mirror of
https://github.com/LongSoft/UEFITool.git
synced 2024-11-25 17:38:22 +08:00
4c79001b12
- valid checksums is now shown, if item checksum is invalid
2829 lines
118 KiB
C++
2829 lines
118 KiB
C++
/* ffsparser.cpp
|
|
|
|
Copyright (c) 2015, Nikolaj Schlej. All rights reserved.
|
|
This program and the accompanying materials
|
|
are licensed and made available under the terms and conditions of the BSD License
|
|
which accompanies this distribution. The full text of the license may be found at
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
WITHWARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
*/
|
|
|
|
#include <math.h>
|
|
|
|
#include "ffsparser.h"
|
|
#include "types.h"
|
|
#include "treemodel.h"
|
|
#include "descriptor.h"
|
|
#include "ffs.h"
|
|
#include "gbe.h"
|
|
#include "me.h"
|
|
#include "fit.h"
|
|
|
|
FfsParser::FfsParser(TreeModel* treeModel, QObject *parent)
|
|
: QObject(parent), model(treeModel), capsuleOffsetFixup(0)
|
|
{
|
|
}
|
|
|
|
FfsParser::~FfsParser()
|
|
{
|
|
}
|
|
|
|
void FfsParser::msg(const QString & message, const QModelIndex & index)
|
|
{
|
|
messagesVector.push_back(QPair<QString, QModelIndex>(message, index));
|
|
}
|
|
|
|
QVector<QPair<QString, QModelIndex> > FfsParser::getMessages() const
|
|
{
|
|
return messagesVector;
|
|
}
|
|
|
|
void FfsParser::clearMessages()
|
|
{
|
|
messagesVector.clear();
|
|
}
|
|
|
|
BOOLEAN FfsParser::hasIntersection(const UINT32 begin1, const UINT32 end1, const UINT32 begin2, const UINT32 end2)
|
|
{
|
|
if (begin1 < begin2 && begin2 < end1)
|
|
return TRUE;
|
|
if (begin1 < end2 && end2 < end1)
|
|
return TRUE;
|
|
if (begin2 < begin1 && begin1 < end2)
|
|
return TRUE;
|
|
if (begin2 < end1 && end1 < end2)
|
|
return TRUE;
|
|
return FALSE;
|
|
}
|
|
|
|
// Firmware image parsing functions
|
|
STATUS FfsParser::parseImageFile(const QByteArray & buffer, const QModelIndex & root)
|
|
{
|
|
// Reset capsule offset fixeup value
|
|
capsuleOffsetFixup = 0;
|
|
|
|
// Check buffer size to be more than or equal to size of EFI_CAPSULE_HEADER
|
|
if ((UINT32)buffer.size() <= sizeof(EFI_CAPSULE_HEADER)) {
|
|
msg(tr("parseImageFile: image file is smaller than minimum size of %1h (%2) bytes").hexarg(sizeof(EFI_CAPSULE_HEADER)).arg(sizeof(EFI_CAPSULE_HEADER)));
|
|
return ERR_INVALID_PARAMETER;
|
|
}
|
|
|
|
QModelIndex index;
|
|
UINT32 capsuleHeaderSize = 0;
|
|
// Check buffer for being normal EFI capsule header
|
|
if (buffer.startsWith(EFI_CAPSULE_GUID)
|
|
|| buffer.startsWith(INTEL_CAPSULE_GUID)) {
|
|
// Get info
|
|
const EFI_CAPSULE_HEADER* capsuleHeader = (const EFI_CAPSULE_HEADER*)buffer.constData();
|
|
|
|
// Check sanity of HeaderSize and CapsuleImageSize values
|
|
if (capsuleHeader->HeaderSize == 0 || capsuleHeader->HeaderSize > (UINT32)buffer.size() || capsuleHeader->HeaderSize > capsuleHeader->CapsuleImageSize) {
|
|
msg(tr("parseImageFile: UEFI capsule header size of %1h (%2) bytes is invalid")
|
|
.hexarg(capsuleHeader->HeaderSize).arg(capsuleHeader->HeaderSize));
|
|
return ERR_INVALID_CAPSULE;
|
|
}
|
|
if (capsuleHeader->CapsuleImageSize == 0 || capsuleHeader->CapsuleImageSize > (UINT32)buffer.size()) {
|
|
msg(tr("parseImageFile: UEFI capsule image size of %1h (%2) bytes is invalid")
|
|
.hexarg(capsuleHeader->CapsuleImageSize).arg(capsuleHeader->CapsuleImageSize));
|
|
return ERR_INVALID_CAPSULE;
|
|
}
|
|
|
|
capsuleHeaderSize = capsuleHeader->HeaderSize;
|
|
QByteArray header = buffer.left(capsuleHeaderSize);
|
|
QByteArray body = buffer.mid(capsuleHeaderSize);
|
|
QString name = tr("UEFI capsule");
|
|
QString info = tr("Offset: 0h\nCapsule GUID: %1\nFull size: %2h (%3)\nHeader size: %4h (%5)\nImage size: %6h (%7)\nFlags: %8h")
|
|
.arg(guidToQString(capsuleHeader->CapsuleGuid))
|
|
.hexarg(buffer.size()).arg(buffer.size())
|
|
.hexarg(capsuleHeaderSize).arg(capsuleHeaderSize)
|
|
.hexarg(capsuleHeader->CapsuleImageSize - capsuleHeaderSize).arg(capsuleHeader->CapsuleImageSize - capsuleHeaderSize)
|
|
.hexarg2(capsuleHeader->Flags, 8);
|
|
|
|
// Construct parsing data
|
|
PARSING_DATA pdata = parsingDataFromQModelIndex(QModelIndex());
|
|
pdata.fixed = TRUE;
|
|
|
|
// Set capsule offset fixup for correct volume allignment warnings
|
|
capsuleOffsetFixup = capsuleHeaderSize;
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Capsule, Subtypes::UefiCapsule, name, QString(), info, header, body, parsingDataToQByteArray(pdata), root);
|
|
}
|
|
// Check buffer for being Toshiba capsule header
|
|
else if (buffer.startsWith(TOSHIBA_CAPSULE_GUID)) {
|
|
// Get info
|
|
const TOSHIBA_CAPSULE_HEADER* capsuleHeader = (const TOSHIBA_CAPSULE_HEADER*)buffer.constData();
|
|
|
|
// Check sanity of HeaderSize and FullSize values
|
|
if (capsuleHeader->HeaderSize == 0 || capsuleHeader->HeaderSize > (UINT32)buffer.size() || capsuleHeader->HeaderSize > capsuleHeader->FullSize) {
|
|
msg(tr("parseImageFile: Toshiba capsule header size of %1h (%2) bytes is invalid")
|
|
.hexarg(capsuleHeader->HeaderSize).arg(capsuleHeader->HeaderSize));
|
|
return ERR_INVALID_CAPSULE;
|
|
}
|
|
if (capsuleHeader->FullSize == 0 || capsuleHeader->FullSize > (UINT32)buffer.size()) {
|
|
msg(tr("parseImageFile: Toshiba capsule full size of %1h (%2) bytes is invalid")
|
|
.hexarg(capsuleHeader->FullSize).arg(capsuleHeader->FullSize));
|
|
return ERR_INVALID_CAPSULE;
|
|
}
|
|
|
|
capsuleHeaderSize = capsuleHeader->HeaderSize;
|
|
QByteArray header = buffer.left(capsuleHeaderSize);
|
|
QByteArray body = buffer.right(buffer.size() - capsuleHeaderSize);
|
|
QString name = tr("Toshiba capsule");
|
|
QString info = tr("Offset: 0h\nCapsule GUID: %1\nFull size: %2h (%3)\nHeader size: %4h (%5)\nImage size: %6h (%7)\nFlags: %8h")
|
|
.arg(guidToQString(capsuleHeader->CapsuleGuid))
|
|
.hexarg(buffer.size()).arg(buffer.size())
|
|
.hexarg(capsuleHeaderSize).arg(capsuleHeaderSize)
|
|
.hexarg(capsuleHeader->FullSize - capsuleHeaderSize).arg(capsuleHeader->FullSize - capsuleHeaderSize)
|
|
.hexarg2(capsuleHeader->Flags, 8);
|
|
|
|
// Construct parsing data
|
|
PARSING_DATA pdata = parsingDataFromQModelIndex(QModelIndex());
|
|
pdata.fixed = TRUE;
|
|
|
|
// Set capsule offset fixup for correct volume allignment warnings
|
|
capsuleOffsetFixup = capsuleHeaderSize;
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Capsule, Subtypes::ToshibaCapsule, name, QString(), info, header, body, parsingDataToQByteArray(pdata), root);
|
|
}
|
|
// Check buffer for being extended Aptio signed capsule header
|
|
else if (buffer.startsWith(APTIO_SIGNED_CAPSULE_GUID) || buffer.startsWith(APTIO_UNSIGNED_CAPSULE_GUID)) {
|
|
bool signedCapsule = buffer.startsWith(APTIO_SIGNED_CAPSULE_GUID);
|
|
|
|
if ((UINT32)buffer.size() <= sizeof(APTIO_CAPSULE_HEADER)) {
|
|
msg(tr("parseImageFile: AMI capsule image file is smaller than minimum size of %1h (%2) bytes").hexarg(sizeof(APTIO_CAPSULE_HEADER)).arg(sizeof(APTIO_CAPSULE_HEADER)));
|
|
return ERR_INVALID_PARAMETER;
|
|
}
|
|
|
|
// Get info
|
|
const APTIO_CAPSULE_HEADER* capsuleHeader = (const APTIO_CAPSULE_HEADER*)buffer.constData();
|
|
|
|
// Check sanity of RomImageOffset and CapsuleImageSize values
|
|
if (capsuleHeader->RomImageOffset == 0 || capsuleHeader->RomImageOffset > (UINT32)buffer.size() || capsuleHeader->RomImageOffset > capsuleHeader->CapsuleHeader.CapsuleImageSize) {
|
|
msg(tr("parseImageFile: AMI capsule image offset of %1h (%2) bytes is invalid").hexarg(capsuleHeader->RomImageOffset).arg(capsuleHeader->RomImageOffset));
|
|
return ERR_INVALID_CAPSULE;
|
|
}
|
|
if (capsuleHeader->CapsuleHeader.CapsuleImageSize == 0 || capsuleHeader->CapsuleHeader.CapsuleImageSize > (UINT32)buffer.size()) {
|
|
msg(tr("parseImageFile: AMI capsule image size of %1h (%2) bytes is invalid").hexarg(capsuleHeader->CapsuleHeader.CapsuleImageSize).arg(capsuleHeader->CapsuleHeader.CapsuleImageSize));
|
|
return ERR_INVALID_CAPSULE;
|
|
}
|
|
|
|
capsuleHeaderSize = capsuleHeader->RomImageOffset;
|
|
QByteArray header = buffer.left(capsuleHeaderSize);
|
|
QByteArray body = buffer.mid(capsuleHeaderSize);
|
|
QString name = tr("AMI Aptio capsule");
|
|
QString info = tr("Offset: 0h\nCapsule GUID: %1\nFull size: %2h (%3)\nHeader size: %4h (%5)\nImage size: %6h (%7)\nFlags: %8h")
|
|
.arg(guidToQString(capsuleHeader->CapsuleHeader.CapsuleGuid))
|
|
.hexarg(buffer.size()).arg(buffer.size())
|
|
.hexarg(capsuleHeaderSize).arg(capsuleHeaderSize)
|
|
.hexarg(capsuleHeader->CapsuleHeader.CapsuleImageSize - capsuleHeaderSize).arg(capsuleHeader->CapsuleHeader.CapsuleImageSize - capsuleHeaderSize)
|
|
.hexarg2(capsuleHeader->CapsuleHeader.Flags, 8);
|
|
|
|
// Construct parsing data
|
|
PARSING_DATA pdata = parsingDataFromQModelIndex(QModelIndex());
|
|
pdata.fixed = TRUE;
|
|
|
|
// Set capsule offset fixup for correct volume allignment warnings
|
|
capsuleOffsetFixup = capsuleHeaderSize;
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Capsule, signedCapsule ? Subtypes::AptioSignedCapsule : Subtypes::AptioUnsignedCapsule, name, QString(), info, header, body, parsingDataToQByteArray(pdata), root);
|
|
|
|
// Show message about possible Aptio signature break
|
|
if (signedCapsule) {
|
|
msg(tr("parseImageFile: Aptio capsule signature may become invalid after image modifications"), index);
|
|
}
|
|
}
|
|
// Other cases
|
|
else {
|
|
index = root;
|
|
}
|
|
|
|
// Skip capsule header to have flash chip image
|
|
QByteArray flashImage = buffer.mid(capsuleHeaderSize);
|
|
|
|
// Check for Intel flash descriptor presence
|
|
const FLASH_DESCRIPTOR_HEADER* descriptorHeader = (const FLASH_DESCRIPTOR_HEADER*)flashImage.constData();
|
|
|
|
// Check descriptor signature
|
|
STATUS result;
|
|
if (descriptorHeader->Signature == FLASH_DESCRIPTOR_SIGNATURE) {
|
|
// Parse as Intel image
|
|
QModelIndex imageIndex;
|
|
result = parseIntelImage(flashImage, capsuleHeaderSize, index, imageIndex);
|
|
if (result != ERR_INVALID_FLASH_DESCRIPTOR)
|
|
return result;
|
|
}
|
|
|
|
// Get info
|
|
QString name = tr("UEFI image");
|
|
QString info = tr("Offset: %1h\nFull size: %2h (%3)")
|
|
.hexarg(capsuleHeaderSize).hexarg(flashImage.size()).arg(flashImage.size());
|
|
|
|
// Construct parsing data
|
|
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
|
|
pdata.fixed = TRUE;
|
|
pdata.offset = capsuleHeaderSize;
|
|
|
|
// Add tree item
|
|
QModelIndex biosIndex = model->addItem(Types::Image, Subtypes::UefiImage, name, QString(), info, QByteArray(), flashImage, parsingDataToQByteArray(pdata), index);
|
|
|
|
// Parse the image
|
|
result = parseRawArea(flashImage, biosIndex);
|
|
if (result)
|
|
return result;
|
|
|
|
// Check if the last VTF is found
|
|
if (!lastVtf.isValid()) {
|
|
msg(tr("parseImageFile: not a single Volume Top File is found, the image may be corrupted"), biosIndex);
|
|
}
|
|
else {
|
|
return performSecondPass(biosIndex);
|
|
}
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
STATUS FfsParser::parseIntelImage(const QByteArray & intelImage, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (intelImage.isEmpty())
|
|
return EFI_INVALID_PARAMETER;
|
|
|
|
// Get parent's parsing data
|
|
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
|
|
|
|
// Store the beginning of descriptor as descriptor base address
|
|
const UINT8* descriptor = (const UINT8*)intelImage.constData();
|
|
UINT32 descriptorBegin = 0;
|
|
UINT32 descriptorEnd = FLASH_DESCRIPTOR_SIZE;
|
|
|
|
// Check for buffer size to be greater or equal to descriptor region size
|
|
if (intelImage.size() < FLASH_DESCRIPTOR_SIZE) {
|
|
msg(tr("parseIntelImage: input file is smaller than minimum descriptor size of %1h (%2) bytes").hexarg(FLASH_DESCRIPTOR_SIZE).arg(FLASH_DESCRIPTOR_SIZE));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
|
|
// Parse descriptor map
|
|
const FLASH_DESCRIPTOR_MAP* descriptorMap = (const FLASH_DESCRIPTOR_MAP*)(descriptor + sizeof(FLASH_DESCRIPTOR_HEADER));
|
|
const FLASH_DESCRIPTOR_UPPER_MAP* upperMap = (const FLASH_DESCRIPTOR_UPPER_MAP*)(descriptor + FLASH_DESCRIPTOR_UPPER_MAP_BASE);
|
|
|
|
// Check sanity of base values
|
|
if (descriptorMap->MasterBase > FLASH_DESCRIPTOR_MAX_BASE
|
|
|| descriptorMap->MasterBase == descriptorMap->RegionBase
|
|
|| descriptorMap->MasterBase == descriptorMap->ComponentBase) {
|
|
msg(tr("parseIntelImage: invalid descriptor master base %1h").hexarg2(descriptorMap->MasterBase, 2));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (descriptorMap->RegionBase > FLASH_DESCRIPTOR_MAX_BASE
|
|
|| descriptorMap->RegionBase == descriptorMap->ComponentBase) {
|
|
msg(tr("parseIntelImage: invalid descriptor region base %1h").hexarg2(descriptorMap->RegionBase, 2));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (descriptorMap->ComponentBase > FLASH_DESCRIPTOR_MAX_BASE) {
|
|
msg(tr("parseIntelImage: invalid descriptor component base %1h").hexarg2(descriptorMap->ComponentBase, 2));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
|
|
const FLASH_DESCRIPTOR_REGION_SECTION* regionSection = (const FLASH_DESCRIPTOR_REGION_SECTION*)calculateAddress8(descriptor, descriptorMap->RegionBase);
|
|
const FLASH_DESCRIPTOR_COMPONENT_SECTION* componentSection = (const FLASH_DESCRIPTOR_COMPONENT_SECTION*)calculateAddress8(descriptor, descriptorMap->ComponentBase);
|
|
|
|
// Check descriptor version by getting hardcoded value of FlashParameters.ReadClockFrequency
|
|
UINT8 descriptorVersion = 0;
|
|
if (componentSection->FlashParameters.ReadClockFrequency == FLASH_FREQUENCY_20MHZ) // Old descriptor
|
|
descriptorVersion = 1;
|
|
else if (componentSection->FlashParameters.ReadClockFrequency == FLASH_FREQUENCY_17MHZ) // Skylake+ descriptor
|
|
descriptorVersion = 2;
|
|
else {
|
|
msg(tr("parseIntelImage: unknown descriptor version with ReadClockFrequency %1h").hexarg(componentSection->FlashParameters.ReadClockFrequency));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
|
|
// ME region
|
|
QByteArray me;
|
|
UINT32 meBegin = 0;
|
|
UINT32 meEnd = 0;
|
|
if (regionSection->MeLimit) {
|
|
meBegin = calculateRegionOffset(regionSection->MeBase);
|
|
meEnd = calculateRegionSize(regionSection->MeBase, regionSection->MeLimit);
|
|
me = intelImage.mid(meBegin, meEnd);
|
|
meEnd += meBegin;
|
|
}
|
|
|
|
// BIOS region
|
|
QByteArray bios;
|
|
UINT32 biosBegin = 0;
|
|
UINT32 biosEnd = 0;
|
|
if (regionSection->BiosLimit) {
|
|
biosBegin = calculateRegionOffset(regionSection->BiosBase);
|
|
biosEnd = calculateRegionSize(regionSection->BiosBase, regionSection->BiosLimit);
|
|
|
|
// Check for Gigabyte specific descriptor map
|
|
if (biosEnd - biosBegin == (UINT32)intelImage.size()) {
|
|
if (!meEnd) {
|
|
msg(tr("parseIntelImage: can't determine BIOS region start from Gigabyte-specific descriptor"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
biosBegin = meEnd;
|
|
bios = intelImage.mid(biosBegin, biosEnd);
|
|
// biosEnd will point to the end of the image file
|
|
// it may be wrong, but it's pretty hard to detect a padding after BIOS region
|
|
// with malformed descriptor
|
|
}
|
|
// Normal descriptor map
|
|
else {
|
|
bios = intelImage.mid(biosBegin, biosEnd);
|
|
// Calculate biosEnd
|
|
biosEnd += biosBegin;
