mirror of
https://github.com/LongSoft/UEFITool.git
synced 2024-11-22 16:08:23 +08:00
a2484fdb5f
- CBString is used instead of QString, as PoC - removed submodule
4848 lines
204 KiB
C++
4848 lines
204 KiB
C++
/* ffsparser.cpp
|
|
|
|
Copyright (c) 2016, Nikolaj Schlej. All rights reserved.
|
|
This program and the accompanying materials
|
|
are licensed and made available under the terms and conditions of the BSD License
|
|
which accompanies this distribution. The full text of the license may be found at
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
WITHWARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
*/
|
|
|
|
#include "ffsparser.h"
|
|
|
|
#include <cmath>
|
|
#include <algorithm>
|
|
#include <inttypes.h>
|
|
|
|
// Region info structure definition
|
|
struct REGION_INFO {
|
|
UINT32 offset;
|
|
UINT32 length;
|
|
UINT8 type;
|
|
UByteArray data;
|
|
friend bool operator< (const REGION_INFO & lhs, const REGION_INFO & rhs){ return lhs.offset < rhs.offset; }
|
|
};
|
|
|
|
// Firmware image parsing functions
|
|
USTATUS FfsParser::parse(const UByteArray & buffer)
|
|
{
|
|
UModelIndex root;
|
|
USTATUS result = performFirstPass(buffer, root);
|
|
addOffsetsRecursive(root);
|
|
if (result)
|
|
return result;
|
|
|
|
if (lastVtf.isValid())
|
|
result = performSecondPass(root);
|
|
else
|
|
msg(("parse: not a single Volume Top File is found, the image may be corrupted"));
|
|
|
|
return result;
|
|
}
|
|
|
|
USTATUS FfsParser::performFirstPass(const UByteArray & buffer, UModelIndex & index)
|
|
{
|
|
// Reset capsule offset fixup value
|
|
capsuleOffsetFixup = 0;
|
|
|
|
// Check buffer size to be more than or equal to size of EFI_CAPSULE_HEADER
|
|
if ((UINT32)buffer.size() <= sizeof(EFI_CAPSULE_HEADER)) {
|
|
msg(UString("performFirstPass: image file is smaller than minimum size of 1Ch (28) bytes"));
|
|
return U_INVALID_PARAMETER;
|
|
}
|
|
|
|
UINT32 capsuleHeaderSize = 0;
|
|
// Check buffer for being normal EFI capsule header
|
|
if (buffer.startsWith(EFI_CAPSULE_GUID)
|
|
|| buffer.startsWith(INTEL_CAPSULE_GUID)
|
|
|| buffer.startsWith(LENOVO_CAPSULE_GUID)
|
|
|| buffer.startsWith(LENOVO2_CAPSULE_GUID)) {
|
|
// Get info
|
|
const EFI_CAPSULE_HEADER* capsuleHeader = (const EFI_CAPSULE_HEADER*)buffer.constData();
|
|
|
|
// Check sanity of HeaderSize and CapsuleImageSize values
|
|
if (capsuleHeader->HeaderSize == 0 || capsuleHeader->HeaderSize > (UINT32)buffer.size() || capsuleHeader->HeaderSize > capsuleHeader->CapsuleImageSize) {
|
|
msg(usprintf("performFirstPass: UEFI capsule header size of %Xh (%u) bytes is invalid",
|
|
capsuleHeader->HeaderSize,
|
|
capsuleHeader->HeaderSize));
|
|
return U_INVALID_CAPSULE;
|
|
}
|
|
if (capsuleHeader->CapsuleImageSize == 0 || capsuleHeader->CapsuleImageSize > (UINT32)buffer.size()) {
|
|
msg(usprintf("performFirstPass: UEFI capsule image size of %Xh (%u) bytes is invalid",
|
|
capsuleHeader->CapsuleImageSize,
|
|
capsuleHeader->CapsuleImageSize));
|
|
return U_INVALID_CAPSULE;
|
|
}
|
|
|
|
capsuleHeaderSize = capsuleHeader->HeaderSize;
|
|
UByteArray header = buffer.left(capsuleHeaderSize);
|
|
UByteArray body = buffer.mid(capsuleHeaderSize);
|
|
UString name("UEFI capsule");
|
|
UString info = UString("Capsule GUID: ") + guidToUString(capsuleHeader->CapsuleGuid) +
|
|
usprintf("\nFull size: %Xh (%u)\nHeader size: %Xh (%u)\nImage size: %Xh (%u)\nFlags: %08Xh",
|
|
buffer.size(), buffer.size(),
|
|
capsuleHeaderSize, capsuleHeaderSize,
|
|
capsuleHeader->CapsuleImageSize - capsuleHeaderSize, capsuleHeader->CapsuleImageSize - capsuleHeaderSize,
|
|
capsuleHeader->Flags);
|
|
|
|
// Set capsule offset fixup for correct volume allignment warnings
|
|
capsuleOffsetFixup = capsuleHeaderSize;
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Capsule, Subtypes::UefiCapsule, name, UString(), info, header, body, UByteArray(), true);
|
|
}
|
|
// Check buffer for being Toshiba capsule header
|
|
else if (buffer.startsWith(TOSHIBA_CAPSULE_GUID)) {
|
|
// Get info
|
|
const TOSHIBA_CAPSULE_HEADER* capsuleHeader = (const TOSHIBA_CAPSULE_HEADER*)buffer.constData();
|
|
|
|
// Check sanity of HeaderSize and FullSize values
|
|
if (capsuleHeader->HeaderSize == 0 || capsuleHeader->HeaderSize > (UINT32)buffer.size() || capsuleHeader->HeaderSize > capsuleHeader->FullSize) {
|
|
msg(usprintf("performFirstPass: Toshiba capsule header size of %Xh (%u) bytes is invalid",
|
|
capsuleHeader->HeaderSize, capsuleHeader->HeaderSize));
|
|
return U_INVALID_CAPSULE;
|
|
}
|
|
if (capsuleHeader->FullSize == 0 || capsuleHeader->FullSize > (UINT32)buffer.size()) {
|
|
msg(usprintf("performFirstPass: Toshiba capsule full size of %Xh (%u) bytes is invalid",
|
|
capsuleHeader->FullSize, capsuleHeader->FullSize));
|
|
return U_INVALID_CAPSULE;
|
|
}
|
|
|
|
capsuleHeaderSize = capsuleHeader->HeaderSize;
|
|
UByteArray header = buffer.left(capsuleHeaderSize);
|
|
UByteArray body = buffer.right(buffer.size() - capsuleHeaderSize);
|
|
UString name("Toshiba capsule");
|
|
UString info = UString("Capsule GUID: ") + guidToUString(capsuleHeader->CapsuleGuid) +
|
|
usprintf("\nFull size: %Xh (%u)\nHeader size: %Xh (%u)\nImage size: %Xh (%u)\nFlags: %08Xh",
|
|
buffer.size(), buffer.size(),
|
|
capsuleHeaderSize, capsuleHeaderSize,
|
|
capsuleHeader->FullSize - capsuleHeaderSize, capsuleHeader->FullSize - capsuleHeaderSize,
|
|
capsuleHeader->Flags);
|
|
|
|
// Set capsule offset fixup for correct volume allignment warnings
|
|
capsuleOffsetFixup = capsuleHeaderSize;
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Capsule, Subtypes::ToshibaCapsule, name, UString(), info, header, body, UByteArray(), true);
|
|
}
|
|
// Check buffer for being extended Aptio capsule header
|
|
else if (buffer.startsWith(APTIO_SIGNED_CAPSULE_GUID) || buffer.startsWith(APTIO_UNSIGNED_CAPSULE_GUID)) {
|
|
bool signedCapsule = buffer.startsWith(APTIO_SIGNED_CAPSULE_GUID);
|
|
|
|
if ((UINT32)buffer.size() <= sizeof(APTIO_CAPSULE_HEADER)) {
|
|
msg(UString("performFirstPass: AMI capsule image file is smaller than minimum size of 20h (32) bytes"));
|
|
return U_INVALID_PARAMETER;
|
|
}
|
|
|
|
// Get info
|
|
const APTIO_CAPSULE_HEADER* capsuleHeader = (const APTIO_CAPSULE_HEADER*)buffer.constData();
|
|
|
|
// Check sanity of RomImageOffset and CapsuleImageSize values
|
|
if (capsuleHeader->RomImageOffset == 0 || capsuleHeader->RomImageOffset > (UINT32)buffer.size() || capsuleHeader->RomImageOffset > capsuleHeader->CapsuleHeader.CapsuleImageSize) {
|
|
msg(usprintf("performFirstPass: AMI capsule image offset of %Xh (%u) bytes is invalid",
|
|
capsuleHeader->RomImageOffset, capsuleHeader->RomImageOffset));
|
|
return U_INVALID_CAPSULE;
|
|
}
|
|
if (capsuleHeader->CapsuleHeader.CapsuleImageSize == 0 || capsuleHeader->CapsuleHeader.CapsuleImageSize > (UINT32)buffer.size()) {
|
|
msg(usprintf("performFirstPass: AMI capsule image size of %Xh (%u) bytes is invalid",
|
|
capsuleHeader->CapsuleHeader.CapsuleImageSize,
|
|
capsuleHeader->CapsuleHeader.CapsuleImageSize));
|
|
return U_INVALID_CAPSULE;
|
|
}
|
|
|
|
capsuleHeaderSize = capsuleHeader->RomImageOffset;
|
|
UByteArray header = buffer.left(capsuleHeaderSize);
|
|
UByteArray body = buffer.mid(capsuleHeaderSize);
|
|
UString name("AMI Aptio capsule");
|
|
UString info = UString("Capsule GUID: ") + guidToUString(capsuleHeader->CapsuleHeader.CapsuleGuid) +
|
|
usprintf("\nFull size: %Xh (%u)\nHeader size: %Xh (%u)\nImage size: %Xh (%u)\nFlags: %08Xh",
|
|
buffer.size(), buffer.size(),
|
|
capsuleHeaderSize, capsuleHeaderSize,
|
|
capsuleHeader->CapsuleHeader.CapsuleImageSize - capsuleHeaderSize, capsuleHeader->CapsuleHeader.CapsuleImageSize - capsuleHeaderSize,
|
|
capsuleHeader->CapsuleHeader.Flags);
|
|
|
|
// Set capsule offset fixup for correct volume allignment warnings
|
|
capsuleOffsetFixup = capsuleHeaderSize;
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Capsule, signedCapsule ? Subtypes::AptioSignedCapsule : Subtypes::AptioUnsignedCapsule, name, UString(), info, header, body, UByteArray(), true);
|
|
|
|
// Show message about possible Aptio signature break
|
|
if (signedCapsule) {
|
|
msg(UString("performFirstPass: Aptio capsule signature may become invalid after image modifications"), index);
|
|
}
|
|
}
|
|
|
|
// Skip capsule header to have flash chip image
|
|
UByteArray flashImage = buffer.mid(capsuleHeaderSize);
|
|
|
|
// Check for Intel flash descriptor presence
|
|
const FLASH_DESCRIPTOR_HEADER* descriptorHeader = (const FLASH_DESCRIPTOR_HEADER*)flashImage.constData();
|
|
|
|
// Check descriptor signature
|
|
USTATUS result;
|
|
if (descriptorHeader->Signature == FLASH_DESCRIPTOR_SIGNATURE) {
|
|
// Parse as Intel image
|
|
UModelIndex imageIndex;
|
|
result = parseIntelImage(flashImage, capsuleHeaderSize, index, imageIndex);
|
|
if (result != U_INVALID_FLASH_DESCRIPTOR) {
|
|
if (!index.isValid())
|
|
index = imageIndex;
|
|
return result;
|
|
}
|
|
}
|
|
|
|
// Get info
|
|
UString name("UEFI image");
|
|
UString info = usprintf("Full size: %Xh (%u)", flashImage.size(), flashImage.size());
|
|
|
|
// Construct parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(index);
|
|
pdata.offset = capsuleHeaderSize;
|
|
|
|
// Add tree item
|
|
UModelIndex biosIndex = model->addItem(Types::Image, Subtypes::UefiImage, name, UString(), info, UByteArray(), flashImage, UByteArray(), true, parsingDataToUByteArray(pdata), index);
|
|
|
|
// Parse the image
|
|
result = parseRawArea(biosIndex);
|
|
if (!index.isValid())
|
|
index = biosIndex;
|
|
return result;
|
|
}
|
|
|
|
USTATUS FfsParser::parseIntelImage(const UByteArray & intelImage, const UINT32 parentOffset, const UModelIndex & parent, UModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (intelImage.isEmpty())
|
|
return EFI_INVALID_PARAMETER;
|
|
|
|
// Get parent's parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(parent);
|
|
|
|
// Store the beginning of descriptor as descriptor base address
|
|
const UINT8* descriptor = (const UINT8*)intelImage.constData();
|
|
|
|
// Check for buffer size to be greater or equal to descriptor region size
|
|
if (intelImage.size() < FLASH_DESCRIPTOR_SIZE) {
