARE_VOLUME_IMAGE_SECTION));
|
|
|
|
// Get info
|
|
info = tr("Type: %1\nSize: %2")
|
|
.arg(sectionHeader->Type, 2, 16, QChar('0'))
|
|
.arg(body.size(), 8, 16, QChar('0'));
|
|
|
|
// Add tree item
|
|
index = treeModel->addItem(TreeItem::Section, sectionHeader->Type, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body, QByteArray(), parent, mode);
|
|
|
|
// Parse section body as BIOS space
|
|
result = parseBios(body, index);
|
|
if (result && result != ERR_VOLUMES_NOT_FOUND) {
|
|
msg(tr("parseSection: Firmware volume image can not be parsed as BIOS (%1)").arg(result), index);
|
|
return result;
|
|
}
|
|
break;
|
|
case EFI_SECTION_RAW:
|
|
header = section.left(sizeof(EFI_RAW_SECTION));
|
|
body = section.mid(sizeof(EFI_RAW_SECTION), sectionSize - sizeof(EFI_RAW_SECTION));
|
|
|
|
// Get info
|
|
info = tr("Type: %1\nSize: %2")
|
|
.arg(sectionHeader->Type, 2, 16, QChar('0'))
|
|
.arg(body.size(), 8, 16, QChar('0'));
|
|
|
|
// Add tree item
|
|
index = treeModel->addItem(TreeItem::Section, sectionHeader->Type, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body, QByteArray(), parent, mode);
|
|
|
|
// Parse section body as BIOS space
|
|
result = parseBios(body, index);
|
|
if (result && result != ERR_VOLUMES_NOT_FOUND) {
|
|
msg(tr("parseSection: Raw section can not be parsed as BIOS (%1)").arg(result), index);
|
|
return result;
|
|
}
|
|
break;
|
|
default:
|
|
header = section.left(sizeof(EFI_COMMON_SECTION_HEADER));
|
|
body = section.mid(sizeof(EFI_COMMON_SECTION_HEADER), sectionSize - sizeof(EFI_COMMON_SECTION_HEADER));
|
|
// Get info
|
|
info = tr("Type: %1\nSize: %2")
|
|
.arg(sectionHeader->Type, 2, 16, QChar('0'))
|
|
.arg(body.size(), 8, 16, QChar('0'));
|
|
|
|
// Add tree item
|
|
index = treeModel->addItem(TreeItem::Section, sectionHeader->Type, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body, QByteArray(), parent, mode);
|
|
msg(tr("parseSection: Section with unknown type (%1)").arg(sectionHeader->Type, 2, 16, QChar('0')), index);
|
|
}
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
// Operations on tree items
|
|
UINT8 FfsEngine::extract(const QModelIndex & index, QByteArray & extracted, const UINT8 mode)
|
|
{
|
|
if (!index.isValid())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
TreeItem* item = static_cast<TreeItem*>(index.internalPointer());
|
|
|
|
if (mode == EXTRACT_MODE_AS_IS) {
|
|
// Extract as is, with header, body and tail
|
|
extracted.clear();
|
|
extracted.append(item->header());
|
|
extracted.append(item->body());
|
|
extracted.append(item->tail());
|
|
}
|
|
else if (mode == EXTRACT_MODE_BODY_ONLY) {
|
|
// Extract without header and tail
|
|
extracted.clear();
|
|
extracted.append(item->body());
|
|
}
|
|
else if (mode == EXTRACT_MODE_UNCOMPRESSED) {
|
|
// Only possible for files with compressed sections
|
|
return ERR_NOT_IMPLEMENTED;
|
|
}
|
|
else
|
|
return ERR_UNKNOWN_EXTRACT_MODE;
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::insert(const QModelIndex & index, const QByteArray & object, const UINT8 type, const UINT8 mode)
|
|
{
|
|
if (!index.isValid())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
// Only files and sections can now be inserted
|
|
if (type == TreeItem::File) {
|
|
QModelIndex parent;
|
|
if (mode == INSERT_MODE_BEFORE || mode == INSERT_MODE_AFTER)
|
|
parent = index.parent();
|
|
else
|
|
parent = index;
|
|
|
|
// Parent type must be volume
|
|
TreeItem * parentItem = static_cast<TreeItem*>(parent.internalPointer());
|
|
if (parentItem->type() != TreeItem::Volume) {
|
|
msg(tr("insert: file can't be inserted into something that is not volume"), parent);
|
|
return ERR_INVALID_VOLUME;
|
|
}
|
|
|
|
EFI_FIRMWARE_VOLUME_HEADER* header = (EFI_FIRMWARE_VOLUME_HEADER*) parentItem->header().constData();
|
|
|
|
// Parse file
|
|
UINT8 result = parseFile(object, header->Revision, ERASE_POLARITY_UNKNOWN, index, mode);
|
|
if (result)
|
|
return result;
|
|
// Set rebuild action for parent
|
|
treeModel->setItemAction(TreeItem::Rebuild, parent);
|
|
}
|
|
else if (type == TreeItem::Section) {
|
|
QModelIndex parent;
|
|
if (mode == INSERT_MODE_BEFORE || mode == INSERT_MODE_AFTER)
|
|
parent = index.parent();
|
|
else
|
|
parent = index;
|
|
|
|
// Parent type must be file or encapsulation section
|
|
TreeItem * parentItem = static_cast<TreeItem*>(parent.internalPointer());
|
|
if (parentItem->type() == TreeItem::File || (parentItem->type() == TreeItem::Section &&
|
|
(parentItem->subtype() == EFI_SECTION_COMPRESSION ||
|
|
parentItem->subtype() == EFI_SECTION_GUID_DEFINED ||
|
|
parentItem->subtype() == EFI_SECTION_DISPOSABLE))) {
|
|
// Parse section
|
|
UINT8 result = parseSection(object, index, mode);
|
|
if (result)
|
|
return result;
|
|
// Set rebuild action for parent
|
|
treeModel->setItemAction(TreeItem::Rebuild, parent);
|
|
}
|
|
else {
|
|
msg(tr("insert: section can't be inserted into something that is not file or encapsulation section"), parent);
|
|
return ERR_INVALID_FILE;
|
|
}
|
|
}
|
|
else
|
|
return ERR_NOT_IMPLEMENTED;
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::remove(const QModelIndex & index)
|
|
{
|
|