|
|
}
|
|
}
|
|
else {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, BIOS region not found in descriptor"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
|
|
// GbE region
|
|
QByteArray gbe;
|
|
UINT32 gbeBegin = 0;
|
|
UINT32 gbeEnd = 0;
|
|
if (regionSection->GbeLimit) {
|
|
gbeBegin = calculateRegionOffset(regionSection->GbeBase);
|
|
gbeEnd = calculateRegionSize(regionSection->GbeBase, regionSection->GbeLimit);
|
|
gbe = intelImage.mid(gbeBegin, gbeEnd);
|
|
gbeEnd += gbeBegin;
|
|
}
|
|
|
|
// PDR region
|
|
QByteArray pdr;
|
|
UINT32 pdrBegin = 0;
|
|
UINT32 pdrEnd = 0;
|
|
if (regionSection->PdrLimit) {
|
|
pdrBegin = calculateRegionOffset(regionSection->PdrBase);
|
|
pdrEnd = calculateRegionSize(regionSection->PdrBase, regionSection->PdrLimit);
|
|
pdr = intelImage.mid(pdrBegin, pdrEnd);
|
|
pdrEnd += pdrBegin;
|
|
}
|
|
|
|
// EC region
|
|
QByteArray ec;
|
|
UINT32 ecBegin = 0;
|
|
UINT32 ecEnd = 0;
|
|
if (descriptorVersion == 2) {
|
|
if (regionSection->EcLimit) {
|
|
pdrBegin = calculateRegionOffset(regionSection->EcBase);
|
|
pdrEnd = calculateRegionSize(regionSection->EcBase, regionSection->EcLimit);
|
|
pdr = intelImage.mid(ecBegin, ecEnd);
|
|
ecEnd += ecBegin;
|
|
}
|
|
}
|
|
|
|
// Check for intersections between regions
|
|
// Descriptor
|
|
if (hasIntersection(descriptorBegin, descriptorEnd, gbeBegin, gbeEnd)) {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, descriptor region has intersection with GbE region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (hasIntersection(descriptorBegin, descriptorEnd, meBegin, meEnd)) {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, descriptor region has intersection with ME region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (hasIntersection(descriptorBegin, descriptorEnd, biosBegin, biosEnd)) {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, descriptor region has intersection with BIOS region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (hasIntersection(descriptorBegin, descriptorEnd, pdrBegin, pdrEnd)) {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, descriptor region has intersection with PDR region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (descriptorVersion == 2 && hasIntersection(descriptorBegin, descriptorEnd, ecBegin, ecEnd)) {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, descriptor region has intersection with EC region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
// GbE
|
|
if (hasIntersection(gbeBegin, gbeEnd, meBegin, meEnd)) {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, GbE region has intersection with ME region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (hasIntersection(gbeBegin, gbeEnd, biosBegin, biosEnd)) {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, GbE region has intersection with BIOS region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (hasIntersection(gbeBegin, gbeEnd, pdrBegin, pdrEnd)) {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, GbE region has intersection with PDR region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (descriptorVersion == 2 && hasIntersection(gbeBegin, gbeEnd, ecBegin, ecEnd)) {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, GbE region has intersection with EC region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
// ME
|
|
if (hasIntersection(meBegin, meEnd, biosBegin, biosEnd)) {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, ME region has intersection with BIOS region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (hasIntersection(meBegin, meEnd, pdrBegin, pdrEnd)) {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, ME region has intersection with PDR region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (descriptorVersion == 2 && hasIntersection(meBegin, meEnd, ecBegin, ecEnd)) {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, ME region has intersection with EC region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
// BIOS
|
|
if (hasIntersection(biosBegin, biosEnd, pdrBegin, pdrEnd)) {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, BIOS region has intersection with PDR region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (descriptorVersion == 2 && hasIntersection(biosBegin, biosEnd, ecBegin, ecEnd)) {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, BIOS region has intersection with EC region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
// PDR
|
|
if (descriptorVersion == 2 && hasIntersection(pdrBegin, pdrEnd, ecBegin, ecEnd)) {
|
|
msg(tr("parseIntelImage: descriptor parsing failed, PDR region has intersection with EC region"));
|
|
return ERR_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
|
|
// Region map is consistent
|
|
|
|
// Intel image
|
|
QString name = tr("Intel image");
|
|
QString info = tr("Full size: %1h (%2)\nFlash chips: %3\nRegions: %4\nMasters: %5\nPCH straps: %6\nPROC straps: %7")
|
|
.hexarg(intelImage.size()).arg(intelImage.size())
|
|
.arg(descriptorMap->NumberOfFlashChips + 1) //
|
|
.arg(descriptorMap->NumberOfRegions + 1) // Zero-based numbers in storage
|
|
.arg(descriptorMap->NumberOfMasters + 1) //
|
|
.arg(descriptorMap->NumberOfPchStraps)
|
|
.arg(descriptorMap->NumberOfProcStraps);
|
|
|
|
// Construct parsing data
|
|
pdata.fixed = TRUE;
|
|
pdata.offset = parentOffset;
|
|
if (pdata.isOnFlash) info.prepend(tr("Offset: %1h\n").hexarg(pdata.offset));
|
|
|
|
// Add Intel image tree item
|
|
index = model->addItem(Types::Image, Subtypes::IntelImage, name, QString(), info, QByteArray(), intelImage, parsingDataToQByteArray(pdata), parent);
|
|
|
|
// Descriptor
|
|
// Get descriptor info
|
|
QByteArray body = intelImage.left(FLASH_DESCRIPTOR_SIZE);
|
|
name = tr("Descriptor region");
|
|
info = tr("Full size: %1h (%2)").hexarg(FLASH_DESCRIPTOR_SIZE).arg(FLASH_DESCRIPTOR_SIZE);
|
|
if (pdata.isOnFlash) info.prepend(tr("Offset: %1h\n").hexarg(pdata.offset));
|
|
|
|
// Check regions presence once again
|
|
QVector<UINT32> offsets;
|
|
if (regionSection->GbeLimit) {
|
|
offsets.append(gbeBegin);
|
|
info += tr("\nGbE region offset: %1h").hexarg(gbeBegin + parentOffset);
|
|
}
|
|
if (regionSection->MeLimit) {
|
|
offsets.append(meBegin);
|
|
info += tr("\nME region offset: %1h").hexarg(meBegin + parentOffset);
|
|
}
|
|
if (regionSection->BiosLimit) {
|
|
offsets.append(biosBegin);
|
|
info += tr("\nBIOS region offset: %1h").hexarg(biosBegin + parentOffset);
|
|
}
|
|
if (regionSection->PdrLimit) {
|
|
offsets.append(pdrBegin);
|
|
info += tr("\nPDR region offset: %1h").hexarg(pdrBegin + parentOffset);
|
|
}
|
|
|
|
// Region access settings
|
|
if (descriptorVersion == 1) {
|
|
const FLASH_DESCRIPTOR_MASTER_SECTION* masterSection = (const FLASH_DESCRIPTOR_MASTER_SECTION*)calculateAddress8(descriptor, descriptorMap->MasterBase);
|
|
info += tr("\nRegion access settings:");
|
|
info += tr("\nBIOS: %1h %2h ME: %3h %4h\nGbE: %5h %6h")
|
|
.hexarg2(masterSection->BiosRead, 2)
|
|
.hexarg2(masterSection->BiosWrite, 2)
|
|
.hexarg2(masterSection->MeRead, 2)
|
|
.hexarg2(masterSection->MeWrite, 2)
|
|
.hexarg2(masterSection->GbeRead, 2)
|
|
.hexarg2(masterSection->GbeWrite, 2);
|
|
|
|
// BIOS access table
|
|
info += tr("\nBIOS access table:");
|
|
info += tr("\n Read Write");
|
|
info += tr("\nDesc %1 %2")
|
|
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_DESC ? "Yes " : "No ")
|
|
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_DESC ? "Yes " : "No ");
|
|
info += tr("\nBIOS Yes Yes");
|
|
info += tr("\nME %1 %2")
|
|
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_ME ? "Yes " : "No ")
|
|
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_ME ? "Yes " : "No ");
|
|
info += tr("\nGbE %1 %2")
|
|
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_GBE ? "Yes " : "No ")
|
|
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_GBE ? "Yes " : "No ");
|
|
info += tr("\nPDR %1 %2")
|
|
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_PDR ? "Yes " : "No ")
|
|
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_PDR ? "Yes " : "No ");
|
|
}
|
|
else if (descriptorVersion == 2) {
|
|
const FLASH_DESCRIPTOR_MASTER_SECTION_V2* masterSection = (const FLASH_DESCRIPTOR_MASTER_SECTION_V2*)calculateAddress8(descriptor, descriptorMap->MasterBase);
|
|
info += tr("\nRegion access settings:");
|
|
info += tr("\nBIOS: %1h %2h ME: %3h %4h\nGbE: %5h %6h EC: %7h %8h")
|
|
.hexarg2(masterSection->BiosRead, 3)
|
|
.hexarg2(masterSection->BiosWrite, 3)
|
|
.hexarg2(masterSection->MeRead, 3)
|
|
.hexarg2(masterSection->MeWrite, 3)
|
|
.hexarg2(masterSection->GbeRead, 3)
|
|
.hexarg2(masterSection->GbeWrite, 3)
|
|
.hexarg2(masterSection->EcRead, 3)
|
|
.hexarg2(masterSection->EcWrite, 3);
|
|
|
|
// BIOS access table
|
|
info += tr("\nBIOS access table:");
|
|
info += tr("\n Read Write");
|
|
info += tr("\nDesc %1 %2")
|
|
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_DESC ? "Yes " : "No ")
|
|
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_DESC ? "Yes " : "No ");
|
|
info += tr("\nBIOS Yes Yes");
|
|
info += tr("\nME %1 %2")
|
|
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_ME ? "Yes " : "No ")
|
|
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_ME ? "Yes " : "No ");
|
|
info += tr("\nGbE %1 %2")
|
|
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_GBE ? "Yes " : "No ")
|
|
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_GBE ? "Yes " : "No ");
|
|
info += tr("\nPDR %1 %2")
|
|
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_PDR ? "Yes " : "No ")
|
|
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_PDR ? "Yes " : "No ");
|
|
info += tr("\nEC %1 %2")
|
|
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_EC ? "Yes " : "No ")
|
|
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_EC ? "Yes " : "No ");
|
|
}
|
|
|
|
// VSCC table
|
|
const VSCC_TABLE_ENTRY* vsccTableEntry = (const VSCC_TABLE_ENTRY*)(descriptor + ((UINT16)upperMap->VsccTableBase << 4));
|
|
info += tr("\nFlash chips in VSCC table:");
|
|
UINT8 vsscTableSize = upperMap->VsccTableSize * sizeof(UINT32) / sizeof(VSCC_TABLE_ENTRY);
|
|
for (int i = 0; i < vsscTableSize; i++) {
|
|
info += tr("\n%1%2%3h")
|
|
.hexarg2(vsccTableEntry->VendorId, 2)
|
|
.hexarg2(vsccTableEntry->DeviceId0, 2)
|
|
.hexarg2(vsccTableEntry->DeviceId1, 2);
|
|
vsccTableEntry++;
|
|
}
|
|
|
|
// Add descriptor tree item
|
|
model->addItem(Types::Region, Subtypes::DescriptorRegion, name, QString(), info, QByteArray(), body, parsingDataToQByteArray(pdata), index);
|
|
|
|
// Sort regions in ascending order
|
|
qSort(offsets);
|
|
|
|
// Parse regions
|
|
UINT8 result = 0;
|
|
for (int i = 0; i < offsets.count(); i++) {
|
|
// Parse GbE region
|
|
if (offsets.at(i) == gbeBegin) {
|
|
QModelIndex gbeIndex;
|
|
result = parseGbeRegion(gbe, gbeBegin, index, gbeIndex);
|
|
}
|
|
// Parse ME region
|
|
else if (offsets.at(i) == meBegin) {
|
|
QModelIndex meIndex;
|
|
result = parseMeRegion(me, meBegin, index, meIndex);
|
|
}
|
|
// Parse BIOS region
|
|
else if (offsets.at(i) == biosBegin) {
|
|
QModelIndex biosIndex;
|
|
result = parseBiosRegion(bios, biosBegin, index, biosIndex);
|
|
}
|
|
// Parse PDR region
|
|
else if (offsets.at(i) == pdrBegin) {
|
|
QModelIndex pdrIndex;
|
|
result = parsePdrRegion(pdr, pdrBegin, index, pdrIndex);
|
|
}
|
|
// Parse EC region
|
|
else if (descriptorVersion == 2 && offsets.at(i) == ecBegin) {
|
|
QModelIndex ecIndex;
|
|
result = parseEcRegion(ec, ecBegin, index, ecIndex);
|
|
}
|
|
if (result)
|
|
return result;
|
|
}
|
|
|
|
// Add the data after the last region as padding
|
|
UINT32 IntelDataEnd = 0;
|
|
UINT32 LastRegionOffset = offsets.last();
|
|
if (LastRegionOffset == gbeBegin)
|
|
IntelDataEnd = gbeEnd;
|
|
else if (LastRegionOffset == meBegin)
|
|
IntelDataEnd = meEnd;
|
|
else if (LastRegionOffset == biosBegin)
|
|
IntelDataEnd = biosEnd;
|
|
else if (LastRegionOffset == pdrBegin)
|
|
IntelDataEnd = pdrEnd;
|
|
else if (descriptorVersion == 2 && LastRegionOffset == ecBegin)
|
|
IntelDataEnd = ecEnd;
|
|
|
|
if (IntelDataEnd > (UINT32)intelImage.size()) { // Image file is truncated
|
|
msg(tr("parseIntelImage: image size %1 (%2) is smaller than the end of last region %3 (%4), may be damaged")
|
|
.hexarg(intelImage.size()).arg(intelImage.size())
|
|
.hexarg(IntelDataEnd).arg(IntelDataEnd), index);
|
|
return ERR_TRUNCATED_IMAGE;
|
|
}
|
|
else if (IntelDataEnd < (UINT32)intelImage.size()) { // Insert padding
|
|
QByteArray padding = intelImage.mid(IntelDataEnd);
|
|
|
|
// Get parent's parsing data
|
|
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
|
|
|
|
// Get info
|
|
name = tr("Padding");
|
|
info = tr("Full size: %1h (%2)")
|
|
.hexarg(padding.size()).arg(padding.size());
|
|
|
|
// Construct parsing data
|
|
pdata.fixed = TRUE;
|
|
pdata.offset = IntelDataEnd;
|
|
if (pdata.isOnFlash) info.prepend(tr("Offset: %1h\n").hexarg(pdata.offset));
|
|
|
|
// Add tree item
|
|
model->addItem(Types::Padding, getPaddingType(padding), name, QString(), info, QByteArray(), padding, parsingDataToQByteArray(pdata), index);
|
|
}
|
|
|
|
// Check if the last VTF is found
|
|
if (!lastVtf.isValid()) {
|
|
msg(tr("parseIntelImage: not a single Volume Top File is found, the image may be corrupted"), index);
|
|
}
|
|
else {
|
|
return performSecondPass(index);
|
|
}
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
STATUS FfsParser::parseGbeRegion(const QByteArray & gbe, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
|
|
{
|
|
// Check sanity
|
|
if (gbe.isEmpty())
|
|
return ERR_EMPTY_REGION;
|
|
if ((UINT32)gbe.size() < GBE_VERSION_OFFSET + sizeof(GBE_VERSION))
|
|
return ERR_INVALID_REGION;
|
|
|
|
// Get parent's parsing data
|
|
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
|
|
|
|
// Get info
|
|
QString name = tr("GbE region");
|
|
const GBE_MAC_ADDRESS* mac = (const GBE_MAC_ADDRESS*)gbe.constData();
|
|
const GBE_VERSION* version = (const GBE_VERSION*)(gbe.constData() + GBE_VERSION_OFFSET);
|
|
QString info = tr("Full size: %1h (%2)\nMAC: %3:%4:%5:%6:%7:%8\nVersion: %9.%10")
|
|
.hexarg(gbe.size()).arg(gbe.size())
|
|
.hexarg2(mac->vendor[0], 2)
|
|
.hexarg2(mac->vendor[1], 2)
|
|
.hexarg2(mac->vendor[2], 2)
|
|
.hexarg2(mac->device[0], 2)
|
|
.hexarg2(mac->device[1], 2)
|
|
.hexarg2(mac->device[2], 2)
|
|
.arg(version->major)
|
|
.arg(version->minor);
|
|
|
|
// Construct parsing data
|
|
pdata.fixed = TRUE;
|
|
pdata.offset += parentOffset;
|
|
if (pdata.isOnFlash) info.prepend(tr("Offset: %1h\n").hexarg(pdata.offset));
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Region, Subtypes::GbeRegion, name, QString(), info, QByteArray(), gbe, parsingDataToQByteArray(pdata), parent);
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
STATUS FfsParser::parseMeRegion(const QByteArray & me, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
|
|
{
|
|
// Check sanity
|
|
if (me.isEmpty())
|
|
return ERR_EMPTY_REGION;
|
|
|
|
// Get parent's parsing data
|
|
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
|
|
|
|
// Get info
|
|
QString name = tr("ME region");
|
|
QString info = tr("Full size: %1h (%2)").