|
|
msg(usprintf("parseIntelImage: input file is smaller than minimum descriptor size of %Xh (%u) bytes", FLASH_DESCRIPTOR_SIZE, FLASH_DESCRIPTOR_SIZE));
|
|
return U_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
|
|
// Parse descriptor map
|
|
const FLASH_DESCRIPTOR_MAP* descriptorMap = (const FLASH_DESCRIPTOR_MAP*)(descriptor + sizeof(FLASH_DESCRIPTOR_HEADER));
|
|
const FLASH_DESCRIPTOR_UPPER_MAP* upperMap = (const FLASH_DESCRIPTOR_UPPER_MAP*)(descriptor + FLASH_DESCRIPTOR_UPPER_MAP_BASE);
|
|
|
|
// Check sanity of base values
|
|
if (descriptorMap->MasterBase > FLASH_DESCRIPTOR_MAX_BASE
|
|
|| descriptorMap->MasterBase == descriptorMap->RegionBase
|
|
|| descriptorMap->MasterBase == descriptorMap->ComponentBase) {
|
|
msg(usprintf("parseIntelImage: invalid descriptor master base %02Xh", descriptorMap->MasterBase));
|
|
return U_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (descriptorMap->RegionBase > FLASH_DESCRIPTOR_MAX_BASE
|
|
|| descriptorMap->RegionBase == descriptorMap->ComponentBase) {
|
|
msg(usprintf("parseIntelImage: invalid descriptor region base %02Xh", descriptorMap->RegionBase));
|
|
return U_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
if (descriptorMap->ComponentBase > FLASH_DESCRIPTOR_MAX_BASE) {
|
|
msg(usprintf("parseIntelImage: invalid descriptor component base %02Xh", descriptorMap->ComponentBase));
|
|
return U_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
|
|
const FLASH_DESCRIPTOR_REGION_SECTION* regionSection = (const FLASH_DESCRIPTOR_REGION_SECTION*)calculateAddress8(descriptor, descriptorMap->RegionBase);
|
|
const FLASH_DESCRIPTOR_COMPONENT_SECTION* componentSection = (const FLASH_DESCRIPTOR_COMPONENT_SECTION*)calculateAddress8(descriptor, descriptorMap->ComponentBase);
|
|
|
|
// Check descriptor version by getting hardcoded value of FlashParameters.ReadClockFrequency
|
|
UINT8 descriptorVersion = 0;
|
|
if (componentSection->FlashParameters.ReadClockFrequency == FLASH_FREQUENCY_20MHZ) // Old descriptor
|
|
descriptorVersion = 1;
|
|
else if (componentSection->FlashParameters.ReadClockFrequency == FLASH_FREQUENCY_17MHZ) // Skylake+ descriptor
|
|
descriptorVersion = 2;
|
|
else {
|
|
msg(usprintf("parseIntelImage: unknown descriptor version with ReadClockFrequency %02Xh", componentSection->FlashParameters.ReadClockFrequency));
|
|
return U_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
|
|
// Regions
|
|
std::vector<REGION_INFO> regions;
|
|
|
|
// ME region
|
|
REGION_INFO me;
|
|
me.type = Subtypes::MeRegion;
|
|
me.offset = 0;
|
|
me.length = 0;
|
|
if (regionSection->MeLimit) {
|
|
me.offset = calculateRegionOffset(regionSection->MeBase);
|
|
me.length = calculateRegionSize(regionSection->MeBase, regionSection->MeLimit);
|
|
me.data = intelImage.mid(me.offset, me.length);
|
|
regions.push_back(me);
|
|
}
|
|
|
|
// BIOS region
|
|
REGION_INFO bios;
|
|
bios.type = Subtypes::BiosRegion;
|
|
bios.offset = 0;
|
|
bios.length = 0;
|
|
if (regionSection->BiosLimit) {
|
|
bios.offset = calculateRegionOffset(regionSection->BiosBase);
|
|
bios.length = calculateRegionSize(regionSection->BiosBase, regionSection->BiosLimit);
|
|
|
|
// Check for Gigabyte specific descriptor map
|
|
if (bios.length == (UINT32)intelImage.size()) {
|
|
if (!me.offset) {
|
|
msg(("parseIntelImage: can't determine BIOS region start from Gigabyte-specific descriptor"));
|
|
return U_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
// Use ME region end as BIOS region offset
|
|
bios.offset = me.offset + me.length;
|
|
bios.length = (UINT32)intelImage.size() - bios.offset;
|
|
bios.data = intelImage.mid(bios.offset, bios.length);
|
|
}
|
|
// Normal descriptor map
|
|
else {
|
|
bios.data = intelImage.mid(bios.offset, bios.length);
|
|
}
|
|
|
|
regions.push_back(bios);
|
|
}
|
|
else {
|
|
msg(("parseIntelImage: descriptor parsing failed, BIOS region not found in descriptor"));
|
|
return U_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
|
|
// GbE region
|
|
REGION_INFO gbe;
|
|
gbe.type = Subtypes::GbeRegion;
|
|
gbe.offset = 0;
|
|
gbe.length = 0;
|
|
if (regionSection->GbeLimit) {
|
|
gbe.offset = calculateRegionOffset(regionSection->GbeBase);
|
|
gbe.length = calculateRegionSize(regionSection->GbeBase, regionSection->GbeLimit);
|
|
gbe.data = intelImage.mid(gbe.offset, gbe.length);
|
|
regions.push_back(gbe);
|
|
}
|
|
|
|
// PDR region
|
|
REGION_INFO pdr;
|
|
pdr.type = Subtypes::PdrRegion;
|
|
pdr.offset = 0;
|
|
pdr.length = 0;
|
|
if (regionSection->PdrLimit) {
|
|
pdr.offset = calculateRegionOffset(regionSection->PdrBase);
|
|
pdr.length = calculateRegionSize(regionSection->PdrBase, regionSection->PdrLimit);
|
|
pdr.data = intelImage.mid(pdr.offset, pdr.length);
|
|
regions.push_back(pdr);
|
|
}
|
|
|
|
// Reserved1 region
|
|
REGION_INFO reserved1;
|
|
reserved1.type = Subtypes::Reserved1Region;
|
|
reserved1.offset = 0;
|
|
reserved1.length = 0;
|
|
if (regionSection->Reserved1Limit && regionSection->Reserved1Base != 0xFFFF && regionSection->Reserved1Limit != 0xFFFF) {
|
|
reserved1.offset = calculateRegionOffset(regionSection->Reserved1Base);
|
|
reserved1.length = calculateRegionSize(regionSection->Reserved1Base, regionSection->Reserved1Limit);
|
|
reserved1.data = intelImage.mid(reserved1.offset, reserved1.length);
|
|
regions.push_back(reserved1);
|
|
}
|
|
|
|
// Reserved2 region
|
|
REGION_INFO reserved2;
|
|
reserved2.type = Subtypes::Reserved2Region;
|
|
reserved2.offset = 0;
|
|
reserved2.length = 0;
|
|
if (regionSection->Reserved2Limit && regionSection->Reserved2Base != 0xFFFF && regionSection->Reserved2Limit != 0xFFFF) {
|
|
reserved2.offset = calculateRegionOffset(regionSection->Reserved2Base);
|
|
reserved2.length = calculateRegionSize(regionSection->Reserved2Base, regionSection->Reserved2Limit);
|
|
reserved2.data = intelImage.mid(reserved2.offset, reserved2.length);
|
|
regions.push_back(reserved2);
|
|
}
|
|
|
|
// Reserved3 region
|
|
REGION_INFO reserved3;
|
|
reserved3.type = Subtypes::Reserved3Region;
|
|
reserved3.offset = 0;
|
|
reserved3.length = 0;
|
|
|
|
// EC region
|
|
REGION_INFO ec;
|
|
ec.type = Subtypes::EcRegion;
|
|
ec.offset = 0;
|
|
ec.length = 0;
|
|
|
|
// Reserved4 region
|
|
REGION_INFO reserved4;
|
|
reserved3.type = Subtypes::Reserved4Region;
|
|
reserved4.offset = 0;
|
|
reserved4.length = 0;
|
|
|
|
// Check for EC and reserved region 4 only for v2 descriptor
|
|
if (descriptorVersion == 2) {
|
|
if (regionSection->Reserved3Limit) {
|
|
reserved3.offset = calculateRegionOffset(regionSection->Reserved3Base);
|
|
reserved3.length = calculateRegionSize(regionSection->Reserved3Base, regionSection->Reserved3Limit);
|
|
reserved3.data = intelImage.mid(reserved3.offset, reserved3.length);
|
|
regions.push_back(reserved3);
|
|
}
|
|
|
|
if (regionSection->EcLimit) {
|
|
ec.offset = calculateRegionOffset(regionSection->EcBase);
|
|
ec.length = calculateRegionSize(regionSection->EcBase, regionSection->EcLimit);
|
|
ec.data = intelImage.mid(ec.offset, ec.length);
|
|
regions.push_back(ec);
|
|
}
|
|
|
|
if (regionSection->Reserved4Limit) {
|
|
reserved4.offset = calculateRegionOffset(regionSection->Reserved4Base);
|
|
reserved4.length = calculateRegionSize(regionSection->Reserved4Base, regionSection->Reserved4Limit);
|
|
reserved4.data = intelImage.mid(reserved4.offset, reserved4.length);
|
|
regions.push_back(reserved4);
|
|
}
|
|
}
|
|
|
|
// Sort regions in ascending order
|
|
std::sort(regions.begin(), regions.end());
|
|
|
|
// Check for intersections and paddings between regions
|
|
REGION_INFO region;
|
|
// Check intersection with the descriptor
|
|
if (regions.front().offset < FLASH_DESCRIPTOR_SIZE) {
|
|
msg(UString("parseIntelImage: ") + itemSubtypeToUString(Types::Region, regions.front().type)
|
|
+ UString(" region has intersection with flash descriptor"),
|
|
index);
|
|
return U_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
// Check for padding between descriptor and the first region
|
|
else if (regions.front().offset > FLASH_DESCRIPTOR_SIZE) {
|
|
region.offset = FLASH_DESCRIPTOR_SIZE;
|
|
region.length = regions.front().offset - FLASH_DESCRIPTOR_SIZE;
|
|
region.data = intelImage.mid(region.offset, region.length);
|
|
region.type = getPaddingType(region.data);
|
|
regions.insert(regions.begin(), region);
|
|
}
|
|
// Check for intersections/paddings between regions
|
|
for (size_t i = 1; i < regions.size(); i++) {
|
|
UINT32 previousRegionEnd = regions[i-1].offset + regions[i-1].length;
|
|
// Check that current region is fully present in the image
|
|
if (regions[i].offset + regions[i].length > (UINT32)intelImage.size()) {
|
|
msg(UString("parseIntelImage: ") + itemSubtypeToUString(Types::Region, regions[i].type)
|
|
+ UString(" region is located outside of opened image, if your system uses dual-chip storage, please append another part to the opened image"),
|
|
index);
|
|
return U_TRUNCATED_IMAGE;
|
|
}
|
|
|
|
// Check for intersection with previous region
|
|
if (regions[i].offset < previousRegionEnd) {
|
|
msg(UString("parseIntelImage: ") + itemSubtypeToUString(Types::Region, regions[i].type)
|
|
+ UString(" region has intersection with ") + itemSubtypeToUString(Types::Region, regions[i - 1].type) +UString(" region"),
|
|
index);
|
|
return U_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
// Check for padding between current and previous regions
|
|
else if (regions[i].offset > previousRegionEnd) {
|
|
region.offset = previousRegionEnd;
|
|
region.length = regions[i].offset - previousRegionEnd;
|
|
region.data = intelImage.mid(region.offset, region.length);
|
|
region.type = getPaddingType(region.data);
|
|
std::vector<REGION_INFO>::iterator iter = regions.begin();
|
|
std::advance(iter, i - 1);
|
|
regions.insert(iter, region);
|
|
}
|
|
}
|
|
// Check for padding after the last region
|
|
if (regions.back().offset + regions.back().length < (UINT32)intelImage.size()) {
|
|
region.offset = regions.back().offset + regions.back().length;
|
|
region.length = intelImage.size() - region.offset;
|
|
region.data = intelImage.mid(region.offset, region.length);
|
|