if (!index.isValid())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
// Set action for the item
|
|
treeModel->setItemAction(TreeItem::Remove, index);
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::rebuild(const QModelIndex & index)
|
|
{
|
|
if (!index.isValid())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
// Set action for the item
|
|
treeModel->setItemAction(TreeItem::Rebuild, index);
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::changeCompression(const QModelIndex & index, const UINT8 algorithm)
|
|
{
|
|
if (!index.isValid())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
// Set compression for the item
|
|
treeModel->setItemCompression(algorithm, index);
|
|
|
|
// Set action for the item
|
|
treeModel->setItemAction(TreeItem::Modify, index);
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
// Compression routines
|
|
UINT8 FfsEngine::decompress(const QByteArray & compressedData, const UINT8 compressionType, QByteArray & decompressedData, UINT8 * algorithm)
|
|
{
|
|
UINT8* data;
|
|
UINT32 dataSize;
|
|
UINT8* decompressed;
|
|
UINT32 decompressedSize = 0;
|
|
UINT8* scratch;
|
|
UINT32 scratchSize = 0;
|
|
EFI_TIANO_HEADER* header;
|
|
|
|
switch (compressionType)
|
|
{
|
|
case EFI_NOT_COMPRESSED:
|
|
decompressedData = compressedData;
|
|
if (algorithm)
|
|
*algorithm = COMPRESSION_ALGORITHM_NONE;
|
|
return ERR_SUCCESS;
|
|
case EFI_STANDARD_COMPRESSION:
|
|
// Get buffer sizes
|
|
data = (UINT8*) compressedData.constData();
|
|
dataSize = compressedData.size();
|
|
|
|
// Check header to be valid
|
|
header = (EFI_TIANO_HEADER*) data;
|
|
if (header->CompSize + sizeof(EFI_TIANO_HEADER) != dataSize)
|
|
return ERR_STANDARD_DECOMPRESSION_FAILED;
|
|
|
|
// Get info function is the same for both algorithms
|
|
if (ERR_SUCCESS != EfiTianoGetInfo(data, dataSize, &decompressedSize, &scratchSize))
|
|
return ERR_STANDARD_DECOMPRESSION_FAILED;
|
|
|
|
// Allocate memory
|
|
decompressed = new UINT8[decompressedSize];
|
|
scratch = new UINT8[scratchSize];
|
|
|
|
// Decompress section data
|
|
//!TODO: better check needed
|
|
// Try EFI1.1 decompression first
|
|
if (ERR_SUCCESS != EfiDecompress(data, dataSize, decompressed, decompressedSize, scratch, scratchSize)) {
|
|
// Not EFI 1.1, try Tiano
|
|
if (ERR_SUCCESS != TianoDecompress(data, dataSize, decompressed, decompressedSize, scratch, scratchSize)) {
|
|
if (algorithm)
|
|
*algorithm = COMPRESSION_ALGORITHM_UNKNOWN;
|
|
return ERR_STANDARD_DECOMPRESSION_FAILED;
|
|
}
|
|
else if (algorithm)
|
|
*algorithm = COMPRESSION_ALGORITHM_TIANO;
|
|
}
|
|
else {
|
|
// Possible EFI 1.1
|
|
// Try decompressing it as Tiano
|
|
UINT8* tianoDecompressed = new UINT8[decompressedSize];
|
|
UINT8* tianoScratch = new UINT8[scratchSize];
|
|
if (ERR_SUCCESS != TianoDecompress(data, dataSize, tianoDecompressed, decompressedSize, tianoScratch, scratchSize)) {
|
|
// Not Tiano, definitely EFI 1.1
|
|
if (algorithm)
|
|
*algorithm = COMPRESSION_ALGORITHM_EFI11;
|
|
}
|
|
else {
|
|
// Both algorithms work
|
|
if(memcmp(decompressed, tianoDecompressed, decompressedSize)) {
|
|
// If decompressed data are different - it's Tiano for sure
|
|
delete[] decompressed;
|
|
delete[] scratch;
|
|
decompressed = tianoDecompressed;
|
|
scratch = tianoScratch;
|
|
if (algorithm)
|
|
*algorithm = COMPRESSION_ALGORITHM_TIANO;
|
|
}
|
|
else {
|
|
// Data are same - it's EFI 1.1
|
|
if (algorithm)
|
|
*algorithm = COMPRESSION_ALGORITHM_EFI11;
|
|
}
|
|
}
|
|
}
|
|
decompressedData = QByteArray((const char*) decompressed, decompressedSize);
|
|
|
|
// Free allocated memory
|
|
delete[] decompressed;
|
|
delete[] scratch;
|
|
|
|
return ERR_SUCCESS;
|
|
case EFI_CUSTOMIZED_COMPRESSION:
|
|
// Get buffer sizes
|
|
data = (UINT8*) compressedData.constData();
|
|
dataSize = compressedData.size();
|
|
|
|
// Get info
|
|
if (ERR_SUCCESS != LzmaGetInfo(data, dataSize, &decompressedSize))
|
|
return ERR_CUSTOMIZED_DECOMPRESSION_FAILED;
|
|
|
|
// Allocate memory
|
|
decompressed = new UINT8[decompressedSize];
|
|
|
|
// Decompress section data
|
|
if (ERR_SUCCESS != LzmaDecompress(data, dataSize, decompressed)) {
|
|
// Intel modified LZMA workaround
|
|
EFI_COMMON_SECTION_HEADER* shittySectionHeader;
|
|
UINT32 shittySectionSize;
|
|
// Shitty compressed section with a section header between COMPRESSED_SECTION_HEADER and LZMA_HEADER
|
|
// We must determine section header size by checking it's type before we can unpack that non-standard compressed section
|
|
shittySectionHeader = (EFI_COMMON_SECTION_HEADER*) data;
|
|
shittySectionSize = sizeOfSectionHeaderOfType(shittySectionHeader->Type);
|
|
|
|
// Decompress section data once again
|
|
data += shittySectionSize;
|
|
|
|
// Get info again
|
|
if (ERR_SUCCESS != LzmaGetInfo(data, dataSize, &decompressedSize))
|
|
return ERR_CUSTOMIZED_DECOMPRESSION_FAILED;
|
|
|
|
// Decompress section data again
|
|
if (ERR_SUCCESS != LzmaDecompress(data, dataSize, decompressed)) {
|
|
if (algorithm)
|
|
*algorithm = COMPRESSION_ALGORITHM_UNKNOWN;
|
|
return ERR_CUSTOMIZED_DECOMPRESSION_FAILED;
|
|
}
|
|
else {
|
|
if (algorithm)
|
|
*algorithm = COMPRESSION_ALGORITHM_IMLZMA;