|
|
hexarg(me.size()).arg(me.size());
|
|
|
|
// Parse region
|
|
bool versionFound = true;
|
|
bool emptyRegion = false;
|
|
// Check for empty region
|
|
if (me.count() == me.count('\xFF') || me.count() == me.count('\x00')) {
|
|
// Further parsing not needed
|
|
emptyRegion = true;
|
|
info += tr("\nState: empty");
|
|
}
|
|
else {
|
|
// Search for new signature
|
|
INT32 versionOffset = me.indexOf(ME_VERSION_SIGNATURE2);
|
|
if (versionOffset < 0){ // New signature not found
|
|
// Search for old signature
|
|
versionOffset = me.indexOf(ME_VERSION_SIGNATURE);
|
|
if (versionOffset < 0){
|
|
info += tr("\nVersion: unknown");
|
|
versionFound = false;
|
|
}
|
|
}
|
|
|
|
// Check sanity
|
|
if ((UINT32)me.size() < (UINT32)versionOffset + sizeof(ME_VERSION))
|
|
return ERR_INVALID_REGION;
|
|
|
|
// Add version information
|
|
if (versionFound) {
|
|
const ME_VERSION* version = (const ME_VERSION*)(me.constData() + versionOffset);
|
|
info += tr("\nVersion: %1.%2.%3.%4")
|
|
.arg(version->major)
|
|
.arg(version->minor)
|
|
.arg(version->bugfix)
|
|
.arg(version->build);
|
|
}
|
|
}
|
|
|
|
// Construct parsing data
|
|
pdata.fixed = TRUE;
|
|
pdata.offset += parentOffset;
|
|
if (pdata.isOnFlash) info.prepend(tr("Offset: %1h\n").hexarg(pdata.offset));
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Region, Subtypes::MeRegion, name, QString(), info, QByteArray(), me, parsingDataToQByteArray(pdata), parent);
|
|
|
|
// Show messages
|
|
if (emptyRegion) {
|
|
msg(tr("parseMeRegion: ME region is empty"), index);
|
|
}
|
|
else if (!versionFound) {
|
|
msg(tr("parseMeRegion: ME version is unknown, it can be damaged"), index);
|
|
}
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
STATUS FfsParser::parsePdrRegion(const QByteArray & pdr, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
|
|
{
|
|
// Check sanity
|
|
if (pdr.isEmpty())
|
|
return ERR_EMPTY_REGION;
|
|
|
|
// Get parent's parsing data
|
|
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
|
|
|
|
// Get info
|
|
QString name = tr("PDR region");
|
|
QString info = tr("Full size: %1h (%2)").
|
|
hexarg(pdr.size()).arg(pdr.size());
|
|
|
|
// Construct parsing data
|
|
pdata.fixed = TRUE;
|
|
pdata.offset += parentOffset;
|
|
if (pdata.isOnFlash) info.prepend(tr("Offset: %1h\n").hexarg(pdata.offset));
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Region, Subtypes::PdrRegion, name, QString(), info, QByteArray(), pdr, parsingDataToQByteArray(pdata), parent);
|
|
|
|
// Parse PDR region as BIOS space
|
|
UINT8 result = parseRawArea(pdr, index);
|
|
if (result && result != ERR_VOLUMES_NOT_FOUND && result != ERR_INVALID_VOLUME)
|
|
return result;
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
STATUS FfsParser::parseEcRegion(const QByteArray & ec, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
|
|
{
|
|
// Check sanity
|
|
if (ec.isEmpty())
|
|
return ERR_EMPTY_REGION;
|
|
|
|
// Get parent's parsing data
|
|
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
|
|
|
|
// Get info
|
|
QString name = tr("EC region");
|
|
QString info = tr("Full size: %1h (%2)").
|
|
hexarg(ec.size()).arg(ec.size());
|
|
|
|
// Construct parsing data
|
|
pdata.fixed = TRUE;
|
|
pdata.offset += parentOffset;
|
|
if (pdata.isOnFlash) info.prepend(tr("Offset: %1h\n").hexarg(pdata.offset));
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Region, Subtypes::PdrRegion, name, QString(), info, QByteArray(), ec, parsingDataToQByteArray(pdata), parent);
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
STATUS FfsParser::parseBiosRegion(const QByteArray & bios, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (bios.isEmpty())
|
|
return ERR_EMPTY_REGION;
|
|
|
|
// Get parent's parsing data
|
|
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
|
|
|
|
// Get info
|
|
QString name = tr("BIOS region");
|
|
QString info = tr("Full size: %1h (%2)").
|
|
hexarg(bios.size()).arg(bios.size());
|
|
|
|
// Construct parsing data
|
|
pdata.fixed = TRUE;
|
|
pdata.offset += parentOffset;
|
|
if (pdata.isOnFlash) info.prepend(tr("Offset: %1h\n").hexarg(pdata.offset));
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Region, Subtypes::BiosRegion, name, QString(), info, QByteArray(), bios, parsingDataToQByteArray(pdata), parent);
|
|
|
|
return parseRawArea(bios, index);
|
|
}
|
|
|
|
UINT8 FfsParser::getPaddingType(const QByteArray & padding)
|
|
{
|
|
if (padding.count('\x00') == padding.count())
|
|
return Subtypes::ZeroPadding;
|
|
if (padding.count('\xFF') == padding.count())
|
|
return Subtypes::OnePadding;
|
|
return Subtypes::DataPadding;
|
|
}
|
|
|
|
STATUS FfsParser::parseRawArea(const QByteArray & data, const QModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
// Get parsing data
|
|
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
|
|
UINT32 offset = pdata.offset;
|
|
UINT32 headerSize = model->header(index).size();
|
|
|
|
// Search for first volume
|
|
STATUS result;
|
|
UINT32 prevVolumeOffset;
|
|
|
|
result = findNextVolume(index, data, 0, prevVolumeOffset);
|
|
if (result)
|
|
return result;
|
|
|
|
// First volume is not at the beginning of BIOS space
|
|
QString name;
|
|
QString info;
|
|
if (prevVolumeOffset > 0) {
|
|
// Get info
|
|
QByteArray padding = data.left(prevVolumeOffset);
|
|
name = tr("Padding");
|
|
info = tr("Full size: %1h (%2)")
|
|
.hexarg(padding.size()).arg(padding.size());
|
|
|
|
// Construct parsing data
|
|
pdata.fixed = TRUE;
|
|
pdata.offset = offset + headerSize;
|
|
if (pdata.isOnFlash) info.prepend(tr("Offset: %1h\n").hexarg(pdata.offset));
|
|
|
|
// Add tree item
|
|
model->addItem(Types::Padding, getPaddingType(padding), name, QString(), info, QByteArray(), padding, parsingDataToQByteArray(pdata), index);
|
|
}
|
|
|
|
// Search for and parse all volumes
|
|
UINT32 volumeOffset = prevVolumeOffset;
|
|
UINT32 prevVolumeSize = 0;
|
|
|
|
while (!result)
|
|
{
|
|
// Padding between volumes
|
|
if (volumeOffset > prevVolumeOffset + prevVolumeSize) {
|
|
UINT32 paddingOffset = prevVolumeOffset + prevVolumeSize;
|
|
UINT32 paddingSize = volumeOffset - paddingOffset;
|
|
QByteArray padding = data.mid(paddingOffset, paddingSize);
|
|
|
|
// Get info
|
|
name = tr("Padding");
|
|
info = tr("Full size: %1h (%2)")
|
|
.hexarg(padding.size()).arg(padding.size());
|
|
|
|
// Construct parsing data
|
|
pdata.fixed = TRUE;
|
|
pdata.offset = offset + headerSize + paddingOffset;
|
|
if (pdata.isOnFlash) info.prepend(tr("Offset: %1h\n").hexarg(pdata.offset));
|
|
|
|
// Add tree item
|
|
model->addItem(Types::Padding, getPaddingType(padding), name, QString(), info, QByteArray(), padding, parsingDataToQByteArray(pdata), index);
|
|
}
|
|
|
|
// Get volume size
|
|
UINT32 volumeSize = 0;
|
|
UINT32 bmVolumeSize = 0;
|
|
result = getVolumeSize(data, volumeOffset, volumeSize, bmVolumeSize);
|
|
if (result) {
|
|
msg(tr("parseRawArea: getVolumeSize failed with error \"%1\"").arg(errorCodeToQString(result)), index);
|
|
return result;
|
|
}
|
|
|
|
// Check that volume is fully present in input
|
|
if (volumeSize > (UINT32)data.size() || volumeOffset + volumeSize > (UINT32)data.size()) {
|
|
msg(tr("parseRawArea: one of volumes inside overlaps the end of data"), index);
|
|
return ERR_INVALID_VOLUME;
|
|
}
|
|
|
|
QByteArray volume = data.mid(volumeOffset, volumeSize);
|
|
if (volumeSize > (UINT32)volume.size()) {
|
|
// Mark the rest as padding and finish the parsing
|
|
QByteArray padding = data.right(volume.size());
|
|
|
|
// Get info
|
|
name = tr("Padding");
|
|
info = tr("Full size: %1h (%2)")
|
|
.hexarg(padding.size()).arg(padding.size());
|
|
|
|
// Construct parsing data
|
|
pdata.fixed = TRUE;
|
|
pdata.offset = offset + headerSize + volumeOffset;
|
|
if (pdata.isOnFlash) info.prepend(tr("Offset: %1h\n").hexarg(pdata.offset));
|
|
|
|
// Add tree item
|
|
QModelIndex paddingIndex = model->addItem(Types::Padding, getPaddingType(padding), name, QString(), info, QByteArray(), padding, parsingDataToQByteArray(pdata), index);
|
|
msg(tr("parseRawArea: one of volumes inside overlaps the end of data"), paddingIndex);
|
|
|
|
// Update variables
|
|
prevVolumeOffset = volumeOffset;
|
|
prevVolumeSize = padding.size();
|
|
break;
|
|
}
|
|
|
|
// Parse current volume's header
|
|
QModelIndex volumeIndex;
|
|
result = parseVolumeHeader(volume, model->header(index).size() + volumeOffset, index, volumeIndex);
|
|
if (result)
|
|
msg(tr("parseRawArea: volume header parsing failed with error \"%1\"").arg(errorCodeToQString(result)), index);
|
|
else {
|
|
// Show messages
|
|
if (volumeSize != bmVolumeSize)
|
|
msg(tr("parseBiosBody: volume size stored in header %1h (%2) differs from calculated using block map %3h (%4)")
|
|
.hexarg(volumeSize).arg(volumeSize)
|
|
.hexarg(bmVolumeSize).arg(bmVolumeSize),
|
|
volumeIndex);
|
|
}
|
|
|
|
// Go to next volume
|
|
prevVolumeOffset = volumeOffset;
|
|
prevVolumeSize = volumeSize;
|
|
result = findNextVolume(index, data, volumeOffset + prevVolumeSize, volumeOffset);
|
|
}
|
|
|
|
// Padding at the end of BIOS space
|
|
volumeOffset = prevVolumeOffset + prevVolumeSize;
|
|
if ((UINT32)data.size() > volumeOffset) {
|
|
QByteArray padding = data.mid(volumeOffset);
|
|
|
|
// Get info
|
|
name = tr("Padding");
|
|
info = tr("Full size: %1h (%2)")
|
|
.hexarg(padding.size()).arg(padding.size());
|
|
|
|
// Construct parsing data
|
|
pdata.fixed = TRUE;
|
|
pdata.offset = offset + headerSize + volumeOffset;
|
|
if (pdata.isOnFlash) info.prepend(tr("Offset: %1h\n").hexarg(pdata.offset));
|
|
|
|
// Add tree item
|
|
model->addItem(Types::Padding, getPaddingType(padding), name, QString(), info, QByteArray(), padding, parsingDataToQByteArray(pdata), index);
|
|
}
|
|
|
|
// Parse bodies
|
|
for (int i = 0; i < model->rowCount(index); i++) {
|
|
QModelIndex current = index.child(i, 0);
|
|
switch (model->type(current)) {
|
|
case Types::Volume:
|
|
parseVolumeBody(current);
|
|
break;
|
|
case Types::Padding:
|
|
// No parsing required
|
|
break;
|
|
default:
|
|
return ERR_UNKNOWN_ITEM_TYPE;
|
|
}
|
|
}
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
STATUS FfsParser::parseVolumeHeader(const QByteArray & volume, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (volume.isEmpty())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
// Get parent's parsing data
|
|
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
|
|
|
|
// Check that there is space for the volume header
|
|
if ((UINT32)volume.size() < sizeof(EFI_FIRMWARE_VOLUME_HEADER)) {
|
|
msg(tr("parseVolumeHeader: input volume size %1h (%2) is smaller than volume header size 40h (64)").hexarg(volume.size()).arg(volume.size()));
|
|
return ERR_INVALID_VOLUME;
|
|
}
|
|
|
|
// Populate volume header
|
|
const EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (const EFI_FIRMWARE_VOLUME_HEADER*)(volume.constData());
|
|
|
|
// Check sanity of HeaderLength value
|
|
if ((UINT32)ALIGN8(volumeHeader->HeaderLength) > (UINT32)volume.size()) {
|
|
msg(tr("parseVolumeHeader: volume header overlaps the end of data"));
|
|
return ERR_INVALID_VOLUME;
|
|
}
|
|
// Check sanity of ExtHeaderOffset value
|
|
if (volumeHeader->Revision > 1 && volumeHeader->ExtHeaderOffset
|
|
&& (UINT32)ALIGN8(volumeHeader->ExtHeaderOffset + sizeof(EFI_FIRMWARE_VOLUME_EXT_HEADER)) > (UINT32)volume.size()) {
|
|
msg(tr("parseVolumeHeader: extended volume header overlaps the end of data"));
|
|
return ERR_INVALID_VOLUME;
|
|
}
|
|
|
|
// Calculate volume header size
|
|
UINT32 headerSize;
|
|
EFI_GUID extendedHeaderGuid = {{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }};
|
|
bool hasExtendedHeader = false;
|
|
if (volumeHeader->Revision > 1 && volumeHeader->ExtHeaderOffset) {
|
|
hasExtendedHeader = true;
|
|
const EFI_FIRMWARE_VOLUME_EXT_HEADER* extendedHeader = (const EFI_FIRMWARE_VOLUME_EXT_HEADER*)(volume.constData() + volumeHeader->ExtHeaderOffset);
|
|
headerSize = volumeHeader->ExtHeaderOffset + extendedHeader->ExtHeaderSize;
|
|
extendedHeaderGuid = extendedHeader->FvName;
|
|
}
|
|
else
|
|
headerSize = volumeHeader->HeaderLength;
|
|
|
|
// Extended header end can be unaligned
|
|
headerSize = ALIGN8(headerSize);
|
|
|
|
// Check for volume structure to be known
|
|
bool isUnknown = true;
|
|
UINT8 ffsVersion = 0;
|
|
|
|
// Check for FFS v2 volume
|
|
if (FFSv2Volumes.contains(QByteArray::fromRawData((const char*)volumeHeader->FileSystemGuid.Data, sizeof(EFI_GUID)))) {
|
|
isUnknown = false;
|
|
ffsVersion = 2;
|
|
}
|
|
|
|
// Check for FFS v3 volume
|
|
if (FFSv3Volumes.contains(QByteArray::fromRawData((const char*)volumeHeader->FileSystemGuid.Data, sizeof(EFI_GUID)))) {
|
|
isUnknown = false;
|
|
ffsVersion = 3;
|
|
}
|
|
|
|
// Check volume revision and alignment
|
|
bool msgAlignmentBitsSet = false;
|
|
bool msgUnaligned = false;
|
|
bool msgUnknownRevision = false;
|
|
UINT32 alignment = 65536; // Default volume alignment is 64K
|
|
if (volumeHeader->Revision == 1) {
|
|
// Acquire alignment capability bit
|
|
bool alignmentCap = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_CAP;
|
|
if (!alignmentCap) {
|
|
if ((volumeHeader->Attributes & 0xFFFF0000))
|
|
msgAlignmentBitsSet = true;
|
|
}
|
|
// Do not check for volume alignment on revision 1 volumes
|
|
// No one gives a single crap about setting it correctly
|
|
/*else {
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_2) alignment = 2;
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_4) alignment = 4;
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_8) alignment = 8;