region.type = getPaddingType(region.data);
|
|
regions.push_back(region);
|
|
}
|
|
|
|
// Region map is consistent
|
|
|
|
// Intel image
|
|
UString name("Intel image");
|
|
UString info = usprintf("Full size: %Xh (%u)\nFlash chips: %u\nRegions: %u\nMasters: %u\nPCH straps: %u\nPROC straps: %u",
|
|
intelImage.size(), intelImage.size(),
|
|
descriptorMap->NumberOfFlashChips + 1, //
|
|
descriptorMap->NumberOfRegions + 1, // Zero-based numbers in storage
|
|
descriptorMap->NumberOfMasters + 1, //
|
|
descriptorMap->NumberOfPchStraps,
|
|
descriptorMap->NumberOfProcStraps);
|
|
|
|
// Construct parsing data
|
|
pdata.offset = parentOffset;
|
|
|
|
// Add Intel image tree item
|
|
index = model->addItem(Types::Image, Subtypes::IntelImage, name, UString(), info, UByteArray(), intelImage, UByteArray(), true, parsingDataToUByteArray(pdata), parent);
|
|
|
|
// Descriptor
|
|
// Get descriptor info
|
|
UByteArray body = intelImage.left(FLASH_DESCRIPTOR_SIZE);
|
|
name = UString("Descriptor region");
|
|
info = usprintf("Full size: %Xh (%u)", FLASH_DESCRIPTOR_SIZE, FLASH_DESCRIPTOR_SIZE);
|
|
|
|
// Add offsets of actual regions
|
|
for (size_t i = 0; i < regions.size(); i++) {
|
|
if (regions[i].type != Subtypes::ZeroPadding && regions[i].type != Subtypes::OnePadding && regions[i].type != Subtypes::DataPadding)
|
|
info += UString("\n") + itemSubtypeToUString(Types::Region, regions[i].type)
|
|
+ usprintf(" region offset: %Xh", regions[i].offset + parentOffset);
|
|
}
|
|
|
|
// Region access settings
|
|
if (descriptorVersion == 1) {
|
|
const FLASH_DESCRIPTOR_MASTER_SECTION* masterSection = (const FLASH_DESCRIPTOR_MASTER_SECTION*)calculateAddress8(descriptor, descriptorMap->MasterBase);
|
|
info += UString("\nRegion access settings:");
|
|
info += usprintf("\nBIOS: %02Xh %02Xh ME: %02Xh %02Xh\nGbE: %02Xh %02Xh",
|
|
masterSection->BiosRead,
|
|
masterSection->BiosWrite,
|
|
masterSection->MeRead,
|
|
masterSection->MeWrite,
|
|
masterSection->GbeRead,
|
|
masterSection->GbeWrite);
|
|
|
|
// BIOS access table
|
|
info += UString("\nBIOS access table:")
|
|
+ UString("\n Read Write")
|
|
+ usprintf("\nDesc %s %s", masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_DESC ? "Yes " : "No ",
|
|
masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_DESC ? "Yes " : "No ");
|
|
info += UString("\nBIOS Yes Yes")
|
|
+ usprintf("\nME %s %s", masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_ME ? "Yes " : "No ",
|
|
masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_ME ? "Yes " : "No ");
|
|
info += usprintf("\nGbE %s %s", masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_GBE ? "Yes " : "No ",
|
|
masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_GBE ? "Yes " : "No ");
|
|
info += usprintf("\nPDR %s %s", masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_PDR ? "Yes " : "No ",
|
|
masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_PDR ? "Yes " : "No ");
|
|
}
|
|
else if (descriptorVersion == 2) {
|
|
const FLASH_DESCRIPTOR_MASTER_SECTION_V2* masterSection = (const FLASH_DESCRIPTOR_MASTER_SECTION_V2*)calculateAddress8(descriptor, descriptorMap->MasterBase);
|
|
info += UString("\nRegion access settings:");
|
|
info += usprintf("\nBIOS: %03Xh %03Xh ME: %03Xh %03Xh\nGbE: %03Xh %03Xh EC: %03Xh %03Xh",
|
|
masterSection->BiosRead,
|
|
masterSection->BiosWrite,
|
|
masterSection->MeRead,
|
|
masterSection->MeWrite,
|
|
masterSection->GbeRead,
|
|
masterSection->GbeWrite,
|
|
masterSection->EcRead,
|
|
masterSection->EcWrite);
|
|
|
|
// BIOS access table
|
|
info += UString("\nBIOS access table:")
|
|
+ UString("\n Read Write")
|
|
+ usprintf("\nDesc %s %s",
|
|
masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_DESC ? "Yes " : "No ",
|
|
masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_DESC ? "Yes " : "No ");
|
|
info += UString("\nBIOS Yes Yes")
|
|
+ usprintf("\nME %s %s",
|
|
masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_ME ? "Yes " : "No ",
|
|
masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_ME ? "Yes " : "No ");
|
|
info += usprintf("\nGbE %s %s",
|
|
masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_GBE ? "Yes " : "No ",
|
|
masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_GBE ? "Yes " : "No ");
|
|
info += usprintf("\nPDR %s %s",
|
|
masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_PDR ? "Yes " : "No ",
|
|
masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_PDR ? "Yes " : "No ");
|
|
info += usprintf("\nEC %s %s",
|
|
masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_EC ? "Yes " : "No ",
|
|
masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_EC ? "Yes " : "No ");
|
|
}
|
|
|
|
// VSCC table
|
|
const VSCC_TABLE_ENTRY* vsccTableEntry = (const VSCC_TABLE_ENTRY*)(descriptor + ((UINT16)upperMap->VsccTableBase << 4));
|
|
info += UString("\nFlash chips in VSCC table:");
|
|
UINT8 vsscTableSize = upperMap->VsccTableSize * sizeof(UINT32) / sizeof(VSCC_TABLE_ENTRY);
|
|
for (int i = 0; i < vsscTableSize; i++) {
|
|
info += usprintf("\n%02X%02X%02Xh",
|
|
vsccTableEntry->VendorId, vsccTableEntry->DeviceId0, vsccTableEntry->DeviceId1);
|
|
vsccTableEntry++;
|
|
}
|
|
|
|
// Add descriptor tree item
|
|
UModelIndex regionIndex = model->addItem(Types::Region, Subtypes::DescriptorRegion, name, UString(), info, UByteArray(), body, UByteArray(), true, parsingDataToUByteArray(pdata), index);
|
|
|
|
// Parse regions
|
|
UINT8 result = U_SUCCESS;
|
|
UINT8 parseResult = U_SUCCESS;
|
|
for (size_t i = 0; i < regions.size(); i++) {
|
|
region = regions[i];
|
|
switch (region.type) {
|
|
case Subtypes::BiosRegion:
|
|
result = parseBiosRegion(region.data, region.offset, index, regionIndex);
|
|
break;
|
|
case Subtypes::MeRegion:
|
|
result = parseMeRegion(region.data, region.offset, index, regionIndex);
|
|
break;
|
|
case Subtypes::GbeRegion:
|
|
result = parseGbeRegion(region.data, region.offset, index, regionIndex);
|
|
break;
|
|
case Subtypes::PdrRegion:
|
|
result = parsePdrRegion(region.data, region.offset, index, regionIndex);
|
|
break;
|
|
case Subtypes::Reserved1Region:
|
|
case Subtypes::Reserved2Region:
|
|
case Subtypes::Reserved3Region:
|
|
case Subtypes::EcRegion:
|
|
case Subtypes::Reserved4Region:
|
|
result = parseGeneralRegion(region.type, region.data, region.offset, index, regionIndex);
|
|
break;
|
|
case Subtypes::ZeroPadding:
|
|
case Subtypes::OnePadding:
|
|
case Subtypes::DataPadding: {
|
|
// Add padding between regions
|
|
UByteArray padding = intelImage.mid(region.offset, region.length);
|
|
|
|
// Get parent's parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(index);
|
|
|
|
// Get info
|
|
name = UString("Padding");
|
|
info = usprintf("Full size: %Xh (%u)",
|
|
padding.size(), padding.size());
|
|
|
|
// Construct parsing data
|
|
pdata.offset = parentOffset + region.offset;
|
|
|
|
// Add tree item
|
|
regionIndex = model->addItem(Types::Padding, getPaddingType(padding), name, UString(), info, UByteArray(), padding, UByteArray(), true, parsingDataToUByteArray(pdata), index);
|
|
result = U_SUCCESS;
|
|
} break;
|
|
default:
|
|
msg(("parseIntelImage: region of unknown type found"), index);
|
|
result = U_INVALID_FLASH_DESCRIPTOR;
|
|
}
|
|
// Store the first failed result as a final result
|
|
if (!parseResult && result)
|
|
parseResult = result;
|
|
}
|
|
|
|
return parseResult;
|
|
}
|
|
|
|
USTATUS FfsParser::parseGbeRegion(const UByteArray & gbe, const UINT32 parentOffset, const UModelIndex & parent, UModelIndex & index)
|
|
{
|
|
// Check sanity
|
|
if (gbe.isEmpty())
|
|
return U_EMPTY_REGION;
|
|
if ((UINT32)gbe.size() < GBE_VERSION_OFFSET + sizeof(GBE_VERSION))
|
|
return U_INVALID_REGION;
|
|
|
|
// Get parent's parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(parent);
|
|
|
|
// Get info
|
|
UString name("GbE region");
|
|
const GBE_MAC_ADDRESS* mac = (const GBE_MAC_ADDRESS*)gbe.constData();
|
|
const GBE_VERSION* version = (const GBE_VERSION*)(gbe.constData() + GBE_VERSION_OFFSET);
|
|
UString info = usprintf("Full size: %Xh (%u)\nMAC: %02X:%02X:%02X:%02X:%02X:%02X\nVersion: %u.%u",
|
|
gbe.size(), gbe.size(),
|
|
mac->vendor[0], mac->vendor[1], mac->vendor[2],
|
|
mac->device[0], mac->device[1], mac->device[2],
|
|
version->major,
|
|
version->minor);
|
|
|
|
// Construct parsing data
|
|
pdata.offset += parentOffset;
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Region, Subtypes::GbeRegion, name, UString(), info, UByteArray(), gbe, UByteArray(), true, parsingDataToUByteArray(pdata), parent);
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseMeRegion(const UByteArray & me, const UINT32 parentOffset, const UModelIndex & parent, UModelIndex & index)
|
|
{
|
|
// Check sanity
|
|
if (me.isEmpty())
|
|
return U_EMPTY_REGION;
|
|
|
|
// Get parent's parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(parent);
|
|
|
|
// Get info
|
|
UString name("ME region");
|
|
UString info = usprintf("Full size: %Xh (%u)", me.size(), me.size());
|
|
|
|
// Parse region
|
|
bool versionFound = true;
|
|
bool emptyRegion = false;
|
|
// Check for empty region
|
|
if (me.count() == me.count('\xFF') || me.count() == me.count('\x00')) {
|
|
// Further parsing not needed
|
|
emptyRegion = true;
|
|
info += ("\nState: empty");
|
|
}
|
|
else {
|
|
// Search for new signature
|
|
INT32 versionOffset = me.indexOf(ME_VERSION_SIGNATURE2);
|
|
if (versionOffset < 0){ // New signature not found
|
|
// Search for old signature
|
|
versionOffset = me.indexOf(ME_VERSION_SIGNATURE);
|
|
if (versionOffset < 0){
|
|
info += ("\nVersion: unknown");
|
|
versionFound = false;
|
|
}
|
|
}
|
|
|
|
// Check sanity
|
|
if ((UINT32)me.size() < (UINT32)versionOffset + sizeof(ME_VERSION))
|
|
return U_INVALID_REGION;
|
|
|
|
// Add version information
|
|
if (versionFound) {
|
|
const ME_VERSION* version = (const ME_VERSION*)(me.constData() + versionOffset);
|
|
info += usprintf("\nVersion: %u.%u.%u.%u",
|
|
version->major,
|
|
version->minor,
|
|
version->bugfix,
|
|
version->build);
|
|
}
|
|
}
|
|
|
|
// Construct parsing data
|
|
pdata.offset += parentOffset;