|
|
decompressedData = QByteArray((const char*) decompressed, decompressedSize);
|
|
}
|
|
}
|
|
else {
|
|
if (algorithm)
|
|
*algorithm = COMPRESSION_ALGORITHM_LZMA;
|
|
decompressedData = QByteArray((const char*) decompressed, decompressedSize);
|
|
}
|
|
|
|
// Free memory
|
|
delete[] decompressed;
|
|
|
|
return ERR_SUCCESS;
|
|
default:
|
|
msg(tr("decompress: Unknown compression type (%1)").arg(compressionType));
|
|
if (algorithm)
|
|
*algorithm = COMPRESSION_ALGORITHM_UNKNOWN;
|
|
return ERR_UNKNOWN_COMPRESSION_ALGORITHM;
|
|
}
|
|
}
|
|
|
|
UINT8 FfsEngine::compress(const QByteArray & data, const UINT8 algorithm, QByteArray & compressedData)
|
|
{
|
|
UINT8* compressed;
|
|
UINT32 compressedSize = 0;
|
|
|
|
switch (algorithm) {
|
|
case COMPRESSION_ALGORITHM_NONE:
|
|
{
|
|
compressedData = data;
|
|
return ERR_SUCCESS;
|
|
}
|
|
break;
|
|
case COMPRESSION_ALGORITHM_EFI11:
|
|
{
|
|
if (EfiCompress((UINT8*) data.constData(), data.size(), NULL, &compressedSize) != ERR_BUFFER_TOO_SMALL)
|
|
return ERR_STANDARD_COMPRESSION_FAILED;
|
|
compressed = new UINT8[compressedSize];
|
|
if (EfiCompress((UINT8*) data.constData(), data.size(), compressed, &compressedSize) != ERR_SUCCESS)
|
|
return ERR_STANDARD_COMPRESSION_FAILED;
|
|
compressedData = QByteArray((const char*) compressed, compressedSize);
|
|
delete[] compressed;
|
|
return ERR_SUCCESS;
|
|
}
|
|
break;
|
|
case COMPRESSION_ALGORITHM_TIANO:
|
|
{
|
|
if (TianoCompress((UINT8*) data.constData(), data.size(), NULL, &compressedSize) != ERR_BUFFER_TOO_SMALL)
|
|
return ERR_STANDARD_COMPRESSION_FAILED;
|
|
compressed = new UINT8[compressedSize];
|
|
if (TianoCompress((UINT8*) data.constData(), data.size(), compressed, &compressedSize) != ERR_SUCCESS)
|
|
return ERR_STANDARD_COMPRESSION_FAILED;
|
|
compressedData = QByteArray((const char*) compressed, compressedSize);
|
|
delete[] compressed;
|
|
return ERR_SUCCESS;
|
|
}
|
|
break;
|
|
case COMPRESSION_ALGORITHM_LZMA:
|
|
{
|
|
if (LzmaCompress((const UINT8*) data.constData(), data.size(), NULL, &compressedSize) != ERR_BUFFER_TOO_SMALL)
|
|
return ERR_CUSTOMIZED_COMPRESSION_FAILED;
|
|
compressed = new UINT8[compressedSize];
|
|
if (LzmaCompress((const UINT8*) data.constData(), data.size(), compressed, &compressedSize) != ERR_SUCCESS)
|
|
return ERR_CUSTOMIZED_COMPRESSION_FAILED;
|
|
compressedData = QByteArray((const char*) compressed, compressedSize);
|
|
delete[] compressed;
|
|
return ERR_SUCCESS;
|
|
}
|
|
break;
|
|
case COMPRESSION_ALGORITHM_IMLZMA:
|
|
{
|
|
QByteArray header = data.left(sizeof(EFI_COMMON_SECTION_HEADER));
|
|
EFI_COMMON_SECTION_HEADER* sectionHeader = (EFI_COMMON_SECTION_HEADER*) header.constData();
|
|
UINT32 headerSize = sizeOfSectionHeaderOfType(sectionHeader->Type);
|
|
header = data.left(headerSize);
|
|
QByteArray newData = data.mid(headerSize);
|
|
if (LzmaCompress((UINT8*) newData.constData(), newData.size(), NULL, &compressedSize) != ERR_BUFFER_TOO_SMALL)
|
|
return ERR_CUSTOMIZED_COMPRESSION_FAILED;
|
|
compressed = new UINT8[compressedSize];
|
|
if (LzmaCompress((UINT8*) newData.constData(), newData.size(), compressed, &compressedSize) != ERR_SUCCESS)
|
|
return ERR_CUSTOMIZED_COMPRESSION_FAILED;
|
|
compressedData = header.append(QByteArray((const char*) compressed, compressedSize));
|
|
delete[] compressed;
|
|
return ERR_SUCCESS;
|
|
}
|
|
break;
|
|
default:
|
|
msg(tr("compress: Unknown compression algorithm (%1)").arg(algorithm));
|
|
return ERR_UNKNOWN_COMPRESSION_ALGORITHM;
|
|
}
|
|
}
|
|
|
|
// Construction routines
|
|
UINT8 FfsEngine::reconstructImage(QByteArray & reconstructed)
|
|
{
|
|
QQueue<QByteArray> queue;
|
|
UINT8 result = reconstruct(treeModel->index(0,0), queue);
|
|
if (result)
|
|
return result;
|
|
reconstructed.clear();
|
|
while (!queue.isEmpty())
|
|
reconstructed.append(queue.dequeue());
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::constructPadFile(const UINT32 size, const UINT8 revision, const UINT8 erasePolarity, QByteArray & pad)
|
|
{
|
|
if (size < sizeof(EFI_FFS_FILE_HEADER) || erasePolarity == ERASE_POLARITY_UNKNOWN)
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
pad = QByteArray(size, erasePolarity == ERASE_POLARITY_TRUE ? '\xFF' : '\x00');
|
|
EFI_FFS_FILE_HEADER* header = (EFI_FFS_FILE_HEADER*) pad.data();
|
|
uint32ToUint24(size, header->Size);
|
|
header->Attributes = 0x00;
|
|
header->Type = EFI_FV_FILETYPE_PAD;
|
|
header->State = EFI_FILE_HEADER_CONSTRUCTION | EFI_FILE_HEADER_VALID | EFI_FILE_DATA_VALID;
|
|
// Invert state bits if erase polarity is true
|
|
if (erasePolarity == ERASE_POLARITY_TRUE)
|
|
header->State = ~header->State;
|
|
|
|
// Calculate header checksum
|
|
header->IntegrityCheck.Checksum.Header = 0;
|
|
header->IntegrityCheck.Checksum.File = 0;
|
|
header->IntegrityCheck.Checksum.Header = calculateChecksum8((UINT8*) header, sizeof(EFI_FFS_FILE_HEADER) - 1);
|
|
|
|
// Set data checksum
|
|
if (revision == 1)
|
|
header->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM;
|
|
else
|
|
header->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM2;
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & queue, const UINT8 revision, const UINT8 erasePolarity)