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_16) alignment = 16;
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_32) alignment = 32;
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_64) alignment = 64;
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_128) alignment = 128;
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_256) alignment = 256;
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_512) alignment = 512;
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_1K) alignment = 1024;
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_2K) alignment = 2048;
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_4K) alignment = 4096;
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_8K) alignment = 8192;
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_16K) alignment = 16384;
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_32K) alignment = 32768;
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_64K) alignment = 65536;
|
|
}*/
|
|
}
|
|
else if (volumeHeader->Revision == 2) {
|
|
// Acquire alignment
|
|
alignment = (UINT32)pow(2.0, (int)(volumeHeader->Attributes & EFI_FVB2_ALIGNMENT) >> 16);
|
|
// Check alignment
|
|
if (!isUnknown && pdata.isOnFlash && ((pdata.offset + parentOffset - capsuleOffsetFixup) % alignment))
|
|
msgUnaligned = true;
|
|
}
|
|
else
|
|
msgUnknownRevision = true;
|
|
|
|
// Check attributes
|
|
// Determine value of empty byte
|
|
UINT8 emptyByte = volumeHeader->Attributes & EFI_FVB_ERASE_POLARITY ? '\xFF' : '\x00';
|
|
|
|
// Check for AppleCRC32 and AppleFreeSpaceOffset in ZeroVector
|
|
bool hasAppleCrc32 = false;
|
|
bool hasAppleFSO = false;
|
|
UINT32 volumeSize = volume.size();
|
|
UINT32 appleCrc32 = *(UINT32*)(volume.constData() + 8);
|
|
UINT32 appleFSO = *(UINT32*)(volume.constData() + 12);
|
|
if (appleCrc32 != 0) {
|
|
// Calculate CRC32 of the volume body
|
|
UINT32 crc = crc32(0, (const UINT8*)(volume.constData() + volumeHeader->HeaderLength), volumeSize - volumeHeader->HeaderLength);
|
|
if (crc == appleCrc32) {
|
|
hasAppleCrc32 = true;
|
|
}
|
|
|
|
// Check if FreeSpaceOffset is non-zero
|
|
if (appleFSO != 0) {
|
|
hasAppleFSO = true;
|
|
}
|
|
}
|
|
|
|
// Check header checksum by recalculating it
|
|
bool msgInvalidChecksum = false;
|
|
QByteArray tempHeader((const char*)volumeHeader, volumeHeader->HeaderLength);
|
|
((EFI_FIRMWARE_VOLUME_HEADER*)tempHeader.data())->Checksum = 0;
|
|
UINT16 calculated = calculateChecksum16((const UINT16*)tempHeader.constData(), volumeHeader->HeaderLength);
|
|
if (volumeHeader->Checksum != calculated)
|
|
msgInvalidChecksum = true;
|
|
|
|
// Get info
|
|
QByteArray header = volume.left(headerSize);
|
|
QByteArray body = volume.mid(headerSize);
|
|
QString name = guidToQString(volumeHeader->FileSystemGuid);
|
|
QString info = tr("ZeroVector:\n%1 %2 %3 %4 %5 %6 %7 %8\n%9 %10 %11 %12 %13 %14 %15 %16\nFileSystem GUID: %17\nFull size: %18h (%19)\n"
|
|
"Header size: %20h (%21)\nBody size: %22h (%23)\nRevision: %24\nAttributes: %25h\nErase polarity: %26\nChecksum: %27h, %28")
|
|
.hexarg2(volumeHeader->ZeroVector[0], 2).hexarg2(volumeHeader->ZeroVector[1], 2).hexarg2(volumeHeader->ZeroVector[2], 2).hexarg2(volumeHeader->ZeroVector[3], 2)
|
|
.hexarg2(volumeHeader->ZeroVector[4], 2).hexarg2(volumeHeader->ZeroVector[5], 2).hexarg2(volumeHeader->ZeroVector[6], 2).hexarg2(volumeHeader->ZeroVector[7], 2)
|
|
.hexarg2(volumeHeader->ZeroVector[8], 2).hexarg2(volumeHeader->ZeroVector[9], 2).hexarg2(volumeHeader->ZeroVector[10], 2).hexarg2(volumeHeader->ZeroVector[11], 2)
|
|
.hexarg2(volumeHeader->ZeroVector[12], 2).hexarg2(volumeHeader->ZeroVector[13], 2).hexarg2(volumeHeader->ZeroVector[14], 2).hexarg2(volumeHeader->ZeroVector[15], 2)
|
|
.arg(guidToQString(volumeHeader->FileSystemGuid))
|
|
.hexarg(volumeSize).arg(volumeSize)
|
|
.hexarg(headerSize).arg(headerSize)
|
|
.hexarg(volumeSize - headerSize).arg(volumeSize - headerSize)
|
|
.arg(volumeHeader->Revision)
|
|
.hexarg2(volumeHeader->Attributes, 8)
|
|
.arg(emptyByte ? "1" : "0")
|
|
.hexarg2(volumeHeader->Checksum, 4)
|
|
.arg(msgInvalidChecksum ? tr("invalid, should be %1h").hexarg2(calculated, 4) : tr("valid"));
|
|
|
|
// Extended header present
|
|
if (volumeHeader->Revision > 1 && volumeHeader->ExtHeaderOffset) {
|
|
const EFI_FIRMWARE_VOLUME_EXT_HEADER* extendedHeader = (const EFI_FIRMWARE_VOLUME_EXT_HEADER*)(volume.constData() + volumeHeader->ExtHeaderOffset);
|
|
info += tr("\nExtended header size: %1h (%2)\nVolume GUID: %3")
|
|
.hexarg(extendedHeader->ExtHeaderSize).arg(extendedHeader->ExtHeaderSize)
|
|
.arg(guidToQString(extendedHeader->FvName));
|
|
}
|
|
|
|
// Construct parsing data
|
|
pdata.fixed = TRUE;
|
|
pdata.offset += parentOffset;
|
|
pdata.emptyByte = emptyByte;
|
|
pdata.ffsVersion = ffsVersion;
|
|
pdata.volume.hasExtendedHeader = hasExtendedHeader ? TRUE : FALSE;
|
|
pdata.volume.extendedHeaderGuid = extendedHeaderGuid;
|
|
pdata.volume.alignment = alignment;
|
|
pdata.volume.revision = volumeHeader->Revision;
|
|
pdata.volume.hasAppleCrc32 = hasAppleCrc32;
|
|
pdata.volume.hasAppleFSO = hasAppleFSO;
|
|
pdata.volume.isWeakAligned = (volumeHeader->Revision > 1 && (volumeHeader->Attributes & EFI_FVB2_WEAK_ALIGNMENT));
|
|
if (pdata.isOnFlash) info.prepend(tr("Offset: %1h\n").hexarg(pdata.offset));
|
|
|
|
// Add text
|
|
QString text;
|
|
if (hasAppleCrc32)
|
|
text += tr("AppleCRC32 ");
|
|
if (hasAppleFSO)
|
|
text += tr("AppleFSO ");
|
|
|
|
// Add tree item
|
|
UINT8 subtype = Subtypes::UnknownVolume;
|
|
if (!isUnknown) {
|
|
if (ffsVersion == 2)
|
|
subtype = Subtypes::Ffs2Volume;
|
|
else if (ffsVersion == 3)
|
|
subtype = Subtypes::Ffs3Volume;
|
|
}
|
|
index = model->addItem(Types::Volume, subtype, name, text, info, header, body, parsingDataToQByteArray(pdata), parent);
|
|
|
|
// Show messages
|
|
if (isUnknown)
|
|
msg(tr("parseVolumeHeader: unknown file system %1").arg(guidToQString(volumeHeader->FileSystemGuid)), index);
|
|
if (msgInvalidChecksum)
|
|
msg(tr("parseVolumeHeader: volume header checksum is invalid"), index);
|
|
if (msgAlignmentBitsSet)
|
|
msg(tr("parseVolumeHeader: alignment bits set on volume without alignment capability"), index);
|
|
if (msgUnaligned)
|
|
msg(tr("parseVolumeHeader: unaligned volume"), index);
|
|
if (msgUnknownRevision)
|
|
msg(tr("parseVolumeHeader: unknown volume revision %1").arg(volumeHeader->Revision), index);
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
STATUS FfsParser::findNextVolume(const QModelIndex index, const QByteArray & bios, UINT32 volumeOffset, UINT32 & nextVolumeOffset)
|
|
{
|
|
int nextIndex = bios.indexOf(EFI_FV_SIGNATURE, volumeOffset);
|
|
if (nextIndex < EFI_FV_SIGNATURE_OFFSET)
|
|
return ERR_VOLUMES_NOT_FOUND;
|
|
|
|
// Check volume header to be sane
|
|
for (; nextIndex > 0; nextIndex = bios.indexOf(EFI_FV_SIGNATURE, volumeOffset + nextIndex + 1)) {
|
|
const EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (const EFI_FIRMWARE_VOLUME_HEADER*)(bios.constData() + nextIndex - EFI_FV_SIGNATURE_OFFSET);
|
|
if (volumeHeader->FvLength < sizeof(EFI_FIRMWARE_VOLUME_HEADER) + 2 * sizeof(EFI_FV_BLOCK_MAP_ENTRY) || volumeHeader->FvLength >= 0xFFFFFFFFUL) {
|
|
msg(tr("findNextVolume: volume candidate skipped, has invalid FvLength %1h").hexarg2(volumeHeader->FvLength, 16), index);
|
|
continue;
|
|
}
|
|
if (volumeHeader->Reserved != 0xFF && volumeHeader->Reserved != 0x00) {
|
|
msg(tr("findNextVolume: volume candidate skipped, has invalid Reserved byte value %1").hexarg2(volumeHeader->Reserved, 2), index);
|
|
continue;
|
|
}
|
|
if (volumeHeader->Revision != 1 && volumeHeader->Revision != 2) {
|
|
msg(tr("findNextVolume: volume candidate skipped, has invalid Revision byte value %1").hexarg2(volumeHeader->Revision, 2), index);
|
|
continue;
|
|
}
|
|
// All checks passed, volume found
|
|
break;
|
|
}
|
|
// No additional volumes found
|
|
if (nextIndex < EFI_FV_SIGNATURE_OFFSET)
|
|
return ERR_VOLUMES_NOT_FOUND;
|
|
|
|
nextVolumeOffset = nextIndex - EFI_FV_SIGNATURE_OFFSET;
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
STATUS FfsParser::getVolumeSize(const QByteArray & bios, UINT32 volumeOffset, UINT32 & volumeSize, UINT32 & bmVolumeSize)
|
|
{
|
|
// Check that there is space for the volume header and at least two block map entries.
|
|
if ((UINT32)bios.size() < volumeOffset + sizeof(EFI_FIRMWARE_VOLUME_HEADER) + 2 * sizeof(EFI_FV_BLOCK_MAP_ENTRY))
|
|
return ERR_INVALID_VOLUME;
|
|
|
|
// Populate volume header
|
|
const EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (const EFI_FIRMWARE_VOLUME_HEADER*)(bios.constData() + volumeOffset);
|
|
|
|
// Check volume signature
|
|
if (QByteArray((const char*)&volumeHeader->Signature, sizeof(volumeHeader->Signature)) != EFI_FV_SIGNATURE)
|
|
return ERR_INVALID_VOLUME;
|
|
|
|
// Calculate volume size using BlockMap
|
|
const EFI_FV_BLOCK_MAP_ENTRY* entry = (const EFI_FV_BLOCK_MAP_ENTRY*)(bios.constData() + volumeOffset + sizeof(EFI_FIRMWARE_VOLUME_HEADER));
|
|
UINT32 calcVolumeSize = 0;
|
|
while (entry->NumBlocks != 0 && entry->Length != 0) {
|
|
if ((void*)entry > bios.constData() + bios.size())
|
|
return ERR_INVALID_VOLUME;
|
|
|
|
calcVolumeSize += entry->NumBlocks * entry->Length;
|
|
entry += 1;
|
|
}
|
|
|
|
volumeSize = volumeHeader->FvLength;
|
|
bmVolumeSize = calcVolumeSize;
|
|
|
|
if (volumeSize == 0)
|
|
return ERR_INVALID_VOLUME;
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
STATUS FfsParser::parseVolumeNonUefiData(const QByteArray & data, const UINT32 parentOffset, const QModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
// Get parsing data
|
|
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
|
|
|
|
// Modify it
|
|
pdata.fixed = TRUE; // Non-UEFI data is fixed
|
|
pdata.offset += parentOffset;
|
|
|
|
// Search for VTF GUID backwards in received data
|
|
QByteArray padding = data;
|
|
QByteArray vtf;
|
|
INT32 vtfIndex = data.lastIndexOf(EFI_FFS_VOLUME_TOP_FILE_GUID);
|
|
if (vtfIndex >= 0) { // VTF candidate found inside non-UEFI data
|
|
padding = data.left(vtfIndex);
|
|
vtf = data.mid(vtfIndex);
|
|
const EFI_FFS_FILE_HEADER* fileHeader = (const EFI_FFS_FILE_HEADER*)vtf.constData();
|
|
if (vtf.size() < sizeof(EFI_FFS_FILE_HEADER) // VTF candidate is too small to be a real VTF in FFSv1/v2 volume
|
|
|| (pdata.ffsVersion == 3
|
|
&& (fileHeader->Attributes & FFS_ATTRIB_LARGE_FILE)
|
|
&& vtf.size() < sizeof(EFI_FFS_FILE_HEADER2))) { // VTF candidate is too small to be a real VTF in FFSv3 volume
|
|
vtfIndex = -1;
|
|
padding = data;
|
|
vtf.clear();
|
|
}
|
|
}
|
|
|
|
// Add non-UEFI data first
|
|
// Get info
|
|
QString info = tr("Full size: %1h (%2)").hexarg(padding.size()).arg(padding.size());
|
|
if (pdata.isOnFlash) info.prepend(tr("Offset: %1h\n").hexarg(pdata.offset));
|
|
|
|
// Add padding tree item
|
|
QModelIndex paddingIndex = model->addItem(Types::Padding, Subtypes::DataPadding, tr("Non-UEFI data"), "", info, QByteArray(), padding, parsingDataToQByteArray(pdata), index);
|
|
msg(tr("parseVolumeNonUefiData: non-UEFI data found in volume's free space"), paddingIndex);
|
|
|
|
if (vtfIndex >= 0) {
|
|
// Get VTF file header
|
|
QByteArray header = vtf.left(sizeof(EFI_FFS_FILE_HEADER));
|
|
const EFI_FFS_FILE_HEADER* fileHeader = (const EFI_FFS_FILE_HEADER*)header.constData();
|
|
if (pdata.ffsVersion == 3 && (fileHeader->Attributes & FFS_ATTRIB_LARGE_FILE)) {
|
|
header = vtf.left(sizeof(EFI_FFS_FILE_HEADER2));
|
|
}
|
|
|
|
//Parse VTF file header
|
|
QModelIndex fileIndex;
|
|
STATUS result = parseFileHeader(vtf, parentOffset + vtfIndex, index, fileIndex);
|
|
if (result) {
|
|
msg(tr("parseVolumeNonUefiData: VTF file header parsing failed with error \"%1\"").arg(errorCodeToQString(result)), index);
|
|
|
|
// Add the rest as non-UEFI data too
|
|
pdata.offset += vtfIndex;
|
|
// Get info
|
|
QString info = tr("Full size: %1h (%2)").hexarg(vtf.size()).arg(vtf.size());
|
|
if (pdata.isOnFlash) info.prepend(tr("Offset: %1h\n").hexarg(pdata.offset));
|
|
|
|
// Add padding tree item
|
|
QModelIndex paddingIndex = model->addItem(Types::Padding, Subtypes::DataPadding, tr("Non-UEFI data"), "", info, QByteArray(), vtf, parsingDataToQByteArray(pdata), index);
|
|
msg(tr("parseVolumeNonUefiData: non-UEFI data found in volume's free space"), paddingIndex);
|
|
}
|
|
}
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
STATUS FfsParser::parseVolumeBody(const QModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
// Get volume header size and body
|
|
QByteArray volumeBody = model->body(index);
|
|
UINT32 volumeHeaderSize = model->header(index).size();
|
|
|
|
// Get parsing data
|
|
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
|
|
UINT32 offset = pdata.offset;
|
|
|
|
if (pdata.ffsVersion != 2 && pdata.ffsVersion != 3) // Don't parse unknown volumes
|
|
return ERR_SUCCESS;
|
|
|
|
// Search for and parse all files
|
|
UINT32 volumeBodySize = volumeBody.size();
|
|
UINT32 fileOffset = 0;
|
|
|
|
while (fileOffset < volumeBodySize) {
|
|
UINT32 fileSize = getFileSize(volumeBody, fileOffset, pdata.ffsVersion);
|
|
// Check file size
|
|
if (fileSize < sizeof(EFI_FFS_FILE_HEADER) || fileSize > volumeBodySize - fileOffset) {
|
|
// Check that we are at the empty space
|
|
QByteArray header = volumeBody.mid(fileOffset, sizeof(EFI_FFS_FILE_HEADER));
|
|
if (header.count(pdata.emptyByte) == header.size()) { //Empty space
|
|
// Check free space to be actually free
|
|
QByteArray freeSpace = volumeBody.mid(fileOffset);