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Region, Subtypes::MeRegion, name, UString(), info, UByteArray(), me, UByteArray(), true, parsingDataToUByteArray(pdata), parent);
|
|
|
|
// Show messages
|
|
if (emptyRegion) {
|
|
msg(UString("parseMeRegion: ME region is empty"), index);
|
|
}
|
|
else if (!versionFound) {
|
|
msg(UString("parseMeRegion: ME version is unknown, it can be damaged"), index);
|
|
}
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parsePdrRegion(const UByteArray & pdr, const UINT32 parentOffset, const UModelIndex & parent, UModelIndex & index)
|
|
{
|
|
// Check sanity
|
|
if (pdr.isEmpty())
|
|
return U_EMPTY_REGION;
|
|
|
|
// Get parent's parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(parent);
|
|
|
|
// Get info
|
|
UString name("PDR region");
|
|
UString info = usprintf("Full size: %Xh (%u)", pdr.size(), pdr.size());
|
|
|
|
// Construct parsing data
|
|
pdata.offset += parentOffset;
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Region, Subtypes::PdrRegion, name, UString(), info, UByteArray(), pdr, UByteArray(), true, parsingDataToUByteArray(pdata), parent);
|
|
|
|
// Parse PDR region as BIOS space
|
|
UINT8 result = parseRawArea(index);
|
|
if (result && result != U_VOLUMES_NOT_FOUND && result != U_INVALID_VOLUME)
|
|
return result;
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseGeneralRegion(const UINT8 subtype, const UByteArray & region, const UINT32 parentOffset, const UModelIndex & parent, UModelIndex & index)
|
|
{
|
|
// Check sanity
|
|
if (region.isEmpty())
|
|
return U_EMPTY_REGION;
|
|
|
|
// Get parent's parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(parent);
|
|
|
|
// Get info
|
|
UString name = itemSubtypeToUString(Types::Region, subtype) + UString(" region");
|
|
UString info = usprintf("Full size: %Xh (%u)", region.size(), region.size());
|
|
|
|
// Construct parsing data
|
|
pdata.offset += parentOffset;
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Region, subtype, name, UString(), info, UByteArray(), region, UByteArray(), true, parsingDataToUByteArray(pdata), parent);
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseBiosRegion(const UByteArray & bios, const UINT32 parentOffset, const UModelIndex & parent, UModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (bios.isEmpty())
|
|
return U_EMPTY_REGION;
|
|
|
|
// Get parent's parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(parent);
|
|
|
|
// Get info
|
|
UString name("BIOS region");
|
|
UString info = usprintf("Full size: %Xh (%u)", bios.size(), bios.size());
|
|
|
|
// Construct parsing data
|
|
pdata.offset += parentOffset;
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Region, Subtypes::BiosRegion, name, UString(), info, UByteArray(), bios, UByteArray(), true, parsingDataToUByteArray(pdata), parent);
|
|
|
|
return parseRawArea(index);
|
|
}
|
|
|
|
UINT8 FfsParser::getPaddingType(const UByteArray & padding)
|
|
{
|
|
if (padding.count('\x00') == padding.count())
|
|
return Subtypes::ZeroPadding;
|
|
if (padding.count('\xFF') == padding.count())
|
|
return Subtypes::OnePadding;
|
|
return Subtypes::DataPadding;
|
|
}
|
|
|
|
USTATUS FfsParser::parseRawArea(const UModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return U_INVALID_PARAMETER;
|
|
|
|
// Get parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(index);
|
|
UINT32 headerSize = model->header(index).size();
|
|
UINT32 offset = pdata.offset + headerSize;
|
|
|
|
// Get item data
|
|
UByteArray data = model->body(index);
|
|
|
|
// Search for first volume
|
|
USTATUS result;
|
|
UINT32 prevVolumeOffset;
|
|
|
|
result = findNextVolume(index, data, offset, 0, prevVolumeOffset);
|
|
if (result)
|
|
return result;
|
|
|
|
// First volume is not at the beginning of RAW area
|
|
UString name;
|
|
UString info;
|
|
if (prevVolumeOffset > 0) {
|
|
// Get info
|
|
UByteArray padding = data.left(prevVolumeOffset);
|
|
name = UString("Padding");
|
|
info = usprintf("Full size: %Xh (%u)", padding.size(), padding.size());
|
|
|
|
// Construct parsing data
|
|
pdata.offset = offset;
|
|
|
|
// Add tree item
|
|
model->addItem(Types::Padding, getPaddingType(padding), name, UString(), info, UByteArray(), padding, UByteArray(), true, parsingDataToUByteArray(pdata), index);
|
|
}
|
|
|
|
// Search for and parse all volumes
|
|
UINT32 volumeOffset = prevVolumeOffset;
|
|
UINT32 prevVolumeSize = 0;
|
|
|
|
while (!result)
|
|
{
|
|
// Padding between volumes
|
|
if (volumeOffset > prevVolumeOffset + prevVolumeSize) {
|
|
UINT32 paddingOffset = prevVolumeOffset + prevVolumeSize;
|
|
UINT32 paddingSize = volumeOffset - paddingOffset;
|
|
UByteArray padding = data.mid(paddingOffset, paddingSize);
|
|
|
|
// Get info
|
|
name = UString("Padding");
|
|
info = usprintf("Full size: %Xh (%u)", padding.size(), padding.size());
|
|
|
|
// Construct parsing data
|
|
pdata.offset = offset + paddingOffset;
|
|
|
|
// Add tree item
|
|
model->addItem(Types::Padding, getPaddingType(padding), name, UString(), info, UByteArray(), padding, UByteArray(), true, parsingDataToUByteArray(pdata), index);
|
|
}
|
|
|
|
// Get volume size
|
|
UINT32 volumeSize = 0;
|
|
UINT32 bmVolumeSize = 0;
|
|
result = getVolumeSize(data, volumeOffset, volumeSize, bmVolumeSize);
|
|
if (result) {
|
|
msg(UString("parseRawArea: getVolumeSize failed with error ") + errorCodeToUString(result), index);
|
|
return result;
|
|
}
|
|
|
|
// Check that volume is fully present in input
|
|
if (volumeSize > (UINT32)data.size() || volumeOffset + volumeSize > (UINT32)data.size()) {
|
|
msg(UString("parseRawArea: one of volumes inside overlaps the end of data"), index);
|
|
return U_INVALID_VOLUME;
|
|
}
|
|
|
|
UByteArray volume = data.mid(volumeOffset, volumeSize);
|
|
if (volumeSize > (UINT32)volume.size()) {
|
|
// Mark the rest as padding and finish the parsing
|
|
UByteArray padding = data.right(volume.size());
|
|
|
|
// Get info
|
|
name = UString("Padding");
|
|
info = usprintf("Full size: %Xh (%u)", padding.size(), padding.size());
|
|
|
|
// Construct parsing data
|
|
pdata.offset = offset + volumeOffset;
|
|
|
|
// Add tree item
|
|
UModelIndex paddingIndex = model->addItem(Types::Padding, getPaddingType(padding), name, UString(), info, UByteArray(), padding, UByteArray(), true, parsingDataToUByteArray(pdata), index);
|
|
msg(UString("parseRawArea: one of volumes inside overlaps the end of data"), paddingIndex);
|
|
|
|
// Update variables
|
|
prevVolumeOffset = volumeOffset;
|
|
prevVolumeSize = padding.size();
|
|
break;
|
|
}
|
|
|
|
// Parse current volume's header
|
|
UModelIndex volumeIndex;
|
|
result = parseVolumeHeader(volume, headerSize + volumeOffset, index, volumeIndex);
|
|
if (result)
|
|
msg(UString("parseRawArea: volume header parsing failed with error ") + errorCodeToUString(result), index);
|
|
else {
|
|
// Show messages
|
|
if (volumeSize != bmVolumeSize)
|
|
msg(usprintf("parseRawArea: volume size stored in header %Xh (%u) differs from calculated using block map %Xh (%u)",
|
|
volumeSize, volumeSize,
|
|
bmVolumeSize, bmVolumeSize),
|
|
volumeIndex);
|
|
}
|
|
|
|
// Go to next volume
|
|
prevVolumeOffset = volumeOffset;
|
|
prevVolumeSize = volumeSize;
|
|
result = findNextVolume(index, data, offset, volumeOffset + prevVolumeSize, volumeOffset);
|
|
}
|
|
|
|
// Padding at the end of RAW area
|
|
volumeOffset = prevVolumeOffset + prevVolumeSize;
|
|
if ((UINT32)data.size() > volumeOffset) {
|
|
UByteArray padding = data.mid(volumeOffset);
|
|
|
|
// Get info
|
|
name = UString("Padding");
|
|
info = usprintf("Full size: %Xh (%u)", padding.size(), padding.size());
|
|
|
|
// Construct parsing data
|
|
pdata.offset = offset + headerSize + volumeOffset;
|
|
|
|
// Add tree item
|
|
model->addItem(Types::Padding, getPaddingType(padding), name, UString(), info, UByteArray(), padding, UByteArray(), true, parsingDataToUByteArray(pdata), index);
|
|
}
|
|
|
|
// Parse bodies
|
|
for (int i = 0; i < model->rowCount(index); i++) {
|
|
UModelIndex current = index.child(i, 0);
|
|
switch (model->type(current)) {
|
|
case Types::Volume:
|
|
parseVolumeBody(current);
|
|
break;
|
|
case Types::Padding:
|
|
// No parsing required
|
|
break;
|
|
default:
|
|
return U_UNKNOWN_ITEM_TYPE;
|
|
}
|
|
}
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseVolumeHeader(const UByteArray & volume, const UINT32 parentOffset, const UModelIndex & parent, UModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (volume.isEmpty())
|
|
return U_INVALID_PARAMETER;
|
|
|
|
// Get parent's parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(parent);
|
|
|
|
// Check that there is space for the volume header
|
|
if ((UINT32)volume.size() < sizeof(EFI_FIRMWARE_VOLUME_HEADER)) {
|
|
msg(usprintf("parseVolumeHeader: input volume size %Xh (%u) is smaller than volume header size 40h (64)", volume.size(), volume.size()));
|
|
return U_INVALID_VOLUME;
|
|
}
|
|
|
|
// Populate volume header
|
|
const EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (const EFI_FIRMWARE_VOLUME_HEADER*)(volume.constData());
|
|
|
|
// Check sanity of HeaderLength value
|
|
if ((UINT32)ALIGN8(volumeHeader->HeaderLength) > (UINT32)volume.size()) {
|
|
msg(UString("parseVolumeHeader: volume header overlaps the end of data"));
|
|
return U_INVALID_VOLUME;
|
|
}
|
|
// Check sanity of ExtHeaderOffset value
|
|
if (volumeHeader->Revision > 1 && volumeHeader->ExtHeaderOffset
|
|
&& (UINT32)ALIGN8(volumeHeader->ExtHeaderOffset + sizeof(EFI_FIRMWARE_VOLUME_EXT_HEADER)) > (UINT32)volume.size()) {
|
|
msg(UString("parseVolumeHeader: extended volume header overlaps the end of data"));
|
|
return U_INVALID_VOLUME;
|
|
}
|
|
|
|
// Calculate volume header size
|
|
UINT32 headerSize;
|
|
EFI_GUID extendedHeaderGuid = {{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }};
|
|
bool hasExtendedHeader = false;
|
|
if (volumeHeader->Revision > 1 && volumeHeader->ExtHeaderOffset) {
|
|
hasExtendedHeader = true;
|
|
const EFI_FIRMWARE_VOLUME_EXT_HEADER* extendedHeader = (const EFI_FIRMWARE_VOLUME_EXT_HEADER*)(volume.constData() + volumeHeader->ExtHeaderOffset);
|
|
headerSize = volumeHeader->ExtHeaderOffset + extendedHeader->ExtHeaderSize;