|
|
{
|
|
if (!index.isValid())
|
|
return ERR_SUCCESS;
|
|
|
|
TreeItem* item = static_cast<TreeItem*>(index.internalPointer());
|
|
if (item == rootItem)
|
|
return ERR_SUCCESS;
|
|
|
|
QByteArray reconstructed;
|
|
UINT8 result;
|
|
|
|
// No action is needed, just return header + body
|
|
if (item->action() == TreeItem::NoAction) {
|
|
reconstructed = item->header().append(item->body()).append(item->tail());
|
|
queue.enqueue(reconstructed);
|
|
return ERR_SUCCESS;
|
|
}
|
|
// Remove item
|
|
else if (item->action() == TreeItem::Remove) {
|
|
// Volume can be removed by replacing all it's contents with empty bytes
|
|
if (item->type() == TreeItem::Volume) {
|
|
EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (EFI_FIRMWARE_VOLUME_HEADER*) item->header().constData();
|
|
char empty = volumeHeader->Attributes & EFI_FVB_ERASE_POLARITY ? '\xFF' : '\x00';
|
|
reconstructed.fill(empty, item->header().size() + item->body().size() + item->tail().size());
|
|
queue.enqueue(reconstructed);
|
|
return ERR_SUCCESS;
|
|
}
|
|
// File can be removed
|
|
if (item->type() == TreeItem::File)
|
|
// Add nothing to queue
|
|
return ERR_SUCCESS;
|
|
// Section can be removed
|
|
else if (item->type() == TreeItem::Section)
|
|
// Add nothing to queue
|
|
return ERR_SUCCESS;
|
|
// Other item types can't be removed
|
|
else
|
|
return ERR_NOT_IMPLEMENTED;
|
|
}
|
|
// Reconstruct item and it's children recursive
|
|
else if (item->action() == TreeItem::Modify || item->action() == TreeItem::Rebuild) {
|
|
QQueue<QByteArray> childrenQueue;
|
|
|
|
switch (item->type()) {
|
|
case TreeItem::Image:
|
|
if (item->subtype() == TreeItem::IntelImage) {
|
|
// Reconstruct Intel image
|
|
// First child will always be descriptor for this type of image
|
|
result = reconstruct(index.child(0, index.column()), childrenQueue);
|
|
if (result)
|
|
return result;
|
|
QByteArray descriptor = childrenQueue.dequeue();
|
|
reconstructed.append(descriptor);
|
|
|
|
FLASH_DESCRIPTOR_MAP* descriptorMap = (FLASH_DESCRIPTOR_MAP*) (descriptor.constData() + sizeof(FLASH_DESCRIPTOR_HEADER));
|
|
FLASH_DESCRIPTOR_REGION_SECTION* regionSection = (FLASH_DESCRIPTOR_REGION_SECTION*) calculateAddress8((UINT8*)descriptor.constData(), descriptorMap->RegionBase);
|
|
QByteArray gbe;
|
|
UINT32 gbeBegin = calculateRegionOffset(regionSection->GbeBase);
|
|
UINT32 gbeEnd = gbeBegin + calculateRegionSize(regionSection->GbeBase, regionSection->GbeLimit);
|
|
QByteArray me;
|
|
UINT32 meBegin = calculateRegionOffset(regionSection->MeBase);
|
|
UINT32 meEnd = meBegin + calculateRegionSize(regionSection->MeBase, regionSection->MeLimit);
|
|
QByteArray bios;
|
|
UINT32 biosBegin = calculateRegionOffset(regionSection->BiosBase);
|
|
UINT32 biosEnd = biosBegin + calculateRegionSize(regionSection->BiosBase, regionSection->BiosLimit);
|
|
QByteArray pdr;
|
|
UINT32 pdrBegin = calculateRegionOffset(regionSection->PdrBase);
|
|
UINT32 pdrEnd = pdrBegin + calculateRegionSize(regionSection->PdrBase, regionSection->PdrLimit);
|
|
|
|
UINT32 offset = descriptor.size();
|
|
// Reconstruct other regions
|
|
char empty = '\xFF'; //!TODO: determine empty char using one of reserved descriptor fields
|
|
for (int i = 1; i < item->childCount(); i++) {
|
|
result = reconstruct(index.child(i, index.column()), childrenQueue);
|
|
if (result)
|
|
return result;
|
|
switch(item->child(i)->subtype())
|
|
{
|
|
case TreeItem::GbeRegion:
|
|
gbe = childrenQueue.dequeue();
|
|
if (gbeBegin > offset)
|
|
reconstructed.append(QByteArray(gbeBegin - offset, empty));
|
|
reconstructed.append(gbe);
|
|
offset = gbeEnd;
|
|
break;
|
|
case TreeItem::MeRegion:
|
|
me = childrenQueue.dequeue();
|
|
if (meBegin > offset)
|
|
reconstructed.append(QByteArray(meBegin - offset, empty));
|
|
reconstructed.append(me);
|
|
offset = meEnd;
|
|
break;
|
|
case TreeItem::BiosRegion:
|
|
bios = childrenQueue.dequeue();
|
|
if (biosBegin > offset)
|
|
reconstructed.append(QByteArray(biosBegin - offset, empty));
|
|
reconstructed.append(bios);
|
|
offset = biosEnd;
|
|
break;
|
|
case TreeItem::PdrRegion:
|
|
pdr = childrenQueue.dequeue();
|
|
if (pdrBegin > offset)
|
|
reconstructed.append(QByteArray(pdrBegin - offset, empty));
|
|
reconstructed.append(pdr);
|
|
offset = pdrEnd;
|
|
break;
|
|
default:
|
|
msg(tr("reconstruct: unknown region type found while reconstructing Intel image"), index);
|
|
return ERR_INVALID_REGION;
|
|
}
|
|
}
|
|
if ((UINT32)item->body().size() > offset)
|
|
reconstructed.append(QByteArray((UINT32)item->body().size() - offset, empty));
|
|
|
|
// Check size of reconstructed image, it must be same
|
|
if (reconstructed.size() > item->body().size()) {
|
|
msg(tr("reconstruct: reconstructed body %1 is bigger then original %2")
|
|
.arg(reconstructed.size(), 8, 16, QChar('0'))
|
|
.arg(item->body().size(), 8, 16, QChar('0')), index);
|
|
return ERR_INVALID_PARAMETER;
|
|
}
|
|
else if (reconstructed.size() < item->body().size()) {
|
|
msg(tr("reconstruct: reconstructed body %1 is smaller then original %2")
|
|
.arg(reconstructed.size(), 8, 16, QChar('0'))
|
|
.arg(item->body().size(), 8, 16, QChar('0')), index);