|
|
if (freeSpace.count(pdata.emptyByte) != freeSpace.count()) {
|
|
// Search for the first non-empty byte
|
|
UINT32 i;
|
|
UINT32 size = freeSpace.size();
|
|
const UINT8* current = (UINT8*)freeSpace.constData();
|
|
for (i = 0; i < size; i++) {
|
|
if (*current++ != pdata.emptyByte)
|
|
break;
|
|
}
|
|
|
|
// Align found index to file alignment
|
|
// It must be possible because minimum 16 bytes of empty were found before
|
|
if (i != ALIGN8(i))
|
|
i = ALIGN8(i) - 8;
|
|
|
|
// Construct parsing data
|
|
pdata.fixed = FALSE; // Free space is not fixed
|
|
pdata.offset = offset + volumeHeaderSize + fileOffset;
|
|
|
|
// Add all bytes before as free space
|
|
if (i > 0) {
|
|
QByteArray free = freeSpace.left(i);
|
|
|
|
// Get info
|
|
QString info = tr("Full size: %1h (%2)").hexarg(free.size()).arg(free.size());
|
|
if (pdata.isOnFlash) info.prepend(tr("Offset: %1h\n").hexarg(pdata.offset));
|
|
|
|
// Add free space item
|
|
model->addItem(Types::FreeSpace, 0, tr("Volume free space"), "", info, QByteArray(), free, parsingDataToQByteArray(pdata), index);
|
|
}
|
|
|
|
// Parse non-UEFI data
|
|
parseVolumeNonUefiData(freeSpace.mid(i), volumeHeaderSize + fileOffset + i, index);
|
|
}
|
|
else {
|
|
// Construct parsing data
|
|
pdata.fixed = FALSE; // Free space is not fixed
|
|
pdata.offset = offset + volumeHeaderSize + fileOffset;
|
|
|
|
// Get info
|
|
QString info = tr("Full size: %1h (%2)").hexarg(freeSpace.size()).arg(freeSpace.size());
|
|
if (pdata.isOnFlash) info.prepend(tr("Offset: %1h\n").hexarg(pdata.offset));
|
|
|
|
// Add free space item
|
|
model->addItem(Types::FreeSpace, 0, tr("Volume free space"), "", info, QByteArray(), freeSpace, parsingDataToQByteArray(pdata), index);
|
|
}
|
|
break; // Exit from parsing loop
|
|
}
|
|
else { //File space
|
|
// Parse non-UEFI data
|
|
parseVolumeNonUefiData(volumeBody.mid(fileOffset), volumeHeaderSize + fileOffset, index);
|
|
break; // Exit from parsing loop
|
|
}
|
|
}
|
|
|
|
// Get file header
|
|
QByteArray file = volumeBody.mid(fileOffset, fileSize);
|
|
QByteArray header = file.left(sizeof(EFI_FFS_FILE_HEADER));
|
|
const EFI_FFS_FILE_HEADER* fileHeader = (const EFI_FFS_FILE_HEADER*)header.constData();
|
|
if (pdata.ffsVersion == 3 && (fileHeader->Attributes & FFS_ATTRIB_LARGE_FILE)) {
|
|
header = file.left(sizeof(EFI_FFS_FILE_HEADER2));
|
|
}
|
|
|
|
//Parse current file's header
|
|
QModelIndex fileIndex;
|
|
STATUS result = parseFileHeader(file, volumeHeaderSize + fileOffset, index, fileIndex);
|
|
if (result)
|
|
msg(tr("parseVolumeBody: file header parsing failed with error \"%1\"").arg(errorCodeToQString(result)), index);
|
|
|
|
// Move to next file
|
|
fileOffset += fileSize;
|
|
fileOffset = ALIGN8(fileOffset);
|
|
}
|
|
|
|
// Check for duplicate GUIDs
|
|
for (int i = 0; i < model->rowCount(index); i++) {
|
|
QModelIndex current = index.child(i, 0);
|
|
// Skip non-file entries and pad files
|
|
if (model->type(current) != Types::File || model->subtype(current) == EFI_FV_FILETYPE_PAD)
|
|
continue;
|
|
QByteArray currentGuid = model->header(current).left(sizeof(EFI_GUID));
|
|
// Check files after current for having an equal GUID
|
|
for (int j = i + 1; j < model->rowCount(index); j++) {
|
|
QModelIndex another = index.child(j, 0);
|
|
// Skip non-file entries
|
|
if (model->type(another) != Types::File)
|
|
continue;
|
|
// Check GUIDs for being equal
|
|
QByteArray anotherGuid = model->header(another).left(sizeof(EFI_GUID));
|
|
if (currentGuid == anotherGuid) {
|
|
msg(tr("parseVolumeBody: file with duplicate GUID %1").arg(guidToQString(*(const EFI_GUID*)anotherGuid.constData())), another);
|
|
}
|
|
}
|
|
}
|
|
|
|
//Parse bodies
|
|
for (int i = 0; i < model->rowCount(index); i++) {
|
|
QModelIndex current = index.child(i, 0);
|
|
switch (model->type(current)) {
|
|
case Types::File:
|
|
parseFileBody(current);
|
|
break;
|
|
case Types::Padding:
|
|
case Types::FreeSpace:
|
|
// No parsing required
|
|
break;
|
|
default:
|
|
return ERR_UNKNOWN_ITEM_TYPE;
|
|
}
|
|
}
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT32 FfsParser::getFileSize(const QByteArray & volume, const UINT32 fileOffset, const UINT8 ffsVersion)
|
|
{
|
|
if (ffsVersion == 2) {
|
|
if ((UINT32)volume.size() < fileOffset + sizeof(EFI_FFS_FILE_HEADER))
|
|
return 0;
|
|
const EFI_FFS_FILE_HEADER* fileHeader = (const EFI_FFS_FILE_HEADER*)(volume.constData() + fileOffset);
|
|
return uint24ToUint32(fileHeader->Size);
|
|
}
|
|
else if (ffsVersion == 3) {
|
|
if ((UINT32)volume.size() < fileOffset + sizeof(EFI_FFS_FILE_HEADER2))
|
|
return 0;
|
|
const EFI_FFS_FILE_HEADER2* fileHeader = (const EFI_FFS_FILE_HEADER2*)(volume.constData() + fileOffset);
|
|
if (fileHeader->Attributes & FFS_ATTRIB_LARGE_FILE)
|
|
return fileHeader->ExtendedSize;
|
|
else
|
|
return uint24ToUint32(fileHeader->Size);
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
STATUS FfsParser::parseFileHeader(const QByteArray & file, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (file.isEmpty())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
if ((UINT32)file.size() < sizeof(EFI_FFS_FILE_HEADER))
|
|
return ERR_INVALID_FILE;
|
|
|
|
// Get parent's parsing data
|
|
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
|
|
|
|
// Get file header
|
|
QByteArray header = file.left(sizeof(EFI_FFS_FILE_HEADER));
|
|
const EFI_FFS_FILE_HEADER* fileHeader = (const EFI_FFS_FILE_HEADER*)header.constData();
|
|
if (pdata.ffsVersion == 3 && (fileHeader->Attributes & FFS_ATTRIB_LARGE_FILE)) {
|
|
if ((UINT32)file.size() < sizeof(EFI_FFS_FILE_HEADER2))
|
|
return ERR_INVALID_FILE;
|
|
header = file.left(sizeof(EFI_FFS_FILE_HEADER2));
|
|
}
|
|
|
|
// Check file alignment
|
|
bool msgUnalignedFile = false;
|
|
UINT8 alignmentPower = ffsAlignmentTable[(fileHeader->Attributes & FFS_ATTRIB_DATA_ALIGNMENT) >> 3];
|
|
UINT32 alignment = (UINT32)pow(2.0, alignmentPower);
|
|
if ((parentOffset + header.size()) % alignment)
|
|
msgUnalignedFile = true;
|
|
|
|
// Check file alignment agains volume alignment
|
|
bool msgFileAlignmentIsGreaterThanVolumes = false;
|
|
if (!pdata.volume.isWeakAligned && pdata.volume.alignment < alignment)
|
|
msgFileAlignmentIsGreaterThanVolumes = true;
|
|
|
|
// Check header checksum
|
|
QByteArray tempHeader = header;
|
|
EFI_FFS_FILE_HEADER* tempFileHeader = (EFI_FFS_FILE_HEADER*)(tempHeader.data());
|
|
tempFileHeader->IntegrityCheck.Checksum.Header = 0;
|
|
tempFileHeader->IntegrityCheck.Checksum.File = 0;
|
|
UINT8 calculatedHeader = calculateChecksum8((const UINT8*)tempFileHeader, header.size() - 1);
|
|
bool msgInvalidHeaderChecksum = false;
|
|
if (fileHeader->IntegrityCheck.Checksum.Header != calculatedHeader)
|
|
msgInvalidHeaderChecksum = true;
|
|
|
|
// Check data checksum
|
|
// Data checksum must be calculated
|
|
bool msgInvalidDataChecksum = false;
|
|
UINT8 calculatedData = 0;
|
|
if (fileHeader->Attributes & FFS_ATTRIB_CHECKSUM) {
|
|
UINT32 bufferSize = file.size() - header.size();
|
|
// Exclude file tail from data checksum calculation
|
|
if (pdata.volume.revision == 1 && (fileHeader->Attributes & FFS_ATTRIB_TAIL_PRESENT))
|
|
bufferSize -= sizeof(UINT16);
|
|
calculatedData = calculateChecksum8((const UINT8*)(file.constData() + header.size()), bufferSize);
|
|
if (fileHeader->IntegrityCheck.Checksum.File != calculatedData)
|
|
msgInvalidDataChecksum = true;
|
|
}
|
|
// Data checksum must be one of predefined values
|
|
else if (pdata.volume.revision == 1 && fileHeader->IntegrityCheck.Checksum.File != FFS_FIXED_CHECKSUM) {
|
|
calculatedData = FFS_FIXED_CHECKSUM;
|
|
msgInvalidDataChecksum = true;
|
|
}
|
|
else if (pdata.volume.revision == 2 && fileHeader->IntegrityCheck.Checksum.File != FFS_FIXED_CHECKSUM2) {
|
|
calculatedData = FFS_FIXED_CHECKSUM2;
|
|
msgInvalidDataChecksum = true;
|
|
}
|
|
|
|
// Check file type
|
|
bool msgUnknownType = false;
|
|
if (fileHeader->Type > EFI_FV_FILETYPE_SMM_CORE && fileHeader->Type != EFI_FV_FILETYPE_PAD) {
|
|
msgUnknownType = true;
|
|
};
|
|
|
|
// Get file body
|
|
QByteArray body = file.mid(header.size());
|
|
|
|
// Check for file tail presence
|
|
UINT16 tail = 0;
|
|
bool msgInvalidTailValue = false;
|
|
bool hasTail = false;
|
|
if (pdata.volume.revision == 1 && (fileHeader->Attributes & FFS_ATTRIB_TAIL_PRESENT))
|
|
{
|
|
hasTail = true;
|
|
|
|
//Check file tail;
|
|
tail = *(UINT16*)body.right(sizeof(UINT16)).constData();
|
|
if (fileHeader->IntegrityCheck.TailReference != (UINT16)~tail)
|
|
msgInvalidTailValue = true;
|
|
|
|
// Remove tail from file body
|
|
body = body.left(body.size() - sizeof(UINT16));
|
|
}
|
|
|
|
// Get info
|
|
QString name;
|
|
QString info;
|
|
if (fileHeader->Type != EFI_FV_FILETYPE_PAD)
|
|
name = guidToQString(fileHeader->Name);
|
|
else
|
|
name = tr("Pad-file");
|
|
|
|
info = tr("File GUID: %1\nType: %2h\nAttributes: %3h\nFull size: %4h (%5)\nHeader size: %6h (%7)\nBody size: %8h (%9)\nState: %10h\nHeader checksum: %11h, %12\nData checksum: %13h, %14")
|
|
.arg(guidToQString(fileHeader->Name))
|
|
.hexarg2(fileHeader->Type, 2)
|
|
.hexarg2(fileHeader->Attributes, 2)
|
|
.hexarg(header.size() + body.size()).arg(header.size() + body.size())
|
|
.hexarg(header.size()).arg(header.size())
|
|
.hexarg(body.size()).arg(body.size())
|
|
.hexarg2(fileHeader->State, 2)
|
|
.hexarg2(fileHeader->IntegrityCheck.Checksum.Header, 2)
|
|
.arg(msgInvalidHeaderChecksum ? tr("invalid, should be %1h").hexarg2(calculatedHeader, 2) : tr("valid"))
|
|
.hexarg2(fileHeader->IntegrityCheck.Checksum.File, 2)
|
|
.arg(msgInvalidDataChecksum ? tr("invalid, should be %1h").hexarg2(calculatedData, 2) : tr("valid"));
|
|
|
|
// Check if the file is a Volume Top File
|
|
QString text;
|
|
bool isVtf = false;
|
|
if (EFI_FFS_VOLUME_TOP_FILE_GUID == header.left(sizeof(EFI_GUID))) {
|
|
// Mark it as the last VTF
|
|
// This information will later be used to determine memory addresses of uncompressed image elements
|
|
// Because the last byte of the last VFT is mapped to 0xFFFFFFFF physical memory address
|
|
isVtf = true;
|
|
text = tr("Volume Top File");
|
|
}
|
|
|
|
// Construct parsing data
|
|
pdata.fixed = fileHeader->Attributes & FFS_ATTRIB_FIXED;
|
|
pdata.offset += parentOffset;
|
|
pdata.file.hasTail = hasTail ? TRUE : FALSE;
|
|
pdata.file.tail = tail;
|
|
if (pdata.isOnFlash) info.prepend(tr("Offset: %1h\n").hexarg(pdata.offset));
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::File, fileHeader->Type, name, text, info, header, body, parsingDataToQByteArray(pdata), parent);
|
|
|
|
// Overwrite lastVtf, if needed
|
|
if (isVtf) {
|
|
lastVtf = index;
|
|
}
|
|
|
|
// Show messages
|
|
if (msgUnalignedFile)
|
|
msg(tr("parseFileHeader: unaligned file"), index);
|
|
if (msgFileAlignmentIsGreaterThanVolumes)
|
|
msg(tr("parseFileHeader: file alignment %1h is greater than parent volume alignment %2h").hexarg(alignment).hexarg(pdata.volume.alignment), index);
|
|
if (msgInvalidHeaderChecksum)
|
|
msg(tr("parseFileHeader: invalid header checksum"), index);
|
|
if (msgInvalidDataChecksum)
|
|
msg(tr("parseFileHeader: invalid data checksum"), index);
|
|
if (msgInvalidTailValue)
|
|
msg(tr("parseFileHeader: invalid tail value"), index);
|
|
if (msgUnknownType)
|
|
msg(tr("parseFileHeader: unknown file type %1h").hexarg2(fileHeader->Type, 2), index);
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
UINT32 FfsParser::getSectionSize(const QByteArray & file, const UINT32 sectionOffset, const UINT8 ffsVersion)
|
|
{
|
|
if (ffsVersion == 2) {
|
|
if ((UINT32)file.size() < sectionOffset + sizeof(EFI_COMMON_SECTION_HEADER))
|
|
return 0;
|
|
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(file.constData() + sectionOffset);
|
|
return uint24ToUint32(sectionHeader->Size);
|
|
}
|
|
else if (ffsVersion == 3) {
|
|
if ((UINT32)file.size() < sectionOffset + sizeof(EFI_COMMON_SECTION_HEADER2))
|
|
return 0;
|
|
const EFI_COMMON_SECTION_HEADER2* sectionHeader = (const EFI_COMMON_SECTION_HEADER2*)(file.constData() + sectionOffset);
|
|
UINT32 size = uint24ToUint32(sectionHeader->Size);
|
|
if (size == EFI_SECTION2_IS_USED)
|
|
return sectionHeader->ExtendedSize;
|
|
else
|
|
return size;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
STATUS FfsParser::parseFileBody(const QModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
// Do not parse non-file bodies
|
|
if (model->type(index) != Types::File)
|
|
return ERR_SUCCESS;
|
|
|
|
// Parse pad-file body
|
|
if (model->subtype(index) == EFI_FV_FILETYPE_PAD)
|
|
return parsePadFileBody(index);
|
|
|
|
// Parse raw files as raw areas
|
|
if (model->subtype(index) == EFI_FV_FILETYPE_RAW || model->subtype(index) == EFI_FV_FILETYPE_ALL)
|
|
return parseRawArea(model->body(index), index);
|
|
|
|
// Parse sections
|
|
return parseSections(model->body(index), index);
|
|
}
|
|
|
|
STATUS FfsParser::parsePadFileBody(const QModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
// Get data from parsing data
|
|
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
|
|
|
|
// Check if all bytes of the file are empty
|
|
QByteArray body = model->body(index);
|
|
if (body.size() == body.count(pdata.emptyByte))
|
|
return ERR_SUCCESS;
|
|
|
|
// Search for the first non-empty byte
|
|
UINT32 i;
|
|
UINT32 size = body.size();
|
|
const UINT8* current = (const UINT8*)body.constData();
|
|
for (i = 0; i < size; i++) {
|
|
if (*current++ != pdata.emptyByte)
|
|
break;
|
|
}
|
|
|
|
// Add all bytes before as free space...