|
|
extendedHeaderGuid = extendedHeader->FvName;
|
|
}
|
|
else
|
|
headerSize = volumeHeader->HeaderLength;
|
|
|
|
// Extended header end can be unaligned
|
|
headerSize = ALIGN8(headerSize);
|
|
|
|
// Check for volume structure to be known
|
|
bool isUnknown = true;
|
|
bool isNvramVolume = false;
|
|
UINT8 ffsVersion = 0;
|
|
|
|
// Check for FFS v2 volume
|
|
UByteArray guid = UByteArray((const char*)volumeHeader->FileSystemGuid.Data, sizeof(EFI_GUID));
|
|
if (std::find(FFSv2Volumes.begin(), FFSv2Volumes.end(), guid) != FFSv2Volumes.end()) {
|
|
isUnknown = false;
|
|
ffsVersion = 2;
|
|
}
|
|
|
|
// Check for FFS v3 volume
|
|
if (std::find(FFSv3Volumes.begin(), FFSv3Volumes.end(), guid) != FFSv3Volumes.end()) {
|
|
isUnknown = false;
|
|
ffsVersion = 3;
|
|
}
|
|
|
|
// Check for VSS NVRAM volume
|
|
if (guid == NVRAM_MAIN_STORE_VOLUME_GUID || guid == NVRAM_ADDITIONAL_STORE_VOLUME_GUID) {
|
|
isUnknown = false;
|
|
isNvramVolume = true;
|
|
}
|
|
|
|
// Check volume revision and alignment
|
|
bool msgAlignmentBitsSet = false;
|
|
bool msgUnaligned = false;
|
|
bool msgUnknownRevision = false;
|
|
UINT32 alignment = 65536; // Default volume alignment is 64K
|
|
if (volumeHeader->Revision == 1) {
|
|
// Acquire alignment capability bit
|
|
bool alignmentCap = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_CAP;
|
|
if (!alignmentCap) {
|
|
if ((volumeHeader->Attributes & 0xFFFF0000))
|
|
msgAlignmentBitsSet = true;
|
|
}
|
|
// Do not check for volume alignment on revision 1 volumes
|
|
// No one gives a single crap about setting it correctly
|
|
/*else {
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_2) alignment = 2;
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_4) alignment = 4;
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_8) alignment = 8;
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_16) alignment = 16;
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_32) alignment = 32;
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_64) alignment = 64;
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_128) alignment = 128;
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_256) alignment = 256;
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_512) alignment = 512;
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_1K) alignment = 1024;
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_2K) alignment = 2048;
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_4K) alignment = 4096;
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_8K) alignment = 8192;
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_16K) alignment = 16384;
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_32K) alignment = 32768;
|
|
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_64K) alignment = 65536;
|
|
}*/
|
|
}
|
|
else if (volumeHeader->Revision == 2) {
|
|
// Acquire alignment
|
|
alignment = (UINT32)pow(2.0, (int)(volumeHeader->Attributes & EFI_FVB2_ALIGNMENT) >> 16);
|
|
// Check alignment
|
|
if (!isUnknown && !model->compressed(parent) && ((pdata.offset + parentOffset - capsuleOffsetFixup) % alignment))
|
|
msgUnaligned = true;
|
|
}
|
|
else
|
|
msgUnknownRevision = true;
|
|
|
|
// Check attributes
|
|
// Determine value of empty byte
|
|
UINT8 emptyByte = volumeHeader->Attributes & EFI_FVB_ERASE_POLARITY ? '\xFF' : '\x00';
|
|
|
|
// Check for AppleCRC32 and AppleFreeSpaceOffset in ZeroVector
|
|
bool hasAppleCrc32 = false;
|
|
bool hasAppleFSO = false;
|
|
UINT32 volumeSize = volume.size();
|
|
UINT32 appleCrc32 = *(UINT32*)(volume.constData() + 8);
|
|
UINT32 appleFSO = *(UINT32*)(volume.constData() + 12);
|
|
if (appleCrc32 != 0) {
|
|
// Calculate CRC32 of the volume body
|
|
UINT32 crc = crc32(0, (const UINT8*)(volume.constData() + volumeHeader->HeaderLength), volumeSize - volumeHeader->HeaderLength);
|
|
if (crc == appleCrc32) {
|
|
hasAppleCrc32 = true;
|
|
}
|
|
|
|
// Check if FreeSpaceOffset is non-zero
|
|
if (appleFSO != 0) {
|
|
hasAppleFSO = true;
|
|
}
|
|
}
|
|
|
|
// Check header checksum by recalculating it
|
|
bool msgInvalidChecksum = false;
|
|
UByteArray tempHeader((const char*)volumeHeader, volumeHeader->HeaderLength);
|
|
((EFI_FIRMWARE_VOLUME_HEADER*)tempHeader.data())->Checksum = 0;
|
|
UINT16 calculated = calculateChecksum16((const UINT16*)tempHeader.constData(), volumeHeader->HeaderLength);
|
|
if (volumeHeader->Checksum != calculated)
|
|
msgInvalidChecksum = true;
|
|
|
|
// Get info
|
|
UByteArray header = volume.left(headerSize);
|
|
UByteArray body = volume.mid(headerSize);
|
|
UString name = guidToUString(volumeHeader->FileSystemGuid);
|
|
UString info = usprintf("Signature: _FVH\nZeroVector:\n%02X %02X %02X %02X %02X %02X %02X %02X\n"
|
|
"%02X %02X %02X %02X %02X %02X %02X %02X\nFileSystem GUID: ",
|
|
volumeHeader->ZeroVector[0], volumeHeader->ZeroVector[1], volumeHeader->ZeroVector[2], volumeHeader->ZeroVector[3],
|
|
volumeHeader->ZeroVector[4], volumeHeader->ZeroVector[5], volumeHeader->ZeroVector[6], volumeHeader->ZeroVector[7],
|
|
volumeHeader->ZeroVector[8], volumeHeader->ZeroVector[9], volumeHeader->ZeroVector[10], volumeHeader->ZeroVector[11],
|
|
volumeHeader->ZeroVector[12], volumeHeader->ZeroVector[13], volumeHeader->ZeroVector[14], volumeHeader->ZeroVector[15])
|
|
+ guidToUString(volumeHeader->FileSystemGuid) \
|
|
+ usprintf("\nFull size: %Xh (%u)\nHeader size: %Xh (%u)\nBody size: %Xh (%u)\nRevision: %u\nAttributes: %08Xh\nErase polarity: %u\nChecksum: %04Xh",
|
|
volumeSize, volumeSize,
|
|
headerSize, headerSize,
|
|
volumeSize - headerSize, volumeSize - headerSize,
|
|
volumeHeader->Revision,
|
|
volumeHeader->Attributes,
|
|
(emptyByte ? 1 : 0),
|
|
volumeHeader->Checksum) +
|
|
(msgInvalidChecksum ? usprintf(", invalid, should be %04Xh", calculated) : UString(", valid"));
|
|
|
|
// Extended header present
|
|
if (volumeHeader->Revision > 1 && volumeHeader->ExtHeaderOffset) {
|
|
const EFI_FIRMWARE_VOLUME_EXT_HEADER* extendedHeader = (const EFI_FIRMWARE_VOLUME_EXT_HEADER*)(volume.constData() + volumeHeader->ExtHeaderOffset);
|
|
info += usprintf("\nExtended header size: %Xh (%u)\nVolume GUID: ",
|
|
extendedHeader->ExtHeaderSize, extendedHeader->ExtHeaderSize) + guidToUString(extendedHeader->FvName);
|
|
}
|
|
|
|
// Construct parsing data
|
|
pdata.offset += parentOffset;
|
|
pdata.emptyByte = emptyByte;
|
|
pdata.ffsVersion = ffsVersion;
|
|
pdata.volume.hasExtendedHeader = hasExtendedHeader ? TRUE : FALSE;
|
|
pdata.volume.extendedHeaderGuid = extendedHeaderGuid;
|
|
pdata.volume.alignment = alignment;
|
|
pdata.volume.revision = volumeHeader->Revision;
|
|
pdata.volume.hasAppleCrc32 = hasAppleCrc32;
|
|
pdata.volume.hasAppleFSO = hasAppleFSO;
|
|
pdata.volume.isWeakAligned = (volumeHeader->Revision > 1 && (volumeHeader->Attributes & EFI_FVB2_WEAK_ALIGNMENT));
|
|
|
|
// Add text
|
|
UString text;
|
|
if (hasAppleCrc32)
|
|
text += UString("AppleCRC32 ");
|
|
if (hasAppleFSO)
|
|
text += UString("AppleFSO ");
|
|
|
|
// Add tree item
|
|
UINT8 subtype = Subtypes::UnknownVolume;
|
|
if (!isUnknown) {
|
|
if (ffsVersion == 2)
|
|
subtype = Subtypes::Ffs2Volume;
|
|
else if (ffsVersion == 3)
|
|
subtype = Subtypes::Ffs3Volume;
|
|
else if (isNvramVolume)
|
|
subtype = Subtypes::NvramVolume;
|
|
}
|
|
index = model->addItem(Types::Volume, subtype, name, text, info, header, body, UByteArray(), true, parsingDataToUByteArray(pdata), parent);
|
|
|
|
// Show messages
|
|
if (isUnknown)
|
|
msg(UString("parseVolumeHeader: unknown file system ") + guidToUString(volumeHeader->FileSystemGuid), index);
|
|
if (msgInvalidChecksum)
|
|
msg(UString("parseVolumeHeader: volume header checksum is invalid"), index);
|
|
if (msgAlignmentBitsSet)
|
|
msg(UString("parseVolumeHeader: alignment bits set on volume without alignment capability"), index);
|
|
if (msgUnaligned)
|
|
msg(UString("parseVolumeHeader: unaligned volume"), index);
|
|
if (msgUnknownRevision)
|
|
msg(usprintf("parseVolumeHeader: unknown volume revision %u", volumeHeader->Revision), index);
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::findNextVolume(const UModelIndex & index, const UByteArray & bios, const UINT32 parentOffset, const UINT32 volumeOffset, UINT32 & nextVolumeOffset)
|
|
{
|
|
int nextIndex = bios.indexOf(EFI_FV_SIGNATURE, volumeOffset);
|
|
if (nextIndex < EFI_FV_SIGNATURE_OFFSET)
|
|
return U_VOLUMES_NOT_FOUND;
|
|
|
|
// Check volume header to be sane
|
|
for (; nextIndex > 0; nextIndex = bios.indexOf(EFI_FV_SIGNATURE, nextIndex + 1)) {
|
|
const EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (const EFI_FIRMWARE_VOLUME_HEADER*)(bios.constData() + nextIndex - EFI_FV_SIGNATURE_OFFSET);
|
|
if (volumeHeader->FvLength < sizeof(EFI_FIRMWARE_VOLUME_HEADER) + 2 * sizeof(EFI_FV_BLOCK_MAP_ENTRY) || volumeHeader->FvLength >= 0xFFFFFFFFUL) {
|
|
msg(usprintf("findNextVolume: volume candidate at offset %Xh skipped, has invalid FvLength %"PRIX64"h",
|
|
parentOffset + (nextIndex - EFI_FV_SIGNATURE_OFFSET),
|
|
volumeHeader->FvLength), index);
|
|
continue;
|
|
}
|
|
if (volumeHeader->Reserved != 0xFF && volumeHeader->Reserved != 0x00) {
|
|
msg(usprintf("findNextVolume: volume candidate at offset %Xh skipped, has invalid Reserved byte value %02Xh",
|
|
parentOffset + (nextIndex - EFI_FV_SIGNATURE_OFFSET),
|
|
volumeHeader->Reserved), index);
|
|
continue;
|
|
}
|
|
if (volumeHeader->Revision != 1 && volumeHeader->Revision != 2) {
|
|
msg(usprintf("findNextVolume: volume candidate at offset %Xh skipped, has invalid Revision byte value %02Xh",
|
|
parentOffset + (nextIndex - EFI_FV_SIGNATURE_OFFSET)
|
|
,volumeHeader->Revision), index);
|
|
continue;
|
|
}
|
|
// All checks passed, volume found
|
|
break;
|
|
}
|
|
// No more volumes found
|
|
if (nextIndex < EFI_FV_SIGNATURE_OFFSET)
|
|
return U_VOLUMES_NOT_FOUND;
|
|
|
|
nextVolumeOffset = nextIndex - EFI_FV_SIGNATURE_OFFSET;
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::getVolumeSize(const UByteArray & bios, UINT32 volumeOffset, UINT32 & volumeSize, UINT32 & bmVolumeSize)
|
|
{
|
|
// Check that there is space for the volume header and at least two block map entries.