|
|
return ERR_INVALID_PARAMETER;
|
|
}
|
|
|
|
// Enqueue reconstructed item
|
|
queue.enqueue(item->header().append(reconstructed));
|
|
return ERR_SUCCESS;
|
|
}
|
|
// BIOS Image must be treated like region
|
|
case TreeItem::Capsule:
|
|
if (item->subtype() == TreeItem::AptioCapsule)
|
|
msg(tr("reconstruct: Aptio capsule checksum and signature can now become invalid"), index);
|
|
case TreeItem::Region:
|
|
{
|
|
// Reconstruct item body
|
|
if (item->childCount()) {
|
|
// Reconstruct item children
|
|
for (int i = 0; i < item->childCount(); i++) {
|
|
result = reconstruct(index.child(i, index.column()), childrenQueue);
|
|
if (result)
|
|
return result;
|
|
}
|
|
|
|
// No additional checks needed
|
|
while (!childrenQueue.isEmpty())
|
|
reconstructed.append(childrenQueue.dequeue());
|
|
}
|
|
// Use stored item body
|
|
else
|
|
reconstructed = item->body();
|
|
|
|
// Check size of reconstructed image, it must be same
|
|
if (item->type() != TreeItem::Root) {
|
|
if (reconstructed.size() > item->body().size()) {
|
|
msg(tr("reconstructed: reconstructed body %1 is bigger then original %2")
|
|
.arg(reconstructed.size(), 8, 16, QChar('0'))
|
|
.arg(item->body().size(), 8, 16, QChar('0')), index);
|
|
return ERR_INVALID_PARAMETER;
|
|
}
|
|
else if (reconstructed.size() < item->body().size()) {
|
|
msg(tr("reconstructed: reconstructed body %1 is smaller then original %2")
|
|
.arg(reconstructed.size(), 8, 16, QChar('0'))
|
|
.arg(item->body().size(), 8, 16, QChar('0')), index);
|
|
return ERR_INVALID_PARAMETER;
|
|
}
|
|
}
|
|
|
|
// Enqueue reconstructed item
|
|
queue.enqueue(item->header().append(reconstructed));
|
|
}
|
|
break;
|
|
|
|
case TreeItem::Volume:
|
|
{
|
|
//!TODO: add check for weak aligned volumes
|
|
QByteArray header = item->header();
|
|
EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (EFI_FIRMWARE_VOLUME_HEADER*) header.data();
|
|
|
|
// Recalculate volume header checksum
|
|
volumeHeader->Checksum = 0;
|
|
volumeHeader->Checksum = calculateChecksum16((UINT16*) volumeHeader, volumeHeader->HeaderLength);
|
|
|
|
// Reconstruct volume body
|
|
if (item->childCount()) {
|
|
UINT8 polarity = volumeHeader->Attributes & EFI_FVB_ERASE_POLARITY ? ERASE_POLARITY_TRUE : ERASE_POLARITY_FALSE;
|
|
char empty = volumeHeader->Attributes & EFI_FVB_ERASE_POLARITY ? '\xFF' : '\x00';
|
|
|
|
// Reconstruct files in volume
|
|
for (int i = 0; i < item->childCount(); i++) {
|
|
// Reconstruct files
|
|
result = reconstruct(index.child(i, index.column()), childrenQueue, volumeHeader->Revision, polarity);
|
|
if (result)
|
|
return result;
|
|
}
|
|
|
|
// Remove all pad files, they will be recreated later
|
|
foreach(const QByteArray & child, childrenQueue)
|
|
{
|
|
EFI_FFS_FILE_HEADER* fileHeader = (EFI_FFS_FILE_HEADER*) child.constData();
|
|
if (fileHeader->Type == EFI_FV_FILETYPE_PAD)
|
|
childrenQueue.removeAll(child);
|
|
}
|
|
|
|
// Get volume size
|
|
UINT32 volumeSize;
|
|
result = getVolumeSize(header, 0, volumeSize);
|
|
if (result)
|
|
return result;
|
|
|
|
// Construct new volume body
|
|
UINT32 offset = 0;
|
|
while (!childrenQueue.isEmpty())
|
|
{
|
|
// Align to 8 byte boundary
|
|
UINT32 alignment = offset % 8;
|
|
if (alignment) {
|
|
alignment = 8 - alignment;
|
|
offset += alignment;
|
|
reconstructed.append(QByteArray(alignment, empty));
|
|
}
|
|
|
|
// Get file from queue
|
|
QByteArray file = childrenQueue.dequeue();
|
|
EFI_FFS_FILE_HEADER* fileHeader = (EFI_FFS_FILE_HEADER*) file.data();
|
|
|
|
// Check alignment
|
|
UINT8 alignmentPower;
|
|
UINT32 base;
|
|
alignmentPower = ffsAlignmentTable[(fileHeader->Attributes & FFS_ATTRIB_DATA_ALIGNMENT) >> 3];
|
|
alignment = (UINT32) pow(2.0, alignmentPower);
|
|
base = header.size() + offset + sizeof(EFI_FFS_FILE_HEADER);
|
|
if (base % alignment) {
|
|
// File will be unaligned if added as is, so we must add pad file before it
|
|
// Determine pad file size
|
|
UINT32 size = alignment - (base % alignment);
|
|
// Required padding is smaler then minimal pad file size
|
|
while (size < sizeof(EFI_FFS_FILE_HEADER)) {
|
|
size += alignment;
|
|
}
|
|
// Construct pad file
|
|
QByteArray pad;
|
|
result = constructPadFile(size, revision, polarity, pad);
|
|
if (result)
|
|
return result;
|
|
// Append constructed pad file to volume body
|
|
reconstructed.append(pad);
|
|
offset += size;
|
|
}
|
|
|
|
// If this is the last file in volume
|
|
if (childrenQueue.isEmpty())
|
|
{
|
|
// Last file of the volume can be Volume Top File
|
|
if (file.left(sizeof(EFI_GUID)) == EFI_FFS_VOLUME_TOP_FILE_GUID) {
|
|
// Determine correct VTF offset
|
|
UINT32 vtfOffset = volumeSize - header.size() - file.size();
|
|
if (vtfOffset % 8) {
|
|
msg(tr("reconstruct: %1: Wrong size of Volume Top File")
|
|
.arg(guidToQString(volumeHeader->FileSystemGuid)), index);
|
|
return ERR_INVALID_FILE;
|
|
}
|
|
// Insert pad file to fill the gap
|
|
if (vtfOffset > offset) {
|
|
// Determine pad file size
|
|
UINT32 size = vtfOffset - offset;
|
|
// Construct pad file
|
|
QByteArray pad;
|
|
result = constructPadFile(size, revision, polarity, pad);
|
|
if (result)
|
|
return result;
|
|