|
|
if (i >= 8) {
|
|
// Align free space to 8 bytes boundary
|
|
if (i != ALIGN8(i))
|
|
i = ALIGN8(i) - 8;
|
|
|
|
QByteArray free = body.left(i);
|
|
|
|
// Get info
|
|
QString info = tr("Full size: %1h (%2)").hexarg(free.size()).arg(free.size());
|
|
|
|
// Constuct parsing data
|
|
pdata.offset += model->header(index).size();
|
|
if (pdata.isOnFlash) info.prepend(tr("Offset: %1h\n").hexarg(pdata.offset));
|
|
|
|
// Add tree item
|
|
model->addItem(Types::FreeSpace, 0, tr("Free space"), QString(), info, QByteArray(), free, parsingDataToQByteArray(pdata), index);
|
|
}
|
|
else
|
|
i = 0;
|
|
|
|
// ... and all bytes after as a padding
|
|
QByteArray padding = body.mid(i);
|
|
|
|
// Get info
|
|
QString info = tr("Full size: %1h (%2)").hexarg(padding.size()).arg(padding.size());
|
|
|
|
// Constuct parsing data
|
|
pdata.offset += i;
|
|
pdata.fixed = TRUE; // This data is fixed
|
|
if (pdata.isOnFlash) info.prepend(tr("Offset: %1h\n").hexarg(pdata.offset));
|
|
|
|
// Add tree item
|
|
QModelIndex dataIndex = model->addItem(Types::Padding, Subtypes::DataPadding, tr("Non-UEFI data"), "", info, QByteArray(), padding, parsingDataToQByteArray(pdata), index);
|
|
|
|
// Show message
|
|
msg(tr("parsePadFileBody: non-UEFI data found in pad-file"), dataIndex);
|
|
|
|
// Rename the file
|
|
model->setName(index, tr("Non-empty pad-file"));
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
STATUS FfsParser::parseSections(const QByteArray & sections, const QModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
// Get data from parsing data
|
|
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
|
|
|
|
// Search for and parse all sections
|
|
UINT32 bodySize = sections.size();
|
|
UINT32 headerSize = model->header(index).size();
|
|
UINT32 sectionOffset = 0;
|
|
|
|
while (sectionOffset < bodySize) {
|
|
// Get section size
|
|
UINT32 sectionSize = getSectionSize(sections, sectionOffset, pdata.ffsVersion);
|
|
|
|
// Check section size
|
|
if (sectionSize < sizeof(EFI_COMMON_SECTION_HEADER) || sectionSize > (bodySize - sectionOffset)) {
|
|
// Add padding to fill the rest of sections
|
|
QByteArray padding = sections.mid(sectionOffset);
|
|
// Get info
|
|
QString info = tr("Full size: %1h (%2)").hexarg(padding.size()).arg(padding.size());
|
|
|
|
// Constuct parsing data
|
|
pdata.fixed = TRUE; // Non-UEFI data is fixed
|
|
pdata.offset += headerSize + sectionOffset;
|
|
if (pdata.isOnFlash) info.prepend(tr("Offset: %1h\n").hexarg(pdata.offset));
|
|
|
|
// Add tree item
|
|
QModelIndex dataIndex = model->addItem(Types::Padding, Subtypes::DataPadding, tr("Non-UEFI data"), "", info, QByteArray(), padding, parsingDataToQByteArray(pdata), index);
|
|
|
|
// Show message
|
|
msg(tr("parseSections: non-UEFI data found in sections area"), dataIndex);
|
|
|
|
break; // Exit from parsing loop
|
|
}
|
|
|
|
// Parse section header
|
|
QModelIndex sectionIndex;
|
|
STATUS result = parseSectionHeader(sections.mid(sectionOffset, sectionSize), headerSize + sectionOffset, index, sectionIndex);
|
|
if (result)
|
|
msg(tr("parseSections: section header parsing failed with error \"%1\"").arg(errorCodeToQString(result)), index);
|
|
|
|
// Move to next section
|
|
sectionOffset += sectionSize;
|
|
sectionOffset = ALIGN4(sectionOffset);
|
|
}
|
|
|
|
//Parse bodies
|
|
for (int i = 0; i < model->rowCount(index); i++) {
|
|
QModelIndex current = index.child(i, 0);
|
|
switch (model->type(current)) {
|
|
case Types::Section:
|
|
parseSectionBody(current);
|
|
break;
|
|
case Types::Padding:
|
|
// No parsing required
|
|
break;
|
|
case Types::Signature:
|
|
// No parsing required
|
|
break;
|
|
default:
|
|
return ERR_UNKNOWN_ITEM_TYPE;
|
|
}
|
|
}
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
STATUS FfsParser::parseSectionHeader(const QByteArray & section, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
|
|
{
|
|
// Check sanity
|
|
if ((UINT32)section.size() < sizeof(EFI_COMMON_SECTION_HEADER))
|
|
return ERR_INVALID_SECTION;
|
|
|
|
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(section.constData());
|
|
switch (sectionHeader->Type) {
|
|
// Special
|
|
case EFI_SECTION_COMPRESSION: return parseCompressedSectionHeader(section, parentOffset, parent, index);
|
|
case EFI_SECTION_GUID_DEFINED: return parseGuidedSectionHeader(section, parentOffset, parent, index);
|
|
case EFI_SECTION_FREEFORM_SUBTYPE_GUID: return parseFreeformGuidedSectionHeader(section, parentOffset, parent, index);
|
|
case EFI_SECTION_VERSION: return parseVersionSectionHeader(section, parentOffset, parent, index);
|
|
case SCT_SECTION_POSTCODE:
|
|
case INSYDE_SECTION_POSTCODE: return parsePostcodeSectionHeader(section, parentOffset, parent, index);
|
|
// Common
|
|
case EFI_SECTION_DISPOSABLE:
|
|
case EFI_SECTION_DXE_DEPEX:
|
|
case EFI_SECTION_PEI_DEPEX:
|
|
case EFI_SECTION_SMM_DEPEX:
|
|
case EFI_SECTION_PE32:
|
|
case EFI_SECTION_PIC:
|
|
case EFI_SECTION_TE:
|
|
case EFI_SECTION_COMPATIBILITY16:
|
|
case EFI_SECTION_USER_INTERFACE:
|
|
case EFI_SECTION_FIRMWARE_VOLUME_IMAGE:
|
|
case EFI_SECTION_RAW: return parseCommonSectionHeader(section, parentOffset, parent, index);
|
|
// Unknown
|
|
default:
|
|
STATUS result = parseCommonSectionHeader(section, parentOffset, parent, index);
|
|
msg(tr("parseSectionHeader: section with unknown type %1h").hexarg2(sectionHeader->Type, 2), index);
|
|
return result;
|
|
}
|
|
}
|
|
|
|
STATUS FfsParser::parseCommonSectionHeader(const QByteArray & section, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
|
|
{
|
|
// Check sanity
|
|
if ((UINT32)section.size() < sizeof(EFI_COMMON_SECTION_HEADER))
|
|
return ERR_INVALID_SECTION;
|
|
|
|
// Get data from parent's parsing data
|
|
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
|
|
|
|
// Obtain header fields
|
|
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(section.constData());
|
|
UINT32 headerSize = sizeof(EFI_COMMON_SECTION_HEADER);
|
|
if (pdata.ffsVersion == 3 && uint24ToUint32(sectionHeader->Size) == EFI_SECTION2_IS_USED)
|
|
headerSize = sizeof(EFI_COMMON_SECTION_HEADER2);
|
|
|
|
QByteArray header = section.left(headerSize);
|
|
QByteArray body = section.mid(headerSize);
|
|
|
|
// Get info
|
|
QString name = sectionTypeToQString(sectionHeader->Type) + tr(" section");
|
|
QString info = tr("Type: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)")
|
|
.hexarg2(sectionHeader->Type, 2)
|
|
.hexarg(section.size()).arg(section.size())
|
|
.hexarg(headerSize).arg(headerSize)
|
|
.hexarg(body.size()).arg(body.size());
|
|
|
|
// Construct parsing data
|
|
pdata.offset += parentOffset;
|
|
if (pdata.isOnFlash) info.prepend(tr("Offset: %1h\n").hexarg(pdata.offset));
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Section, sectionHeader->Type, name, QString(), info, header, body, parsingDataToQByteArray(pdata), parent);
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
STATUS FfsParser::parseCompressedSectionHeader(const QByteArray & section, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
|
|
{
|
|
// Check sanity
|
|
if ((UINT32)section.size() < sizeof(EFI_COMPRESSION_SECTION))
|
|
return ERR_INVALID_SECTION;
|
|
|
|
// Get data from parent's parsing data
|
|
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
|
|
|
|
// Obtain header fields
|
|
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(section.constData());
|
|
const EFI_COMPRESSION_SECTION* compressedSectionHeader = (const EFI_COMPRESSION_SECTION*)sectionHeader;
|
|
UINT32 headerSize = sizeof(EFI_COMPRESSION_SECTION);
|
|
UINT8 compressionType = compressedSectionHeader->CompressionType;
|
|
UINT32 uncompressedLength = compressedSectionHeader->UncompressedLength;
|
|
if (pdata.ffsVersion == 3 && uint24ToUint32(sectionHeader->Size) == EFI_SECTION2_IS_USED) {
|
|
if ((UINT32)section.size() < sizeof(EFI_COMPRESSION_SECTION2))
|
|
return ERR_INVALID_SECTION;
|
|
const EFI_COMPRESSION_SECTION2* compressedSectionHeader2 = (const EFI_COMPRESSION_SECTION2*)sectionHeader;
|
|
headerSize = sizeof(EFI_COMPRESSION_SECTION2);
|
|
compressionType = compressedSectionHeader2->CompressionType;
|
|
uncompressedLength = compressedSectionHeader->UncompressedLength;
|
|
}
|
|
|
|
QByteArray header = section.left(headerSize);
|
|
QByteArray body = section.mid(headerSize);
|
|
|
|
// Get info
|
|
QString name = sectionTypeToQString(sectionHeader->Type) + tr(" section");
|
|
QString info = tr("Type: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)\nCompression type: %8h\nDecompressed size: %9h (%10)")
|
|
.hexarg2(sectionHeader->Type, 2)
|
|
.hexarg(section.size()).arg(section.size())
|
|
.hexarg(headerSize).arg(headerSize)
|
|
.hexarg(body.size()).arg(body.size())
|
|
.hexarg2(compressionType, 2)
|
|
.hexarg(uncompressedLength).arg(uncompressedLength);
|
|
|
|
// Construct parsing data
|
|
pdata.offset += parentOffset;
|
|
pdata.section.compressed.compressionType = compressionType;
|
|
pdata.section.compressed.uncompressedSize = uncompressedLength;
|
|
if (pdata.isOnFlash) info.prepend(tr("Offset: %1h\n").hexarg(pdata.offset));
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Section, sectionHeader->Type, name, QString(), info, header, body, parsingDataToQByteArray(pdata), parent);
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
STATUS FfsParser::parseGuidedSectionHeader(const QByteArray & section, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
|
|
{
|
|
// Check sanity
|
|
if ((UINT32)section.size() < sizeof(EFI_GUID_DEFINED_SECTION))
|
|
return ERR_INVALID_SECTION;
|
|
|
|
// Get data from parent's parsing data
|
|
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
|
|
|
|
// Obtain header fields
|
|
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(section.constData());
|
|
const EFI_GUID_DEFINED_SECTION* guidDefinedSectionHeader = (const EFI_GUID_DEFINED_SECTION*)sectionHeader;
|
|
EFI_GUID guid = guidDefinedSectionHeader->SectionDefinitionGuid;
|
|
UINT16 dataOffset = guidDefinedSectionHeader->DataOffset;
|
|
UINT16 attributes = guidDefinedSectionHeader->Attributes;
|
|
UINT32 nextHeaderOffset = sizeof(EFI_GUID_DEFINED_SECTION);
|
|
if (pdata.ffsVersion == 3 && uint24ToUint32(sectionHeader->Size) == EFI_SECTION2_IS_USED) {
|
|
if ((UINT32)section.size() < sizeof(EFI_GUID_DEFINED_SECTION2))
|
|
return ERR_INVALID_SECTION;
|
|
const EFI_GUID_DEFINED_SECTION2* guidDefinedSectionHeader2 = (const EFI_GUID_DEFINED_SECTION2*)sectionHeader;
|
|
guid = guidDefinedSectionHeader2->SectionDefinitionGuid;
|
|
dataOffset = guidDefinedSectionHeader2->DataOffset;
|
|
attributes = guidDefinedSectionHeader2->Attributes;
|
|
nextHeaderOffset = sizeof(EFI_GUID_DEFINED_SECTION2);
|
|
}
|
|
|
|
// Check for special GUIDed sections
|
|
QByteArray additionalInfo;
|
|
QByteArray baGuid((const char*)&guid, sizeof(EFI_GUID));
|
|
bool msgNoAuthStatusAttribute = false;
|
|
bool msgNoProcessingRequiredAttributeCompressed = false;
|
|
bool msgNoProcessingRequiredAttributeSigned = false;
|
|
bool msgInvalidCrc = false;
|
|
bool msgUnknownCertType = false;
|
|
bool msgUnknownCertSubtype = false;
|
|
if (baGuid == EFI_GUIDED_SECTION_CRC32) {
|
|
if ((attributes & EFI_GUIDED_SECTION_AUTH_STATUS_VALID) == 0) { // Check that AuthStatusValid attribute is set on compressed GUIDed sections
|
|
msgNoAuthStatusAttribute = true;
|
|
}
|
|
|
|
if ((UINT32)section.size() < nextHeaderOffset + sizeof(UINT32))
|
|
return ERR_INVALID_SECTION;
|
|
|
|
UINT32 crc = *(UINT32*)(section.constData() + nextHeaderOffset);
|
|
additionalInfo += tr("\nChecksum type: CRC32");
|
|
// Calculate CRC32 of section data
|
|
UINT32 calculated = crc32(0, (const UINT8*)section.constData() + dataOffset, section.size() - dataOffset);
|
|
if (crc == calculated) {
|
|
additionalInfo += tr("\nChecksum: %1h, valid").hexarg2(crc, 8);
|
|
}
|
|
else {
|
|
additionalInfo += tr("\nChecksum: %1h, invalid, should be %2h").hexarg2(crc, 8).hexarg2(calculated, 8);
|
|
msgInvalidCrc = true;
|
|
}
|
|
// No need to change dataOffset here
|
|
}
|
|
else if (baGuid == EFI_GUIDED_SECTION_LZMA || baGuid == EFI_GUIDED_SECTION_TIANO) {
|
|
if ((attributes & EFI_GUIDED_SECTION_PROCESSING_REQUIRED) == 0) { // Check that ProcessingRequired attribute is set on compressed GUIDed sections
|
|
msgNoProcessingRequiredAttributeCompressed = true;
|
|
}
|
|
// No need to change dataOffset here
|
|
}
|
|
else if (baGuid == EFI_FIRMWARE_CONTENTS_SIGNED_GUID) {
|
|
if ((attributes & EFI_GUIDED_SECTION_PROCESSING_REQUIRED) == 0) { // Check that ProcessingRequired attribute is set on signed GUIDed sections
|
|
msgNoProcessingRequiredAttributeSigned = true;
|
|
}
|
|
|
|
// Get certificate type and length
|
|
if ((UINT32)section.size() < nextHeaderOffset + sizeof(WIN_CERTIFICATE))
|
|
return ERR_INVALID_SECTION;
|
|
|
|
const WIN_CERTIFICATE* winCertificate = (const WIN_CERTIFICATE*)(section.constData() + nextHeaderOffset);
|
|
UINT32 certLength = winCertificate->Length;
|
|
UINT16 certType = winCertificate->CertificateType;
|
|
|
|
// Adjust dataOffset
|
|
dataOffset += certLength;
|
|
|
|
// Check section size once again
|
|
if ((UINT32)section.size() < dataOffset)
|
|
return ERR_INVALID_SECTION;
|
|
|
|
// Check certificate type
|
|
if (certType == WIN_CERT_TYPE_EFI_GUID) {
|
|
additionalInfo += tr("\nCertificate type: UEFI").hexarg2(certType, 4);
|
|
|
|
// Get certificate GUID
|
|
const WIN_CERTIFICATE_UEFI_GUID* winCertificateUefiGuid = (const WIN_CERTIFICATE_UEFI_GUID*)(section.constData() + nextHeaderOffset);
|
|
QByteArray certTypeGuid((const char*)&winCertificateUefiGuid->CertType, sizeof(EFI_GUID));
|
|
|
|
if (certTypeGuid == EFI_CERT_TYPE_RSA2048_SHA256_GUID) {
|
|
additionalInfo += tr("\nCertificate subtype: RSA2048/SHA256");
|
|
}
|
|
else {
|
|
additionalInfo += tr("\nCertificate subtype: unknown, GUID %1").arg(guidToQString(winCertificateUefiGuid->CertType));
|
|
msgUnknownCertSubtype = true;
|
|
}
|
|
}
|
|
else {
|
|
additionalInfo += tr("\nCertificate type: unknown (%1h)").hexarg2(certType, 4);
|
|
msgUnknownCertType = true;
|
|
}
|
|
}
|
|
|
|
QByteArray header = section.left(dataOffset);
|
|
QByteArray body = section.mid(dataOffset);
|
|
|
|
// Get info
|
|
QString name = guidToQString(guid);
|
|