|
|
if ((UINT32)bios.size() < volumeOffset + sizeof(EFI_FIRMWARE_VOLUME_HEADER) + 2 * sizeof(EFI_FV_BLOCK_MAP_ENTRY))
|
|
return U_INVALID_VOLUME;
|
|
|
|
// Populate volume header
|
|
const EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (const EFI_FIRMWARE_VOLUME_HEADER*)(bios.constData() + volumeOffset);
|
|
|
|
// Check volume signature
|
|
if (UByteArray((const char*)&volumeHeader->Signature, sizeof(volumeHeader->Signature)) != EFI_FV_SIGNATURE)
|
|
return U_INVALID_VOLUME;
|
|
|
|
// Calculate volume size using BlockMap
|
|
const EFI_FV_BLOCK_MAP_ENTRY* entry = (const EFI_FV_BLOCK_MAP_ENTRY*)(bios.constData() + volumeOffset + sizeof(EFI_FIRMWARE_VOLUME_HEADER));
|
|
UINT32 calcVolumeSize = 0;
|
|
while (entry->NumBlocks != 0 && entry->Length != 0) {
|
|
if ((void*)entry > bios.constData() + bios.size())
|
|
return U_INVALID_VOLUME;
|
|
|
|
calcVolumeSize += entry->NumBlocks * entry->Length;
|
|
entry += 1;
|
|
}
|
|
|
|
volumeSize = volumeHeader->FvLength;
|
|
bmVolumeSize = calcVolumeSize;
|
|
|
|
if (volumeSize == 0)
|
|
return U_INVALID_VOLUME;
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseVolumeNonUefiData(const UByteArray & data, const UINT32 parentOffset, const UModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return U_INVALID_PARAMETER;
|
|
|
|
// Get parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(index);
|
|
|
|
// Modify it
|
|
pdata.offset += parentOffset;
|
|
|
|
// Search for VTF GUID backwards in received data
|
|
UByteArray padding = data;
|
|
UByteArray vtf;
|
|
INT32 vtfIndex = data.lastIndexOf(EFI_FFS_VOLUME_TOP_FILE_GUID);
|
|
if (vtfIndex >= 0) { // VTF candidate found inside non-UEFI data
|
|
padding = data.left(vtfIndex);
|
|
vtf = data.mid(vtfIndex);
|
|
const EFI_FFS_FILE_HEADER* fileHeader = (const EFI_FFS_FILE_HEADER*)vtf.constData();
|
|
if ((UINT32)vtf.size() < sizeof(EFI_FFS_FILE_HEADER) // VTF candidate is too small to be a real VTF in FFSv1/v2 volume
|
|
|| (pdata.ffsVersion == 3
|
|
&& (fileHeader->Attributes & FFS_ATTRIB_LARGE_FILE)
|
|
&& (UINT32)vtf.size() < sizeof(EFI_FFS_FILE_HEADER2))) { // VTF candidate is too small to be a real VTF in FFSv3 volume
|
|
vtfIndex = -1;
|
|
padding = data;
|
|
vtf.clear();
|
|
}
|
|
}
|
|
|
|
// Add non-UEFI data first
|
|
// Get info
|
|
UString info = usprintf("Full size: %Xh (%u)", padding.size(), padding.size());
|
|
|
|
// Add padding tree item
|
|
UModelIndex paddingIndex = model->addItem(Types::Padding, Subtypes::DataPadding, UString("Non-UEFI data"), "", info, UByteArray(), padding, UByteArray(), true, parsingDataToUByteArray(pdata), index);
|
|
msg(UString("parseVolumeNonUefiData: non-UEFI data found in volume's free space"), paddingIndex);
|
|
|
|
if (vtfIndex >= 0) {
|
|
// Get VTF file header
|
|
UByteArray header = vtf.left(sizeof(EFI_FFS_FILE_HEADER));
|
|
const EFI_FFS_FILE_HEADER* fileHeader = (const EFI_FFS_FILE_HEADER*)header.constData();
|
|
if (pdata.ffsVersion == 3 && (fileHeader->Attributes & FFS_ATTRIB_LARGE_FILE)) {
|
|
header = vtf.left(sizeof(EFI_FFS_FILE_HEADER2));
|
|
}
|
|
|
|
//Parse VTF file header
|
|
UModelIndex fileIndex;
|
|
USTATUS result = parseFileHeader(vtf, parentOffset + vtfIndex, index, fileIndex);
|
|
if (result) {
|
|
msg(UString("parseVolumeNonUefiData: VTF file header parsing failed with error ") + errorCodeToUString(result), index);
|
|
|
|
// Add the rest as non-UEFI data too
|
|
pdata.offset += vtfIndex;
|
|
// Get info
|
|
UString info = usprintf("Full size: %Xh (%u)", vtf.size(), vtf.size());
|
|
|
|
// Add padding tree item
|
|
UModelIndex paddingIndex = model->addItem(Types::Padding, Subtypes::DataPadding, UString("Non-UEFI data"), "", info, UByteArray(), vtf, UByteArray(), true, parsingDataToUByteArray(pdata), index);
|
|
msg(("parseVolumeNonUefiData: non-UEFI data found in volume's free space"), paddingIndex);
|
|
}
|
|
}
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseVolumeBody(const UModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return U_INVALID_PARAMETER;
|
|
|
|
// Get volume header size and body
|
|
UByteArray volumeBody = model->body(index);
|
|
UINT32 volumeHeaderSize = model->header(index).size();
|
|
|
|
// Get parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(index);
|
|
UINT32 offset = pdata.offset;
|
|
|
|
// Parse VSS NVRAM volumes with a dedicated function
|
|
if (model->subtype(index) == Subtypes::NvramVolume)
|
|
return parseNvramVolumeBody(index);
|
|
|
|
if (pdata.ffsVersion != 2 && pdata.ffsVersion != 3) // Don't parse unknown volumes
|
|
return U_SUCCESS;
|
|
|
|
// Search for and parse all files
|
|
UINT32 volumeBodySize = volumeBody.size();
|
|
UINT32 fileOffset = 0;
|
|
|
|
while (fileOffset < volumeBodySize) {
|
|
UINT32 fileSize = getFileSize(volumeBody, fileOffset, pdata.ffsVersion);
|
|
// Check file size
|
|
if (fileSize < sizeof(EFI_FFS_FILE_HEADER) || fileSize > volumeBodySize - fileOffset) {
|
|
// Check that we are at the empty space
|
|
UByteArray header = volumeBody.mid(fileOffset, sizeof(EFI_FFS_FILE_HEADER));
|
|
if (header.count(pdata.emptyByte) == header.size()) { //Empty space
|
|
// Check free space to be actually free
|
|
UByteArray freeSpace = volumeBody.mid(fileOffset);
|
|
if (freeSpace.count(pdata.emptyByte) != freeSpace.count()) {
|
|
// Search for the first non-empty byte
|
|
UINT32 i;
|
|
UINT32 size = freeSpace.size();
|
|
const UINT8* current = (UINT8*)freeSpace.constData();
|
|
for (i = 0; i < size; i++) {
|
|
if (*current++ != pdata.emptyByte)
|
|
break;
|
|
}
|
|
|
|
// Align found index to file alignment
|
|
// It must be possible because minimum 16 bytes of empty were found before
|
|
if (i != ALIGN8(i))
|
|
i = ALIGN8(i) - 8;
|
|
|
|
// Construct parsing data
|
|
pdata.offset = offset + volumeHeaderSize + fileOffset;
|
|
|
|
// Add all bytes before as free space
|
|
if (i > 0) {
|
|
UByteArray free = freeSpace.left(i);
|
|
|
|
// Get info
|
|
UString info = usprintf("Full size: %Xh (%u)", free.size(), free.size());
|
|
|
|
// Add free space item
|
|
model->addItem(Types::FreeSpace, 0, UString("Volume free space"), "", info, UByteArray(), free, UByteArray(), false, parsingDataToUByteArray(pdata), index);
|
|
}
|
|
|
|
// Parse non-UEFI data
|
|
parseVolumeNonUefiData(freeSpace.mid(i), volumeHeaderSize + fileOffset + i, index);
|
|
}
|
|
else {
|
|
// Construct parsing data
|
|
pdata.offset = offset + volumeHeaderSize + fileOffset;
|
|
|
|
// Get info
|
|
UString info = usprintf("Full size: %Xh (%u)", freeSpace.size(), freeSpace.size());
|
|
|
|
// Add free space item
|
|
model->addItem(Types::FreeSpace, 0, UString("Volume free space"), "", info, UByteArray(), freeSpace, UByteArray(), false, parsingDataToUByteArray(pdata), index);
|
|
}
|
|
break; // Exit from parsing loop
|
|
}
|
|
else { //File space
|
|
// Parse non-UEFI data
|
|
parseVolumeNonUefiData(volumeBody.mid(fileOffset), volumeHeaderSize + fileOffset, index);
|
|
break; // Exit from parsing loop
|
|
}
|
|
}
|
|
|
|
// Get file header
|
|
UByteArray file = volumeBody.mid(fileOffset, fileSize);
|
|
UByteArray header = file.left(sizeof(EFI_FFS_FILE_HEADER));
|
|
const EFI_FFS_FILE_HEADER* fileHeader = (const EFI_FFS_FILE_HEADER*)header.constData();
|
|
if (pdata.ffsVersion == 3 && (fileHeader->Attributes & FFS_ATTRIB_LARGE_FILE)) {
|
|
header = file.left(sizeof(EFI_FFS_FILE_HEADER2));
|
|
}
|
|
|
|
//Parse current file's header
|
|
UModelIndex fileIndex;
|
|
USTATUS result = parseFileHeader(file, volumeHeaderSize + fileOffset, index, fileIndex);
|
|
if (result)
|
|
msg(UString("parseVolumeBody: file header parsing failed with error ") + errorCodeToUString(result), index);
|
|
|
|
// Move to next file
|
|
fileOffset += fileSize;
|
|
fileOffset = ALIGN8(fileOffset);
|
|
}
|
|
|
|
// Check for duplicate GUIDs
|
|
for (int i = 0; i < model->rowCount(index); i++) {
|
|
UModelIndex current = index.child(i, 0);
|
|
// Skip non-file entries and pad files
|
|
if (model->type(current) != Types::File || model->subtype(current) == EFI_FV_FILETYPE_PAD)
|
|
continue;
|
|
|
|
// Get current file parsing data
|
|
PARSING_DATA currentPdata = parsingDataFromUModelIndex(current);
|
|
UByteArray currentGuid((const char*)¤tPdata.file.guid, sizeof(EFI_GUID));
|
|
|
|
// Check files after current for having an equal GUID
|
|
for (int j = i + 1; j < model->rowCount(index); j++) {
|
|
UModelIndex another = index.child(j, 0);
|
|
|
|
// Skip non-file entries
|
|
if (model->type(another) != Types::File)
|
|
continue;
|
|
|
|
// Get another file parsing data
|
|
PARSING_DATA anotherPdata = parsingDataFromUModelIndex(another);
|
|
UByteArray anotherGuid((const char*)&anotherPdata.file.guid, sizeof(EFI_GUID));
|
|
|
|
// Check GUIDs for being equal
|
|
if (currentGuid == anotherGuid) {
|
|
msg(UString("parseVolumeBody: file with duplicate GUID ") + guidToUString(anotherPdata.file.guid), another);
|
|
}
|
|
}
|
|
}
|
|
|
|
//Parse bodies
|
|
for (int i = 0; i < model->rowCount(index); i++) {
|
|
UModelIndex current = index.child(i, 0);
|
|
switch (model->type(current)) {
|
|
case Types::File:
|
|
parseFileBody(current);
|
|
break;
|
|
case Types::Padding:
|
|
case Types::FreeSpace:
|
|
// No parsing required
|
|
break;
|
|
default:
|
|
return U_UNKNOWN_ITEM_TYPE;
|
|
}
|
|
}
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
UINT32 FfsParser::getFileSize(const UByteArray & volume, const UINT32 fileOffset, const UINT8 ffsVersion)
|
|
{
|
|
if (ffsVersion == 2) {
|
|
if ((UINT32)volume.size() < fileOffset + sizeof(EFI_FFS_FILE_HEADER))
|
|
return 0;
|
|