// Append constructed pad file to volume body
|
|
reconstructed.append(pad);
|
|
offset = vtfOffset;
|
|
}
|
|
// No more space left in volume
|
|
else if (vtfOffset < offset) {
|
|
// Check if volume can be grown
|
|
UINT8 parentType = item->parent()->type();
|
|
if(parentType != TreeItem::File && parentType != TreeItem::Section) {
|
|
msg(tr("%1: can't grow root volume").arg(guidToQString(volumeHeader->FileSystemGuid)), index);
|
|
return ERR_INVALID_VOLUME;
|
|
}
|
|
// Grow volume to fit VTF
|
|
UINT32 newSize = volumeSize + (offset - vtfOffset) + sizeof(EFI_FFS_FILE_HEADER);
|
|
result = growVolume(header, volumeSize, newSize);
|
|
if (result)
|
|
return result;
|
|
// Determine new VTF offset
|
|
vtfOffset = newSize - header.size() - file.size();
|
|
if (vtfOffset % 8) {
|
|
msg(tr("reconstruct: %1: Wrong size of Volume Top File")
|
|
.arg(guidToQString(volumeHeader->FileSystemGuid)), index);
|
|
return ERR_INVALID_FILE;
|
|
}
|
|
// Construct pad file
|
|
QByteArray pad;
|
|
result = constructPadFile(vtfOffset - offset, revision, polarity, pad);
|
|
if (result)
|
|
return result;
|
|
// Append constructed pad file to volume body
|
|
reconstructed.append(pad);
|
|
reconstructed.append(file);
|
|
volumeSize = newSize;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Append last file and fill the rest with empty char
|
|
else {
|
|
reconstructed.append(file);
|
|
UINT32 volumeBodySize = volumeSize - header.size();
|
|
if (volumeBodySize > (UINT32) reconstructed.size()) {
|
|
// Fill volume end with empty char
|
|
reconstructed.append(QByteArray(volumeBodySize - reconstructed.size(), empty));
|
|
}
|
|
else {
|
|
// Check if volume can be grown
|
|
UINT8 parentType = item->parent()->type();
|
|
if(parentType != TreeItem::File && parentType != TreeItem::Section) {
|
|
msg(tr("%1: can't grow root volume").arg(guidToQString(volumeHeader->FileSystemGuid)), index);
|
|
return ERR_INVALID_VOLUME;
|
|
}
|
|
// Grow volume to fit new body
|
|
UINT32 newSize = header.size() + reconstructed.size();
|
|
result = growVolume(header, volumeSize, newSize);
|
|
if (result)
|
|
return result;
|
|
// Fill volume end with empty char
|
|
reconstructed.append(QByteArray(newSize - header.size() - reconstructed.size(), empty));
|
|
volumeSize = newSize;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Append current file to new volume body
|
|
reconstructed.append(file);
|
|
|
|
// Change current file offset
|
|
offset += file.size();
|
|
}
|
|
|
|
// Check new volume size
|
|
if ((UINT32)(header.size() + reconstructed.size()) > volumeSize)
|
|
{
|
|
msg(tr("reconstruct: Volume grow failed"));
|
|
return ERR_INVALID_VOLUME;
|
|
}
|
|
}
|
|
// Use current volume body
|
|
else
|
|
reconstructed = item->body();
|
|
|
|
// Enqueue reconstructed item
|
|
queue.enqueue(header.append(reconstructed));
|
|
}
|
|
break;
|
|
|
|
case TreeItem::File:
|
|
{
|
|
QByteArray header = item->header();
|
|
EFI_FFS_FILE_HEADER* fileHeader = (EFI_FFS_FILE_HEADER*) header.data();
|
|
|
|
// Check erase polarity
|
|
if (erasePolarity == ERASE_POLARITY_UNKNOWN) {
|
|
msg(tr("reconstruct: %1, unknown erase polarity").arg(guidToQString(fileHeader->Name)), index);
|
|
return ERR_INVALID_PARAMETER;
|
|
}
|
|
|
|
// Construct empty char for this file
|
|
char empty = erasePolarity == ERASE_POLARITY_TRUE ? '\xFF' : '\x00';
|
|
|
|
// Check file state
|
|
// Invert it first if erase polarity is true
|
|
UINT8 state = fileHeader->State;
|
|
if (erasePolarity == ERASE_POLARITY_TRUE)
|
|
state = ~state;
|
|
|
|
// Order of this checks must be preserved
|
|
// Check file to have valid state, or delete it otherwise
|
|
if (state & EFI_FILE_HEADER_INVALID) {
|
|
// File marked to have invalid header and must be deleted
|
|
// Do not add anything to queue
|
|
msg(tr("reconstruct: %1, file is HEADER_INVALID state, and will be removed from reconstructed image")
|
|
.arg(guidToQString(fileHeader->Name)), index);
|
|
return ERR_SUCCESS;
|
|
}
|
|
else if (state & EFI_FILE_DELETED) {
|
|
// File marked to have been deleted form and must be deleted
|
|
// Do not add anything to queue
|
|
msg(tr("reconstruct: %1, file is in DELETED state, and will be removed from reconstructed image")
|
|
.arg(guidToQString(fileHeader->Name)), index);
|
|
return ERR_SUCCESS;
|
|
}
|
|
else if (state & EFI_FILE_MARKED_FOR_UPDATE) {
|
|
// File is marked for update, the mark must be removed
|
|
msg(tr("reconstruct: %1, file MARKED_FOR_UPDATE state cleared")
|
|
.arg(guidToQString(fileHeader->Name)), index);
|
|
}
|
|
else if (state & EFI_FILE_DATA_VALID) {
|
|
// File is in good condition, reconstruct it
|
|
}
|
|
else if (state & EFI_FILE_HEADER_VALID) {
|
|
// Header is valid, but data is not, so file must be deleted
|
|
msg(tr("reconstruct: %1, file is in HEADER_VALID (but not in DATA_VALID) state, and will be removed from reconstructed image")
|
|
.arg(guidToQString(fileHeader->Name)), index);
|
|
return ERR_SUCCESS;
|
|
}
|
|
else if (state & EFI_FILE_HEADER_CONSTRUCTION) {
|
|
// Header construction not finished, so file must be deleted
|
|
msg(tr("reconstruct: %1, file is in HEADER_CONSTRUCTION (but not in DATA_VALID) state, and will be removed from reconstructed image")