QString info = tr("Section GUID: %1\nType: %2h\nFull size: %3h (%4)\nHeader size: %5h (%6)\nBody size: %7h (%8)\nData offset: %9h\nAttributes: %10h")
|
|
.arg(name)
|
|
.hexarg2(sectionHeader->Type, 2)
|
|
.hexarg(section.size()).arg(section.size())
|
|
.hexarg(header.size()).arg(header.size())
|
|
.hexarg(body.size()).arg(body.size())
|
|
.hexarg(dataOffset)
|
|
.hexarg2(attributes, 4);
|
|
|
|
// Append additional info
|
|
info.append(additionalInfo);
|
|
|
|
// Construct parsing data
|
|
pdata.offset += parentOffset;
|
|
pdata.section.guidDefined.guid = guid;
|
|
if (pdata.isOnFlash) info.prepend(tr("Offset: %1h\n").hexarg(pdata.offset));
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Section, sectionHeader->Type, name, QString(), info, header, body, parsingDataToQByteArray(pdata), parent);
|
|
|
|
// Show messages
|
|
if (msgNoAuthStatusAttribute)
|
|
msg(tr("parseGuidedSectionHeader: CRC32 GUIDed section without AuthStatusValid attribute"), index);
|
|
if (msgNoProcessingRequiredAttributeCompressed)
|
|
msg(tr("parseGuidedSectionHeader: compressed GUIDed section without ProcessingRequired attribute"), index);
|
|
if (msgNoProcessingRequiredAttributeSigned)
|
|
msg(tr("parseGuidedSectionHeader: signed GUIDed section without ProcessingRequired attribute"), index);
|
|
if (msgInvalidCrc)
|
|
msg(tr("parseGuidedSectionHeader: GUID defined section with invalid CRC32"), index);
|
|
if (msgUnknownCertType)
|
|
msg(tr("parseGuidedSectionHeader: signed GUIDed section with unknown type"), index);
|
|
if (msgUnknownCertSubtype)
|
|
msg(tr("parseGuidedSectionHeader: signed GUIDed section with unknown subtype"), index);
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
STATUS FfsParser::parseFreeformGuidedSectionHeader(const QByteArray & section, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
|
|
{
|
|
// Check sanity
|
|
if ((UINT32)section.size() < sizeof(EFI_FREEFORM_SUBTYPE_GUID_SECTION))
|
|
return ERR_INVALID_SECTION;
|
|
|
|
// Get data from parent's parsing data
|
|
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
|
|
|
|
// Obtain header fields
|
|
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(section.constData());
|
|
const EFI_FREEFORM_SUBTYPE_GUID_SECTION* fsgHeader = (const EFI_FREEFORM_SUBTYPE_GUID_SECTION*)sectionHeader;
|
|
UINT32 headerSize = sizeof(EFI_FREEFORM_SUBTYPE_GUID_SECTION);
|
|
EFI_GUID guid = fsgHeader->SubTypeGuid;
|
|
if (pdata.ffsVersion == 3 && uint24ToUint32(sectionHeader->Size) == EFI_SECTION2_IS_USED) {
|
|
if ((UINT32)section.size() < sizeof(EFI_FREEFORM_SUBTYPE_GUID_SECTION2))
|
|
return ERR_INVALID_SECTION;
|
|
const EFI_FREEFORM_SUBTYPE_GUID_SECTION2* fsgHeader2 = (const EFI_FREEFORM_SUBTYPE_GUID_SECTION2*)sectionHeader;
|
|
headerSize = sizeof(EFI_FREEFORM_SUBTYPE_GUID_SECTION2);
|
|
guid = fsgHeader2->SubTypeGuid;
|
|
}
|
|
|
|
QByteArray header = section.left(headerSize);
|
|
QByteArray body = section.mid(headerSize);
|
|
|
|
// Get info
|
|
QString name = sectionTypeToQString(sectionHeader->Type) + tr(" section");
|
|
QString info = tr("Type: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)\nSubtype GUID: %8")
|
|
.hexarg2(fsgHeader->Type, 2)
|
|
.hexarg(section.size()).arg(section.size())
|
|
.hexarg(header.size()).arg(header.size())
|
|
.hexarg(body.size()).arg(body.size())
|
|
.arg(guidToQString(guid));
|
|
|
|
// Construct parsing data
|
|
pdata.offset += parentOffset;
|
|
pdata.section.freeformSubtypeGuid.guid = guid;
|
|
if (pdata.isOnFlash) info.prepend(tr("Offset: %1h\n").hexarg(pdata.offset));
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Section, sectionHeader->Type, name, QString(), info, header, body, parsingDataToQByteArray(pdata), parent);
|
|
|
|
// Rename section
|
|
model->setName(index, guidToQString(guid));
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
STATUS FfsParser::parseVersionSectionHeader(const QByteArray & section, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
|
|
{
|
|
// Check sanity
|
|
if ((UINT32)section.size() < sizeof(EFI_VERSION_SECTION))
|
|
return ERR_INVALID_SECTION;
|
|
|
|
// Get data from parent's parsing data
|
|
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
|
|
|
|
// Obtain header fields
|
|
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(section.constData());
|
|
const EFI_VERSION_SECTION* versionHeader = (const EFI_VERSION_SECTION*)sectionHeader;
|
|
UINT32 headerSize = sizeof(EFI_VERSION_SECTION);
|
|
UINT16 buildNumber = versionHeader->BuildNumber;
|
|
if (pdata.ffsVersion == 3 && uint24ToUint32(sectionHeader->Size) == EFI_SECTION2_IS_USED) {
|
|
if ((UINT32)section.size() < sizeof(EFI_VERSION_SECTION2))
|
|
return ERR_INVALID_SECTION;
|
|
const EFI_VERSION_SECTION2* versionHeader2 = (const EFI_VERSION_SECTION2*)sectionHeader;
|
|
headerSize = sizeof(EFI_VERSION_SECTION2);
|
|
buildNumber = versionHeader2->BuildNumber;
|
|
}
|
|
|
|
QByteArray header = section.left(headerSize);
|
|
QByteArray body = section.mid(headerSize);
|
|
|
|
// Get info
|
|
QString name = sectionTypeToQString(sectionHeader->Type) + tr(" section");
|
|
QString info = tr("Type: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)\nBuild number: %8")
|
|
.hexarg2(versionHeader->Type, 2)
|
|
.hexarg(section.size()).arg(section.size())
|
|
.hexarg(header.size()).arg(header.size())
|
|
.hexarg(body.size()).arg(body.size())
|
|
.arg(buildNumber);
|
|
|
|
// Construct parsing data
|
|
pdata.offset += parentOffset;
|
|
if (pdata.isOnFlash) info.prepend(tr("Offset: %1h\n").hexarg(pdata.offset));
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Section, sectionHeader->Type, name, QString(), info, header, body, parsingDataToQByteArray(pdata), parent);
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
STATUS FfsParser::parsePostcodeSectionHeader(const QByteArray & section, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
|
|
{
|
|
// Check sanity
|
|
if ((UINT32)section.size() < sizeof(POSTCODE_SECTION))
|
|
return ERR_INVALID_SECTION;
|
|
|
|
// Get data from parent's parsing data
|
|
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
|
|
|
|
// Obtain header fields
|
|
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(section.constData());
|
|
const POSTCODE_SECTION* postcodeHeader = (const POSTCODE_SECTION*)sectionHeader;
|
|
UINT32 headerSize = sizeof(POSTCODE_SECTION);
|
|
UINT32 postCode = postcodeHeader->Postcode;
|
|
if (pdata.ffsVersion == 3 && uint24ToUint32(sectionHeader->Size) == EFI_SECTION2_IS_USED) {
|
|
if ((UINT32)section.size() < sizeof(POSTCODE_SECTION2))
|
|
return ERR_INVALID_SECTION;
|
|
const POSTCODE_SECTION2* postcodeHeader2 = (const POSTCODE_SECTION2*)sectionHeader;
|
|
headerSize = sizeof(POSTCODE_SECTION2);
|
|
postCode = postcodeHeader2->Postcode;
|
|
}
|
|
|
|
QByteArray header = section.left(headerSize);
|
|
QByteArray body = section.mid(headerSize);
|
|
|
|
// Get info
|
|
QString name = sectionTypeToQString(sectionHeader->Type) + tr(" section");
|
|
QString info = tr("Type: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)\nPostcode: %8h\n")
|
|
.hexarg2(postcodeHeader->Type, 2)
|
|
.hexarg(section.size()).arg(section.size())
|
|
.hexarg(header.size()).arg(header.size())
|
|
.hexarg(body.size()).arg(body.size())
|
|
.hexarg(postCode);
|
|
|
|
// Construct parsing data
|
|
pdata.offset += parentOffset;
|
|
if (pdata.isOnFlash) info.prepend(tr("Offset: %1h\n").hexarg(pdata.offset));
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Section, sectionHeader->Type, name, QString(), info, header, body, parsingDataToQByteArray(pdata), parent);
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
|
|
STATUS FfsParser::parseSectionBody(const QModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return ERR_INVALID_PARAMETER;
|
|
if ((UINT32)model->header(index).size() < sizeof(EFI_COMMON_SECTION_HEADER))
|
|
return ERR_INVALID_SECTION;
|
|
|
|
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(model->header(index).constData());
|
|
|
|
switch (sectionHeader->Type) {
|
|
// Encapsulation
|
|
case EFI_SECTION_COMPRESSION: return parseCompressedSectionBody(index);
|
|
case EFI_SECTION_GUID_DEFINED: return parseGuidedSectionBody(index);
|
|
case EFI_SECTION_DISPOSABLE: return parseSections(model->body(index), index);
|
|
// Leaf
|
|
case EFI_SECTION_FREEFORM_SUBTYPE_GUID: return parseRawArea(model->body(index), index);
|
|
case EFI_SECTION_VERSION: return parseVersionSectionBody(index);
|
|
case EFI_SECTION_DXE_DEPEX:
|
|
case EFI_SECTION_PEI_DEPEX:
|
|
case EFI_SECTION_SMM_DEPEX: return parseDepexSectionBody(index);
|
|
case EFI_SECTION_TE: return parseTeImageSectionBody(index);
|
|
case EFI_SECTION_PE32:
|
|
case EFI_SECTION_PIC: return parsePeImageSectionBody(index);
|
|
case EFI_SECTION_USER_INTERFACE: return parseUiSectionBody(index);
|
|
case EFI_SECTION_FIRMWARE_VOLUME_IMAGE: return parseRawArea(model->body(index), index);
|
|
case EFI_SECTION_RAW: return parseRawSectionBody(index);
|
|
// No parsing needed
|
|
case EFI_SECTION_COMPATIBILITY16:
|
|
case SCT_SECTION_POSTCODE:
|
|
case INSYDE_SECTION_POSTCODE:
|
|
default:
|
|
return ERR_SUCCESS;
|
|
}
|
|
}
|
|
|
|
STATUS FfsParser::parseCompressedSectionBody(const QModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
// Get data from parsing data
|
|
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
|
|
UINT8 algorithm = pdata.section.compressed.compressionType;
|
|
|
|
// Decompress section
|
|
QByteArray decompressed;
|
|
STATUS result = decompress(model->body(index), algorithm, decompressed);
|
|
if (result) {
|
|
msg(tr("parseCompressedSectionBody: decompression failed with error \"%1\"").arg(errorCodeToQString(result)), index);
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
// Check reported uncompressed size
|
|
if (pdata.section.compressed.uncompressedSize != (UINT32)decompressed.size()) {
|
|
msg(tr("parseCompressedSectionBody: decompressed size stored in header %1h (%2) differs from actual %3h (%4)")
|
|
.hexarg(pdata.section.compressed.uncompressedSize)
|
|
.arg(pdata.section.compressed.uncompressedSize)
|
|
.hexarg(decompressed.size())
|
|
.arg(decompressed.size()), index);
|
|
model->addInfo(index, tr("\nActual decompressed size: %1h (%2)").hexarg(decompressed.size()).arg(decompressed.size()));
|
|
}
|
|
|
|
// Add info
|
|
model->addInfo(index, tr("\nCompression algorithm: %1").arg(compressionTypeToQString(algorithm)));
|
|
|
|
// Update parsing data
|
|
pdata.isOnFlash = (algorithm == COMPRESSION_ALGORITHM_NONE); // Data is not on flash unless not compressed
|
|
pdata.section.compressed.algorithm = algorithm;
|
|
model->setParsingData(index, parsingDataToQByteArray(pdata));
|
|
|
|
// Parse decompressed data
|
|
return parseSections(decompressed, index);
|
|
}
|
|
|
|
STATUS FfsParser::parseGuidedSectionBody(const QModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
// Get data from parsing data
|
|
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
|
|
EFI_GUID guid = pdata.section.guidDefined.guid;
|
|
|
|
// Check if section requires processing
|
|
QByteArray processed = model->body(index);
|
|
QString info;
|
|
bool parseCurrentSection = true;
|
|
UINT8 algorithm = COMPRESSION_ALGORITHM_NONE;
|
|
// Tiano compressed section
|
|
if (QByteArray((const char*)&guid, sizeof(EFI_GUID)) == EFI_GUIDED_SECTION_TIANO) {
|
|
algorithm = EFI_STANDARD_COMPRESSION;
|
|
STATUS result = decompress(model->body(index), algorithm, processed);
|
|
if (result) {
|
|
parseCurrentSection = false;
|
|
msg(tr("parseGuidedSectionBody: decompression failed with error \"%1\"").arg(errorCodeToQString(result)), index);
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
if (algorithm == COMPRESSION_ALGORITHM_TIANO) {
|
|
info += tr("\nCompression algorithm: Tiano");
|
|
info += tr("\nDecompressed size: %1h (%2)").hexarg(processed.length()).arg(processed.length());
|
|
}
|
|
else if (algorithm == COMPRESSION_ALGORITHM_EFI11) {
|
|
info += tr("\nCompression algorithm: EFI 1.1");
|
|
info += tr("\nDecompressed size: %1h (%2)").hexarg(processed.length()).arg(processed.length());
|
|
}
|
|
else
|
|
info += tr("\nCompression type: unknown");
|
|
}
|
|
// LZMA compressed section
|
|
else if (QByteArray((const char*)&guid, sizeof(EFI_GUID)) == EFI_GUIDED_SECTION_LZMA) {
|
|
algorithm = EFI_CUSTOMIZED_COMPRESSION;
|
|
STATUS result = decompress(model->body(index), algorithm, processed);
|
|
if (result) {
|
|
parseCurrentSection = false;
|
|
msg(tr("parseGuidedSectionBody: decompression failed with error \"%1\"").arg(errorCodeToQString(result)), index);
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
if (algorithm == COMPRESSION_ALGORITHM_LZMA) {
|
|
info += tr("\nCompression algorithm: LZMA");
|
|
info += tr("\nDecompressed size: %1h (%2)").hexarg(processed.length()).arg(processed.length());
|
|
}
|
|
else
|
|
info += tr("\nCompression algorithm: unknown");
|
|
}
|
|
|
|
// Add info
|
|
model->addInfo(index, info);
|
|
|
|
// Update parsing data
|
|
pdata.isOnFlash = (algorithm == COMPRESSION_ALGORITHM_NONE); // Data is not on flash unless not compressed
|
|
model->setParsingData(index, parsingDataToQByteArray(pdata));
|
|
|
|
if (!parseCurrentSection) {
|
|
msg(tr("parseGuidedSectionBody: GUID defined section can not be processed"), index);
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
return parseSections(processed, index);
|
|
}
|
|
|
|
STATUS FfsParser::parseVersionSectionBody(const QModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
// Add info
|
|
model->addInfo(index, tr("\nVersion string: %1").arg(QString::fromUtf16((const ushort*)model->body(index).constData())));
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
STATUS FfsParser::parseDepexSectionBody(const QModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
QByteArray body = model->body(index);
|
|
QString parsed;
|
|
|
|
// Check data to be present
|
|
if (body.size() < 2) { // 2 is a minimal sane value, i.e TRUE + END
|
|
msg(tr("parseDepexSectionBody: DEPEX section too short"), index);
|
|
return ERR_DEPEX_PARSE_FAILED;
|
|
}
|
|
|
|
const EFI_GUID * guid;
|
|
const UINT8* current = (const UINT8*)body.constData();
|
|
|
|
// Special cases of first opcode
|
|
switch (*current) {
|
|
case EFI_DEP_BEFORE:
|
|
if (body.size() != 2 * EFI_DEP_OPCODE_SIZE + sizeof(EFI_GUID)) {
|
|