const EFI_FFS_FILE_HEADER* fileHeader = (const EFI_FFS_FILE_HEADER*)(volume.constData() + fileOffset);
|
|
return uint24ToUint32(fileHeader->Size);
|
|
}
|
|
else if (ffsVersion == 3) {
|
|
if ((UINT32)volume.size() < fileOffset + sizeof(EFI_FFS_FILE_HEADER2))
|
|
return 0;
|
|
const EFI_FFS_FILE_HEADER2* fileHeader = (const EFI_FFS_FILE_HEADER2*)(volume.constData() + fileOffset);
|
|
if (fileHeader->Attributes & FFS_ATTRIB_LARGE_FILE)
|
|
return fileHeader->ExtendedSize;
|
|
else
|
|
return uint24ToUint32(fileHeader->Size);
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
USTATUS FfsParser::parseFileHeader(const UByteArray & file, const UINT32 parentOffset, const UModelIndex & parent, UModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (file.isEmpty())
|
|
return U_INVALID_PARAMETER;
|
|
|
|
if ((UINT32)file.size() < sizeof(EFI_FFS_FILE_HEADER))
|
|
return U_INVALID_FILE;
|
|
|
|
// Get parent's parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(parent);
|
|
|
|
// Get file header
|
|
UByteArray header = file.left(sizeof(EFI_FFS_FILE_HEADER));
|
|
const EFI_FFS_FILE_HEADER* fileHeader = (const EFI_FFS_FILE_HEADER*)header.constData();
|
|
if (pdata.ffsVersion == 3 && (fileHeader->Attributes & FFS_ATTRIB_LARGE_FILE)) {
|
|
if ((UINT32)file.size() < sizeof(EFI_FFS_FILE_HEADER2))
|
|
return U_INVALID_FILE;
|
|
header = file.left(sizeof(EFI_FFS_FILE_HEADER2));
|
|
}
|
|
|
|
// Check file alignment
|
|
bool msgUnalignedFile = false;
|
|
UINT8 alignmentPower = ffsAlignmentTable[(fileHeader->Attributes & FFS_ATTRIB_DATA_ALIGNMENT) >> 3];
|
|
UINT32 alignment = (UINT32)pow(2.0, alignmentPower);
|
|
if ((parentOffset + header.size()) % alignment)
|
|
msgUnalignedFile = true;
|
|
|
|
// Check file alignment agains volume alignment
|
|
bool msgFileAlignmentIsGreaterThanVolumes = false;
|
|
if (!pdata.volume.isWeakAligned && pdata.volume.alignment < alignment)
|
|
msgFileAlignmentIsGreaterThanVolumes = true;
|
|
|
|
// Check header checksum
|
|
UByteArray tempHeader = header;
|
|
EFI_FFS_FILE_HEADER* tempFileHeader = (EFI_FFS_FILE_HEADER*)(tempHeader.data());
|
|
tempFileHeader->IntegrityCheck.Checksum.Header = 0;
|
|
tempFileHeader->IntegrityCheck.Checksum.File = 0;
|
|
UINT8 calculatedHeader = calculateChecksum8((const UINT8*)tempFileHeader, header.size() - 1);
|
|
bool msgInvalidHeaderChecksum = false;
|
|
if (fileHeader->IntegrityCheck.Checksum.Header != calculatedHeader)
|
|
msgInvalidHeaderChecksum = true;
|
|
|
|
// Check data checksum
|
|
// Data checksum must be calculated
|
|
bool msgInvalidDataChecksum = false;
|
|
UINT8 calculatedData = 0;
|
|
if (fileHeader->Attributes & FFS_ATTRIB_CHECKSUM) {
|
|
UINT32 bufferSize = file.size() - header.size();
|
|
// Exclude file tail from data checksum calculation
|
|
if (pdata.volume.revision == 1 && (fileHeader->Attributes & FFS_ATTRIB_TAIL_PRESENT))
|
|
bufferSize -= sizeof(UINT16);
|
|
calculatedData = calculateChecksum8((const UINT8*)(file.constData() + header.size()), bufferSize);
|
|
if (fileHeader->IntegrityCheck.Checksum.File != calculatedData)
|
|
msgInvalidDataChecksum = true;
|
|
}
|
|
// Data checksum must be one of predefined values
|
|
else if (pdata.volume.revision == 1 && fileHeader->IntegrityCheck.Checksum.File != FFS_FIXED_CHECKSUM) {
|
|
calculatedData = FFS_FIXED_CHECKSUM;
|
|
msgInvalidDataChecksum = true;
|
|
}
|
|
else if (pdata.volume.revision == 2 && fileHeader->IntegrityCheck.Checksum.File != FFS_FIXED_CHECKSUM2) {
|
|
calculatedData = FFS_FIXED_CHECKSUM2;
|
|
msgInvalidDataChecksum = true;
|
|
}
|
|
|
|
// Check file type
|
|
bool msgUnknownType = false;
|
|
if (fileHeader->Type > EFI_FV_FILETYPE_SMM_CORE && fileHeader->Type != EFI_FV_FILETYPE_PAD) {
|
|
msgUnknownType = true;
|
|
};
|
|
|
|
// Get file body
|
|
UByteArray body = file.mid(header.size());
|
|
|
|
// Check for file tail presence
|
|
UByteArray tail;
|
|
bool msgInvalidTailValue = false;
|
|
if (pdata.volume.revision == 1 && (fileHeader->Attributes & FFS_ATTRIB_TAIL_PRESENT))
|
|
{
|
|
//Check file tail;
|
|
UINT16 tailValue = *(UINT16*)body.right(sizeof(UINT16)).constData();
|
|
if (fileHeader->IntegrityCheck.TailReference != (UINT16)~tailValue)
|
|
msgInvalidTailValue = true;
|
|
|
|
// Get tail and remove it from file body
|
|
tail = body.right(sizeof(UINT16));
|
|
body = body.left(body.size() - sizeof(UINT16));
|
|
}
|
|
|
|
// Get info
|
|
UString name;
|
|
UString info;
|
|
if (fileHeader->Type != EFI_FV_FILETYPE_PAD)
|
|
name = guidToUString(fileHeader->Name);
|
|
else
|
|
name = UString("Pad-file");
|
|
|
|
info = UString("File GUID: ") + guidToUString(fileHeader->Name) +
|
|
usprintf("\nType: %02Xh\nAttributes: %02Xh\nFull size: %Xh (%u)\nHeader size: %Xh (%u)\nBody size: %Xh (%u)\nTail size: %Xh (%u)\nState: %02Xh",
|
|
fileHeader->Type,
|
|
fileHeader->Attributes,
|
|
header.size() + body.size() + tail.size(), header.size() + body.size() + tail.size(),
|
|
header.size(), header.size(),
|
|
body.size(), body.size(),
|
|
tail.size(), tail.size(),
|
|
fileHeader->State) +
|
|
usprintf("\nHeader checksum: %02Xh", fileHeader->IntegrityCheck.Checksum.Header) + (msgInvalidHeaderChecksum ? usprintf(", invalid, should be %02Xh", calculatedHeader) : UString(", valid")) +
|
|
usprintf("\nData checksum: %02Xh", fileHeader->IntegrityCheck.Checksum.File) + (msgInvalidDataChecksum ? usprintf(", invalid, should be %02Xh", calculatedData) : UString(", valid"));
|
|
|
|
// Add file GUID to parsing data
|
|
pdata.file.guid = fileHeader->Name;
|
|
|
|
UString text;
|
|
bool isVtf = false;
|
|
// Check if the file is a Volume Top File
|
|
if (UByteArray((const char*)&fileHeader->Name, sizeof(EFI_GUID)) == EFI_FFS_VOLUME_TOP_FILE_GUID) {
|
|
// Mark it as the last VTF
|
|
// This information will later be used to determine memory addresses of uncompressed image elements
|
|
// Because the last byte of the last VFT is mapped to 0xFFFFFFFF physical memory address
|
|
isVtf = true;
|
|
text = UString("Volume Top File");
|
|
}
|
|
|
|
// Construct parsing data
|
|
bool fixed = fileHeader->Attributes & FFS_ATTRIB_FIXED;
|
|
pdata.offset += parentOffset;
|
|
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::File, fileHeader->Type, name, text, info, header, body, tail, fixed, parsingDataToUByteArray(pdata), parent);
|
|
|
|
// Overwrite lastVtf, if needed
|
|
if (isVtf) {
|
|
lastVtf = index;
|
|
}
|
|
|
|
// Show messages
|
|
if (msgUnalignedFile)
|
|
msg(UString("parseFileHeader: unaligned file"), index);
|
|
if (msgFileAlignmentIsGreaterThanVolumes)
|
|
msg(usprintf("parseFileHeader: file alignment %Xh is greater than parent volume alignment %Xh", alignment, pdata.volume.alignment), index);
|
|
if (msgInvalidHeaderChecksum)
|
|
msg(UString("parseFileHeader: invalid header checksum"), index);
|
|
if (msgInvalidDataChecksum)
|
|
msg(UString("parseFileHeader: invalid data checksum"), index);
|
|
if (msgInvalidTailValue)
|
|
msg(UString("parseFileHeader: invalid tail value"), index);
|
|
if (msgUnknownType)
|
|
msg(usprintf("parseFileHeader: unknown file type %02Xh", fileHeader->Type), index);
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
UINT32 FfsParser::getSectionSize(const UByteArray & file, const UINT32 sectionOffset, const UINT8 ffsVersion)
|
|
{
|
|
if (ffsVersion == 2) {
|
|
if ((UINT32)file.size() < sectionOffset + sizeof(EFI_COMMON_SECTION_HEADER))
|
|
return 0;
|
|
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(file.constData() + sectionOffset);
|
|
return uint24ToUint32(sectionHeader->Size);
|
|
}
|
|
else if (ffsVersion == 3) {
|
|
if ((UINT32)file.size() < sectionOffset + sizeof(EFI_COMMON_SECTION_HEADER2))
|
|
return 0;
|
|
const EFI_COMMON_SECTION_HEADER2* sectionHeader = (const EFI_COMMON_SECTION_HEADER2*)(file.constData() + sectionOffset);
|
|
UINT32 size = uint24ToUint32(sectionHeader->Size);
|
|
if (size == EFI_SECTION2_IS_USED)
|
|
return sectionHeader->ExtendedSize;
|
|
else
|
|
return size;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
USTATUS FfsParser::parseFileBody(const UModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return U_INVALID_PARAMETER;
|
|
|
|
// Do not parse non-file bodies
|
|
if (model->type(index) != Types::File)
|
|
return U_SUCCESS;
|
|
|
|
// Parse pad-file body
|
|
if (model->subtype(index) == EFI_FV_FILETYPE_PAD)
|
|
return parsePadFileBody(index);
|
|
|
|
// Parse raw files as raw areas
|
|
if (model->subtype(index) == EFI_FV_FILETYPE_RAW || model->subtype(index) == EFI_FV_FILETYPE_ALL) {
|
|
// Get data from parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(index);
|
|
|
|
// Parse NVAR store
|
|
if (UByteArray((const char*)&pdata.file.guid, sizeof(EFI_GUID)) == NVRAM_NVAR_STORE_FILE_GUID)
|
|
return parseNvarStore(index);
|
|
|
|
return parseRawArea(index);
|
|
}
|
|
|
|
// Parse sections
|
|
return parseSections(model->body(index), index);
|
|
}
|
|
|
|
USTATUS FfsParser::parsePadFileBody(const UModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return U_INVALID_PARAMETER;
|
|
|
|
// Get data from parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(index);
|
|
|
|
// Check if all bytes of the file are empty
|
|
UByteArray body = model->body(index);
|
|
if (body.size() == body.count(pdata.emptyByte))
|
|
return U_SUCCESS;
|
|
|
|
// Search for the first non-empty byte
|
|
UINT32 i;
|
|
UINT32 size = body.size();
|
|
const UINT8* current = (const UINT8*)body.constData();
|
|
for (i = 0; i < size; i++) {
|
|
if (*current++ != pdata.emptyByte)
|
|
break;
|
|
}
|
|
|
|
// Add all bytes before as free space...