|
|
.arg(guidToQString(fileHeader->Name)), index);
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
// Reconstruct file body
|
|
if (item->childCount()) {
|
|
for (int i = 0; i < item->childCount(); i++) {
|
|
// Reconstruct sections
|
|
result = reconstruct(index.child(i, index.column()), childrenQueue, revision, empty);
|
|
if (result)
|
|
return result;
|
|
}
|
|
|
|
// Construct new file body
|
|
UINT32 offset = 0;
|
|
while (!childrenQueue.isEmpty())
|
|
{
|
|
// Align to 4 byte boundary
|
|
UINT8 alignment = offset % 4;
|
|
if (alignment) {
|
|
alignment = 4 - alignment;
|
|
offset += alignment;
|
|
reconstructed.append(QByteArray(alignment, empty));
|
|
}
|
|
|
|
// Get section from queue
|
|
QByteArray section = childrenQueue.dequeue();
|
|
|
|
// Append current section to new file body
|
|
reconstructed.append(section);
|
|
// Change current file offset
|
|
offset += section.size();
|
|
}
|
|
|
|
// Correct file size
|
|
UINT8 tailSize = item->hasEmptyTail() ? 0 : sizeof(UINT16);
|
|
|
|
uint32ToUint24(sizeof(EFI_FFS_FILE_HEADER) + reconstructed.size() + tailSize, fileHeader->Size);
|
|
|
|
// Recalculate header checksum
|
|
fileHeader->IntegrityCheck.Checksum.Header = 0;
|
|
fileHeader->IntegrityCheck.Checksum.File = 0;
|
|
fileHeader->IntegrityCheck.Checksum.Header = calculateChecksum8((UINT8*) fileHeader, sizeof(EFI_FFS_FILE_HEADER) - 1);
|
|
|
|
}
|
|
// Use current file body
|
|
else
|
|
reconstructed = item->body();
|
|
|
|
// Recalculate data checksum, if needed
|
|
if (fileHeader->Attributes & FFS_ATTRIB_CHECKSUM) {
|
|
fileHeader->IntegrityCheck.Checksum.File = calculateChecksum8((UINT8*) reconstructed.constData(), reconstructed.size());
|
|
}
|
|
else if (revision == 1)
|
|
fileHeader->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM;
|
|
else
|
|
fileHeader->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM2;
|
|
|
|
// Append tail, if needed
|
|
if (!item->hasEmptyTail())
|
|
reconstructed.append(!fileHeader->IntegrityCheck.TailReference);
|
|
|
|
// Set file state
|
|
state = EFI_FILE_DATA_VALID | EFI_FILE_HEADER_VALID | EFI_FILE_HEADER_CONSTRUCTION;
|
|
if (erasePolarity == ERASE_POLARITY_TRUE)
|
|
state = ~state;
|
|
fileHeader->State = state;
|
|
|
|
// Enqueue reconstructed item
|
|
queue.enqueue(header.append(reconstructed));
|
|
}
|
|
break;
|
|
|
|
case TreeItem::Section:
|
|
{
|
|
QByteArray header = item->header();
|
|
EFI_COMMON_SECTION_HEADER* commonHeader = (EFI_COMMON_SECTION_HEADER*) header.data();
|
|
|
|
// Section with children
|
|
if (item->childCount()) {
|
|
// Reconstruct section body
|
|
for (int i = 0; i < item->childCount(); i++) {
|
|
// Reconstruct subsections
|
|
result = reconstruct(index.child(i, index.column()), childrenQueue);
|
|
if (result)
|
|
return result;
|
|
}
|
|
|
|
// Construct new section body
|
|
UINT32 offset = 0;
|
|
while (!childrenQueue.isEmpty())
|
|
{
|
|
// Align to 4 byte boundary
|
|
UINT8 alignment = offset % 4;
|
|
if (alignment) {
|
|
alignment = 4 - alignment;
|
|
offset += alignment;
|
|
reconstructed.append(QByteArray(alignment, '\x00'));
|
|
}
|
|
|
|
// Get section from queue
|
|
QByteArray section = childrenQueue.dequeue();
|
|
|
|
// Append current subsection to new section body
|
|
reconstructed.append(section);
|
|
|
|
// Change current file offset
|
|
offset += section.size();
|
|
}
|
|
|
|
// Only this 2 sections can have compressed body
|
|
if (item->subtype() == EFI_SECTION_COMPRESSION) {
|
|
EFI_COMPRESSION_SECTION* compessionHeader = (EFI_COMPRESSION_SECTION*) header.data();
|
|
// Set new uncompressed size
|
|
compessionHeader->UncompressedLength = reconstructed.size();
|
|
// Compress new section body
|
|
QByteArray compressed;
|
|
result = compress(reconstructed, item->compression(), compressed);
|
|
if (result)
|
|
return result;
|
|
// Correct compression type
|
|
if (item->compression() == COMPRESSION_ALGORITHM_NONE)
|
|
compessionHeader->CompressionType = EFI_NOT_COMPRESSED;
|
|
else if (item->compression() == COMPRESSION_ALGORITHM_LZMA || item->compression() == COMPRESSION_ALGORITHM_IMLZMA)
|
|
compessionHeader->CompressionType = EFI_CUSTOMIZED_COMPRESSION;
|
|
else
|
|
compessionHeader->CompressionType = EFI_STANDARD_COMPRESSION;
|
|
// Replace new section body
|
|
reconstructed = compressed;
|
|
}
|
|
else if (item->subtype() == EFI_SECTION_GUID_DEFINED) {
|
|
EFI_GUID_DEFINED_SECTION* guidDefinedHeader = (EFI_GUID_DEFINED_SECTION*) header.data();
|
|
// Compress new section body
|
|
QByteArray compressed;
|
|
result = compress(reconstructed, item->compression(), compressed);
|
|
if (result)
|
|
return result;
|
|
// Check for auth status valid attribute
|
|
if (guidDefinedHeader->Attributes & EFI_GUIDED_SECTION_AUTH_STATUS_VALID) {
|
|
msg(tr("reconstruct: %1: GUID defined section signature can now become invalid")
|
|
.arg(guidToQString(guidDefinedHeader->SectionDefinitionGuid)));
|
|
}
|
|
// Replace new section body
|
|
reconstructed = compressed;
|
|
}
|
|
else if (item->compression() != COMPRESSION_ALGORITHM_NONE) {
|
|
msg(tr("reconstruct: compression required for section of type %1")
|
|
.arg(item->subtype()));