msg(tr("parseDepexSectionBody: DEPEX section too long for a section starting with BEFORE opcode"), index);
|
|
return ERR_SUCCESS;
|
|
}
|
|
guid = (const EFI_GUID*)(current + EFI_DEP_OPCODE_SIZE);
|
|
parsed += tr("\nBEFORE %1").arg(guidToQString(*guid));
|
|
current += EFI_DEP_OPCODE_SIZE + sizeof(EFI_GUID);
|
|
if (*current != EFI_DEP_END){
|
|
msg(tr("parseDepexSectionBody: DEPEX section ends with non-END opcode"), index);
|
|
return ERR_SUCCESS;
|
|
}
|
|
return ERR_SUCCESS;
|
|
case EFI_DEP_AFTER:
|
|
if (body.size() != 2 * EFI_DEP_OPCODE_SIZE + sizeof(EFI_GUID)){
|
|
msg(tr("parseDepexSectionBody: DEPEX section too long for a section starting with AFTER opcode"), index);
|
|
return ERR_SUCCESS;
|
|
}
|
|
guid = (const EFI_GUID*)(current + EFI_DEP_OPCODE_SIZE);
|
|
parsed += tr("\nAFTER %1").arg(guidToQString(*guid));
|
|
current += EFI_DEP_OPCODE_SIZE + sizeof(EFI_GUID);
|
|
if (*current != EFI_DEP_END) {
|
|
msg(tr("parseDepexSectionBody: DEPEX section ends with non-END opcode"), index);
|
|
return ERR_SUCCESS;
|
|
}
|
|
return ERR_SUCCESS;
|
|
case EFI_DEP_SOR:
|
|
if (body.size() <= 2 * EFI_DEP_OPCODE_SIZE) {
|
|
msg(tr("parseDepexSectionBody: DEPEX section too short for a section starting with SOR opcode"), index);
|
|
return ERR_SUCCESS;
|
|
}
|
|
parsed += tr("\nSOR");
|
|
current += EFI_DEP_OPCODE_SIZE;
|
|
break;
|
|
}
|
|
|
|
// Parse the rest of depex
|
|
while (current - (const UINT8*)body.constData() < body.size()) {
|
|
switch (*current) {
|
|
case EFI_DEP_BEFORE: {
|
|
msg(tr("parseDepexSectionBody: misplaced BEFORE opcode"), index);
|
|
return ERR_SUCCESS;
|
|
}
|
|
case EFI_DEP_AFTER: {
|
|
msg(tr("parseDepexSectionBody: misplaced AFTER opcode"), index);
|
|
return ERR_SUCCESS;
|
|
}
|
|
case EFI_DEP_SOR: {
|
|
msg(tr("parseDepexSectionBody: misplaced SOR opcode"), index);
|
|
return ERR_SUCCESS;
|
|
}
|
|
case EFI_DEP_PUSH:
|
|
// Check that the rest of depex has correct size
|
|
if ((UINT32)body.size() - (UINT32)(current - (const UINT8*)body.constData()) <= EFI_DEP_OPCODE_SIZE + sizeof(EFI_GUID)) {
|
|
parsed.clear();
|
|
msg(tr("parseDepexSectionBody: remains of DEPEX section too short for PUSH opcode"), index);
|
|
return ERR_SUCCESS;
|
|
}
|
|
guid = (const EFI_GUID*)(current + EFI_DEP_OPCODE_SIZE);
|
|
parsed += tr("\nPUSH %1").arg(guidToQString(*guid));
|
|
current += EFI_DEP_OPCODE_SIZE + sizeof(EFI_GUID);
|
|
break;
|
|
case EFI_DEP_AND:
|
|
parsed += tr("\nAND");
|
|
current += EFI_DEP_OPCODE_SIZE;
|
|
break;
|
|
case EFI_DEP_OR:
|
|
parsed += tr("\nOR");
|
|
current += EFI_DEP_OPCODE_SIZE;
|
|
break;
|
|
case EFI_DEP_NOT:
|
|
parsed += tr("\nNOT");
|
|
current += EFI_DEP_OPCODE_SIZE;
|
|
break;
|
|
case EFI_DEP_TRUE:
|
|
parsed += tr("\nTRUE");
|
|
current += EFI_DEP_OPCODE_SIZE;
|
|
break;
|
|
case EFI_DEP_FALSE:
|
|
parsed += tr("\nFALSE");
|
|
current += EFI_DEP_OPCODE_SIZE;
|
|
break;
|
|
case EFI_DEP_END:
|
|
parsed += tr("\nEND");
|
|
current += EFI_DEP_OPCODE_SIZE;
|
|
// Check that END is the last opcode
|
|
if (current - (const UINT8*)body.constData() < body.size()) {
|
|
parsed.clear();
|
|
msg(tr("parseDepexSectionBody: DEPEX section ends with non-END opcode"), index);
|
|
}
|
|
break;
|
|
default:
|
|
msg(tr("parseDepexSectionBody: unknown opcode"), index);
|
|
return ERR_SUCCESS;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Add info
|
|
model->addInfo(index, tr("\nParsed expression:%1").arg(parsed));
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
STATUS FfsParser::parseUiSectionBody(const QModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
QString text = QString::fromUtf16((const ushort*)model->body(index).constData(), model->body(index).size()/2);
|
|
|
|
// Add info
|
|
model->addInfo(index, tr("\nText: %1").arg(text));
|
|
|
|
// Rename parent file
|
|
model->setText(model->findParentOfType(index, Types::File), text);
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
STATUS FfsParser::parseAprioriRawSection(const QByteArray & body, QString & parsed)
|
|
{
|
|
// Sanity check
|
|
if (body.size() % sizeof(EFI_GUID)) {
|
|
msg(tr("parseAprioriRawSection: apriori file has size is not a multiple of 16"));
|
|
}
|
|
parsed.clear();
|
|
UINT32 count = body.size() / sizeof(EFI_GUID);
|
|
if (count > 0) {
|
|
for (UINT32 i = 0; i < count; i++) {
|
|
const EFI_GUID* guid = (const EFI_GUID*)body.constData() + i;
|
|
parsed += tr("\n%1").arg(guidToQString(*guid));
|
|
}
|
|
}
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
STATUS FfsParser::parseRawSectionBody(const QModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
// Check for apriori file
|
|
QModelIndex parentFile = model->findParentOfType(index, Types::File);
|
|
QByteArray parentFileGuid = model->header(parentFile).left(sizeof(EFI_GUID));
|
|
if (parentFileGuid == EFI_PEI_APRIORI_FILE_GUID) { // PEI apriori file
|
|
// Parse apriori file list
|
|
QString str;
|
|
STATUS result = parseAprioriRawSection(model->body(index), str);
|
|
if (!result && !str.isEmpty())
|
|
model->addInfo(index, tr("\nFile list:%1").arg(str));
|
|
|
|
// Set parent file text
|
|
model->setText(parentFile, tr("PEI apriori file"));
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
else if (parentFileGuid == EFI_DXE_APRIORI_FILE_GUID) { // DXE apriori file
|
|
// Parse apriori file list
|
|
QString str;
|
|
STATUS result = parseAprioriRawSection(model->body(index), str);
|
|
if (!result && !str.isEmpty())
|
|
model->addInfo(index, tr("\nFile list:%1").arg(str));
|
|
|
|
// Set parent file text
|
|
model->setText(parentFile, tr("DXE apriori file"));
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
// Parse as raw area
|
|
return parseRawArea(model->body(index), index);
|
|
}
|
|
|
|
|
|
STATUS FfsParser::parsePeImageSectionBody(const QModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
// Get section body
|
|
QByteArray body = model->body(index);
|
|
if ((UINT32)body.size() < sizeof(EFI_IMAGE_DOS_HEADER)) {
|
|
msg(tr("parsePeImageSectionBody: section body size is smaller than DOS header size"), index);
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
QByteArray info;
|
|
const EFI_IMAGE_DOS_HEADER* dosHeader = (const EFI_IMAGE_DOS_HEADER*)body.constData();
|
|
if (dosHeader->e_magic != EFI_IMAGE_DOS_SIGNATURE) {
|
|
info += tr("\nDOS signature: %1h, invalid").hexarg2(dosHeader->e_magic, 4);
|
|
msg(tr("parsePeImageSectionBody: PE32 image with invalid DOS signature"), index);
|
|
model->addInfo(index, info);
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
const EFI_IMAGE_PE_HEADER* peHeader = (EFI_IMAGE_PE_HEADER*)(body.constData() + dosHeader->e_lfanew);
|
|
if (body.size() < (UINT8*)peHeader - (UINT8*)dosHeader) {
|
|
info += tr("\nDOS header: invalid");
|
|
msg(tr("parsePeImageSectionBody: PE32 image with invalid DOS header"), index);
|
|
model->addInfo(index, info);
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
if (peHeader->Signature != EFI_IMAGE_PE_SIGNATURE) {
|
|
info += tr("\nPE signature: %1h, invalid").hexarg2(peHeader->Signature, 8);
|
|
msg(tr("parsePeImageSectionBody: PE32 image with invalid PE signature"), index);
|
|
model->addInfo(index, info);
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
const EFI_IMAGE_FILE_HEADER* imageFileHeader = (const EFI_IMAGE_FILE_HEADER*)(peHeader + 1);
|
|
if (body.size() < (UINT8*)imageFileHeader - (UINT8*)dosHeader) {
|
|
info += tr("\nPE header: invalid");
|
|
msg(tr("parsePeImageSectionBody: PE32 image with invalid PE header"), index);
|
|
model->addInfo(index, info);
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
info += tr("\nDOS signature: %1h\nPE signature: %2h\nMachine type: %3\nNumber of sections: %4\nCharacteristics: %5h")
|
|
.hexarg2(dosHeader->e_magic, 4)
|
|
.hexarg2(peHeader->Signature, 8)
|
|
.arg(machineTypeToQString(imageFileHeader->Machine))
|
|
.arg(imageFileHeader->NumberOfSections)
|
|
.hexarg2(imageFileHeader->Characteristics, 4);
|
|
|
|
EFI_IMAGE_OPTIONAL_HEADER_POINTERS_UNION optionalHeader;
|
|
optionalHeader.H32 = (const EFI_IMAGE_OPTIONAL_HEADER32*)(imageFileHeader + 1);
|
|
if (body.size() < (UINT8*)optionalHeader.H32 - (UINT8*)dosHeader) {
|
|
info += tr("\nPE optional header: invalid");
|
|
msg(tr("parsePeImageSectionBody: PE32 image with invalid PE optional header"), index);
|
|
model->addInfo(index, info);
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
if (optionalHeader.H32->Magic == EFI_IMAGE_PE_OPTIONAL_HDR32_MAGIC) {
|
|
info += tr("\nOptional header signature: %1h\nSubsystem: %2h\nAddress of entry point: %3h\nBase of code: %4h\nImage base: %5h")
|
|
.hexarg2(optionalHeader.H32->Magic, 4)
|
|
.hexarg2(optionalHeader.H32->Subsystem, 4)
|
|
.hexarg(optionalHeader.H32->AddressOfEntryPoint)
|
|
.hexarg(optionalHeader.H32->BaseOfCode)
|
|
.hexarg(optionalHeader.H32->ImageBase);
|
|
}
|
|
else if (optionalHeader.H32->Magic == EFI_IMAGE_PE_OPTIONAL_HDR64_MAGIC) {
|
|
info += tr("\nOptional header signature: %1h\nSubsystem: %2h\nAddress of entry point: %3h\nBase of code: %4h\nImage base: %5h")
|
|
.hexarg2(optionalHeader.H64->Magic, 4)
|
|
.hexarg2(optionalHeader.H64->Subsystem, 4)
|
|
.hexarg(optionalHeader.H64->AddressOfEntryPoint)
|
|
.hexarg(optionalHeader.H64->BaseOfCode)
|
|
.hexarg(optionalHeader.H64->ImageBase);
|
|
}
|
|
else {
|
|
info += tr("\nOptional header signature: %1h, unknown").hexarg2(optionalHeader.H32->Magic, 4);
|
|
msg(tr("parsePeImageSectionBody: PE32 image with invalid optional PE header signature"), index);
|
|
}
|
|
|
|
model->addInfo(index, info);
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
|
|
STATUS FfsParser::parseTeImageSectionBody(const QModelIndex & index)
|
|
{
|
|
// Check sanity
|
|
if (!index.isValid())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
// Get section body
|
|
QByteArray body = model->body(index);
|
|
if ((UINT32)body.size() < sizeof(EFI_IMAGE_TE_HEADER)) {
|
|
msg(tr("parsePeImageSectionBody: section body size is smaller than TE header size"), index);
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
QByteArray info;
|
|
const EFI_IMAGE_TE_HEADER* teHeader = (const EFI_IMAGE_TE_HEADER*)body.constData();
|
|
if (teHeader->Signature != EFI_IMAGE_TE_SIGNATURE) {
|
|
info += tr("\nSignature: %1h, invalid").hexarg2(teHeader->Signature, 4);
|
|
msg(tr("parseTeImageSectionBody: TE image with invalid TE signature"), index);
|
|
}
|
|
else {
|
|
info += tr("\nSignature: %1h\nMachine type: %2\nNumber of sections: %3\nSubsystem: %4h\nStripped size: %5h (%6)\nBase of code: %7h\nAddress of entry point: %8h\nImage base: %9h\nAdjusted image base: %10h")
|
|
.hexarg2(teHeader->Signature, 4)
|
|
.arg(machineTypeToQString(teHeader->Machine))
|
|
.arg(teHeader->NumberOfSections)
|
|
.hexarg2(teHeader->Subsystem, 2)
|
|
.hexarg(teHeader->StrippedSize).arg(teHeader->StrippedSize)
|
|
.hexarg(teHeader->BaseOfCode)
|
|
.hexarg(teHeader->AddressOfEntryPoint)
|
|
.hexarg(teHeader->ImageBase)
|
|
.hexarg(teHeader->ImageBase + teHeader->StrippedSize - sizeof(EFI_IMAGE_TE_HEADER));
|
|
}
|
|
|
|
// Get data from parsing data
|
|
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
|
|
pdata.section.teImage.imageBase = teHeader->ImageBase;
|
|
pdata.section.teImage.adjustedImageBase = teHeader->ImageBase + teHeader->StrippedSize - sizeof(EFI_IMAGE_TE_HEADER);
|
|
|
|
// Update parsing data
|
|
model->setParsingData(index, parsingDataToQByteArray(pdata));
|
|
|
|
// Add TE info
|
|
model->addInfo(index, info);
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
|
|
STATUS FfsParser::performSecondPass(const QModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid() || !lastVtf.isValid())
|
|
return ERR_INVALID_PARAMETER;
|
|
|
|
// Get parsing data for the last VTF
|
|
PARSING_DATA pdata = parsingDataFromQModelIndex(lastVtf);
|
|
if (!pdata.isOnFlash) {
|
|
msg(tr("performSecondPass: the last VTF appears inside compressed item, the image may be damaged"), lastVtf);
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
// Calculate address difference
|
|
const UINT32 vtfSize = model->header(lastVtf).size() + model->body(lastVtf).size() + (pdata.file.hasTail ? sizeof(UINT16) : 0);
|
|
const UINT32 diff = 0xFFFFFFFFUL - pdata.offset - vtfSize + 1;
|
|
|
|
// Apply address information to index and all it's child items
|
|
addMemoryAddressesRecursive(index, diff);
|
|
|
|
return ERR_SUCCESS;
|
|
}
|
|
|
|
STATUS FfsParser::addMemoryAddressesRecursive(const QModelIndex & index, const UINT32 diff)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return ERR_SUCCESS;
|
|
|
|
// Get parsing data for the current item
|
|
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
|
|
|
|
// Set address value for non-compressed data
|
|
if (pdata.isOnFlash) {
|
|
// Check address sanity
|
|
if ((const UINT64)diff + pdata.offset <= 0xFFFFFFFFUL) {
|
|
// Update info
|
|
pdata.address = diff + pdata.offset;
|
|
UINT32 headerSize = model->header(index).size();
|
|
if (headerSize) {
|
|
model->addInfo(index, tr("\nHeader memory address: %1h").hexarg2(pdata.address, 8));
|
|
model->addInfo(index, tr("\nData memory address: %1h").hexarg2(pdata.address + headerSize, 8));
|
|
}
|
|
else {
|
|
model->addInfo(index, tr("\nMemory address: %1h").hexarg2(pdata.address, 8));
|
|
}
|
|
|
|
// Special case of uncompressed TE image sections
|
|
if (model->type(index) == Types::Section && model->subtype(index) == EFI_SECTION_TE && pdata.isOnFlash) {
|
|
// Check data memory address to be equal to either ImageBase or AdjustedImageBase
|
|
if (pdata.section.teImage.imageBase == pdata.address + headerSize) {
|
|
pdata.section.teImage.revision = 1;
|
|
}
|
|
else if (pdata.section.teImage.adjustedImageBase == pdata.address + headerSize) {
|
|
pdata.section.teImage.revision = 2;
|
|
}
|
|
else {
|
|
msg(tr("addMemoryAddressesRecursive: image base is nether original nor adjusted, it's likely a part of backup PEI volume or DXE volume, but can also be damaged"), index);
|
|
pdata.section.teImage.revision = 0;
|
|
}
|
|
}
|
|
|
|
// Set modified parsing data
|
|
model->setParsingData(index, parsingDataToQByteArray(pdata));
|
|
}
|
|
}
|
|
|
|
// Process child items
|
|
for (int i = 0; i < model->rowCount(index); i++) {
|
|
addMemoryAddressesRecursive(index.child(i, 0), diff);
|
|
}
|
|
|
|
return ERR_SUCCESS;
|
|
}
|