|
|
return ERR_INVALID_SECTION;
|
|
}
|
|
|
|
// Correct section size
|
|
uint32ToUint24(header.size() + reconstructed.size(), commonHeader->Size);
|
|
}
|
|
// Leaf section
|
|
else
|
|
reconstructed = item->body();
|
|
|
|
// Enqueue reconstructed item
|
|
queue.enqueue(header.append(reconstructed));
|
|
}
|
|
break;
|
|
|
|
default:
|
|
msg(tr("reconstruct: Unknown item type (%1)").arg(item->type()));
|
|
return ERR_UNKNOWN_ITEM_TYPE;
|
|
}
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
return ERR_NOT_IMPLEMENTED;
|
|
}
|
|
|
|
UINT8 FfsEngine::growVolume(QByteArray & header, const UINT32 size, UINT32 & newSize)
|
|
{
|
|
// Adjust new size to be representable by current FvBlockMap
|
|
EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (EFI_FIRMWARE_VOLUME_HEADER*) header.data();
|
|
EFI_FV_BLOCK_MAP_ENTRY* blockMap = (EFI_FV_BLOCK_MAP_ENTRY*) (header.data() + sizeof(EFI_FIRMWARE_VOLUME_HEADER));
|
|
|
|
// Get block map size
|
|
UINT32 extHeaderOffset = volumeHeader->Revision == 2 ? volumeHeader->ExtHeaderOffset : 0;
|
|
UINT32 blockMapSize = header.size() - extHeaderOffset - sizeof(EFI_FIRMWARE_VOLUME_HEADER);
|
|
if (blockMapSize % sizeof(EFI_FV_BLOCK_MAP_ENTRY))
|
|
return ERR_INVALID_VOLUME;
|
|
UINT32 blockMapCount = blockMapSize / sizeof(EFI_FV_BLOCK_MAP_ENTRY);
|
|
|
|
// Check blockMap validity
|
|
if (blockMap[blockMapCount-1].NumBlocks != 0 || blockMap[blockMapCount-1].Length != 0)
|
|
return ERR_INVALID_VOLUME;
|
|
|
|
// Calculate new size
|
|
if (newSize <= size)
|
|
return ERR_INVALID_PARAMETER;
|
|
newSize += blockMap->Length - newSize % blockMap->Length;
|
|
|
|
// Recalculate number of blocks
|
|
blockMap->NumBlocks = newSize / blockMap->Length;
|
|
|
|
// Set new volume size
|
|
volumeHeader->FvLength = 0;
|
|
for(UINT8 i = 0; i < blockMapCount; i++) {
|
|
volumeHeader->FvLength += blockMap[i].NumBlocks * blockMap[i].Length;
|
|
}
|
|
|
|
// Recalculate volume header checksum
|
|
volumeHeader->Checksum = 0;
|
|
volumeHeader->Checksum = calculateChecksum16((UINT16*) volumeHeader, volumeHeader->HeaderLength);
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
// Will be refactored later
|
|
/*QByteArray FfsEngine::decompressFile(const QModelIndex& index) const
|
|
{
|
|
if (!index.isValid())
|
|
return QByteArray();
|
|
|
|
// Check index item to be FFS file
|
|
TreeItem *item = static_cast<TreeItem*>(index.internalPointer());
|
|
if(item->type() != TreeItem::File)
|
|
return QByteArray();
|
|
|
|
QByteArray file;
|
|
UINT32 offset = 0;
|
|
// Construct new item body
|
|
for (int i = 0; i < item->childCount(); i++) {
|
|
// If section is not compressed, add it to new body as is
|
|
TreeItem* sectionItem = item->child(i);
|
|
if (sectionItem->subtype() != EFI_SECTION_COMPRESSION) {
|
|
QByteArray section = sectionItem->header().append(sectionItem->body());
|
|
UINT32 align = ALIGN4(offset) - offset;
|
|
file.append(QByteArray(align, '\x00')).append(section);
|
|
offset += align + section.size();
|
|
}
|
|
else {
|
|
// Construct new section body by adding all child sections to this new section
|
|
QByteArray section;
|
|
UINT32 subOffset = 0;
|
|
for (int j = 0; j < sectionItem->childCount(); j++)
|
|
{
|
|
TreeItem* subSectionItem = sectionItem->child(j);
|
|
QByteArray subSection = subSectionItem->header().append(subSectionItem->body());
|
|
UINT32 align = ALIGN4(subOffset) - subOffset;
|
|
section.append(QByteArray(align, '\x00')).append(subSection);
|
|
subOffset += align + subSection.size();
|
|
}
|
|
// Add newly constructed section to file body
|
|
|
|
EFI_COMPRESSION_SECTION sectionHeader;
|
|
sectionHeader.Type = EFI_SECTION_COMPRESSION;
|
|
sectionHeader.CompressionType = EFI_NOT_COMPRESSED;
|
|
sectionHeader.UncompressedLength = section.size();
|
|
uint32ToUint24(section.size() + sizeof(EFI_COMPRESSION_SECTION), sectionHeader.Size);
|
|
UINT32 align = ALIGN4(offset) - offset;
|
|
file.append(QByteArray(align, '\x00'))
|
|
.append(QByteArray((const char*) §ionHeader, sizeof(EFI_COMPRESSION_SECTION)))
|
|
.append(section);
|
|
offset += align + section.size();
|
|
}
|
|
}
|
|
|
|
QByteArray header = item->header();
|
|
EFI_FFS_FILE_HEADER* fileHeader = (EFI_FFS_FILE_HEADER*) header.data();
|
|
|
|
// Correct file data checksum, if needed
|
|
if (fileHeader->Attributes & FFS_ATTRIB_CHECKSUM) {
|
|
UINT32 bufferSize = file.size() - sizeof(EFI_FFS_FILE_HEADER);
|
|
fileHeader->IntegrityCheck.Checksum.File = calculateChecksum8((UINT8*)(file.data() + sizeof(EFI_FFS_FILE_HEADER)), bufferSize);
|
|
}
|
|
|
|
// Add file tail, if needed
|
|
if(fileHeader->Attributes & FFS_ATTRIB_TAIL_PRESENT)
|
|
file.append(!fileHeader->IntegrityCheck.TailReference);
|
|
|
|
return header.append(file);
|
|
}*/
|
|
|
|
/*bool FfsEngine::isCompressedFile(const QModelIndex& index) const
|
|
{
|
|
if (!index.isValid())
|
|
return false;
|
|
|
|
TreeItem *item = static_cast<TreeItem*>(index.internalPointer());
|
|
if(item->type() != TreeItem::File)
|
|
return false;
|
|
|
|
for (int i = 0; i < item->childCount(); i++) {
|
|
if (item->child(i)->subtype() == EFI_SECTION_COMPRESSION)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}*/
|