|
|
if (i >= 8) {
|
|
// Align free space to 8 bytes boundary
|
|
if (i != ALIGN8(i))
|
|
i = ALIGN8(i) - 8;
|
|
|
|
UByteArray free = body.left(i);
|
|
|
|
// Get info
|
|
UString info = usprintf("Full size: %Xh (%u)", free.size(), free.size());
|
|
|
|
// Constuct parsing data
|
|
pdata.offset += model->header(index).size();
|
|
|
|
// Add tree item
|
|
model->addItem(Types::FreeSpace, 0, UString("Free space"), UString(), info, UByteArray(), free, UByteArray(), false, parsingDataToUByteArray(pdata), index);
|
|
}
|
|
else
|
|
i = 0;
|
|
|
|
// ... and all bytes after as a padding
|
|
UByteArray padding = body.mid(i);
|
|
|
|
// Get info
|
|
UString info = usprintf("Full size: %Xh (%u)", padding.size(), padding.size());
|
|
|
|
// Constuct parsing data
|
|
pdata.offset += i;
|
|
|
|
// Add tree item
|
|
UModelIndex dataIndex = model->addItem(Types::Padding, Subtypes::DataPadding, UString("Non-UEFI data"), "", info, UByteArray(), padding, UByteArray(), true, parsingDataToUByteArray(pdata), index);
|
|
|
|
// Show message
|
|
msg(UString("parsePadFileBody: non-UEFI data found in pad-file"), dataIndex);
|
|
|
|
// Rename the file
|
|
model->setName(index, UString("Non-empty pad-file"));
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseSections(const UByteArray & sections, const UModelIndex & index, const bool preparse)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return U_INVALID_PARAMETER;
|
|
|
|
// Get data from parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(index);
|
|
|
|
// Search for and parse all sections
|
|
UINT32 bodySize = sections.size();
|
|
UINT32 headerSize = model->header(index).size();
|
|
UINT32 sectionOffset = 0;
|
|
|
|
USTATUS result = U_SUCCESS;
|
|
while (sectionOffset < bodySize) {
|
|
// Get section size
|
|
UINT32 sectionSize = getSectionSize(sections, sectionOffset, pdata.ffsVersion);
|
|
|
|
// Check section size
|
|
if (sectionSize < sizeof(EFI_COMMON_SECTION_HEADER) || sectionSize > (bodySize - sectionOffset)) {
|
|
// Add padding to fill the rest of sections
|
|
UByteArray padding = sections.mid(sectionOffset);
|
|
// Get info
|
|
UString info = usprintf("Full size: %Xh (%u)", padding.size(), padding.size());
|
|
|
|
// Constuct parsing data
|
|
pdata.offset += headerSize + sectionOffset;
|
|
|
|
// Final parsing
|
|
if (!preparse) {
|
|
// Add tree item
|
|
UModelIndex dataIndex = model->addItem(Types::Padding, Subtypes::DataPadding, UString("Non-UEFI data"), "", info, UByteArray(), padding, UByteArray(), true, parsingDataToUByteArray(pdata), index);
|
|
|
|
// Show message
|
|
msg(UString("parseSections: non-UEFI data found in sections area"), dataIndex);
|
|
}
|
|
// Preparsing
|
|
else {
|
|
return U_INVALID_SECTION;
|
|
}
|
|
break; // Exit from parsing loop
|
|
}
|
|
|
|
// Parse section header
|
|
UModelIndex sectionIndex;
|
|
result = parseSectionHeader(sections.mid(sectionOffset, sectionSize), headerSize + sectionOffset, index, sectionIndex, preparse);
|
|
if (result) {
|
|
if (!preparse)
|
|
msg(UString("parseSections: section header parsing failed with error ") + errorCodeToUString(result), index);
|
|
else
|
|
return U_INVALID_SECTION;
|
|
}
|
|
// Move to next section
|
|
sectionOffset += sectionSize;
|
|
sectionOffset = ALIGN4(sectionOffset);
|
|
}
|
|
|
|
//Parse bodies, will be skipped on preparse phase
|
|
for (int i = 0; i < model->rowCount(index); i++) {
|
|
UModelIndex current = index.child(i, 0);
|
|
switch (model->type(current)) {
|
|
case Types::Section:
|
|
parseSectionBody(current);
|
|
break;
|
|
case Types::Padding:
|
|
// No parsing required
|
|
break;
|
|
default:
|
|
return U_UNKNOWN_ITEM_TYPE;
|
|
}
|
|
}
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseSectionHeader(const UByteArray & section, const UINT32 parentOffset, const UModelIndex & parent, UModelIndex & index, const bool preparse)
|
|
{
|
|
// Check sanity
|
|
if ((UINT32)section.size() < sizeof(EFI_COMMON_SECTION_HEADER))
|
|
return U_INVALID_SECTION;
|
|
|
|
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(section.constData());
|
|
switch (sectionHeader->Type) {
|
|
// Special
|
|
case EFI_SECTION_COMPRESSION: return parseCompressedSectionHeader(section, parentOffset, parent, index, preparse);
|
|
case EFI_SECTION_GUID_DEFINED: return parseGuidedSectionHeader(section, parentOffset, parent, index, preparse);
|
|
case EFI_SECTION_FREEFORM_SUBTYPE_GUID: return parseFreeformGuidedSectionHeader(section, parentOffset, parent, index, preparse);
|
|
case EFI_SECTION_VERSION: return parseVersionSectionHeader(section, parentOffset, parent, index, preparse);
|
|
case PHOENIX_SECTION_POSTCODE:
|
|
case INSYDE_SECTION_POSTCODE: return parsePostcodeSectionHeader(section, parentOffset, parent, index, preparse);
|
|
// Common
|
|
case EFI_SECTION_DISPOSABLE:
|
|
case EFI_SECTION_DXE_DEPEX:
|
|
case EFI_SECTION_PEI_DEPEX:
|
|
case EFI_SECTION_SMM_DEPEX:
|
|
case EFI_SECTION_PE32:
|
|
case EFI_SECTION_PIC:
|
|
case EFI_SECTION_TE:
|
|
case EFI_SECTION_COMPATIBILITY16:
|
|
case EFI_SECTION_USER_INTERFACE:
|
|
case EFI_SECTION_FIRMWARE_VOLUME_IMAGE:
|
|
case EFI_SECTION_RAW: return parseCommonSectionHeader(section, parentOffset, parent, index, preparse);
|
|
// Unknown
|
|
default:
|
|
USTATUS result = parseCommonSectionHeader(section, parentOffset, parent, index, preparse);
|
|
msg(usprintf("parseSectionHeader: section with unknown type %02Xh", sectionHeader->Type), index);
|
|
return result;
|
|
}
|
|
}
|
|
|
|
USTATUS FfsParser::parseCommonSectionHeader(const UByteArray & section, const UINT32 parentOffset, const UModelIndex & parent, UModelIndex & index, const bool preparse)
|
|
{
|
|
// Check sanity
|
|
if ((UINT32)section.size() < sizeof(EFI_COMMON_SECTION_HEADER))
|
|
return U_INVALID_SECTION;
|
|
|
|
// Get data from parent's parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(parent);
|
|
|
|
// Obtain header fields
|
|
UINT32 headerSize;
|
|
UINT8 type;
|
|
const EFI_COMMON_SECTION_HEADER_APPLE* appleHeader = (const EFI_COMMON_SECTION_HEADER_APPLE*)(section.constData());
|
|
if ((UINT32)section.size() >= sizeof(EFI_COMMON_SECTION_HEADER_APPLE) && appleHeader->Reserved == EFI_SECTION_APPLE_USED) {
|
|
headerSize = sizeof(EFI_COMMON_SECTION_HEADER_APPLE);
|
|
type = appleHeader->Type;
|
|
}
|
|
else {
|
|
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(section.constData());
|
|
headerSize = sizeof(EFI_COMMON_SECTION_HEADER);
|
|
if (pdata.ffsVersion == 3 && uint24ToUint32(sectionHeader->Size) == EFI_SECTION2_IS_USED)
|
|
headerSize = sizeof(EFI_COMMON_SECTION_HEADER2);
|
|
type = sectionHeader->Type;
|
|
}
|
|
|
|
// Check sanity again
|
|
if ((UINT32)section.size() < headerSize)
|
|
return U_INVALID_SECTION;
|
|
|
|
UByteArray header = section.left(headerSize);
|
|
UByteArray body = section.mid(headerSize);
|
|
|
|
// Get info
|
|
UString name = sectionTypeToUString(type) + UString(" section");
|
|
UString info = usprintf("Type: %02Xh\nFull size: %Xh (%u)\nHeader size: %Xh (%u)\nBody size: %Xh (%u)",
|
|
type,
|
|
section.size(), section.size(),
|
|
headerSize, headerSize,
|
|
body.size(), body.size());
|
|
|
|
// Construct parsing data
|
|
pdata.offset += parentOffset;
|
|
|
|
// Add tree item
|
|
if (!preparse) {
|
|
index = model->addItem(Types::Section, type, name, UString(), info, header, body, UByteArray(), true, parsingDataToUByteArray(pdata), parent);
|
|
}
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseCompressedSectionHeader(const UByteArray & section, const UINT32 parentOffset, const UModelIndex & parent, UModelIndex & index, const bool preparse)
|
|
{
|
|
// Check sanity
|
|
if ((UINT32)section.size() < sizeof(EFI_COMMON_SECTION_HEADER))
|
|
return U_INVALID_SECTION;
|
|
|
|
// Get data from parent's parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(parent);
|
|
|
|
// Obtain header fields
|
|
UINT32 headerSize;
|
|
UINT8 compressionType;
|
|
UINT32 uncompressedLength;
|
|
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(section.constData());
|
|
const EFI_COMMON_SECTION_HEADER2* section2Header = (const EFI_COMMON_SECTION_HEADER2*)(section.constData());
|
|
const EFI_COMMON_SECTION_HEADER_APPLE* appleHeader = (const EFI_COMMON_SECTION_HEADER_APPLE*)(section.constData());
|
|
|
|
if ((UINT32)section.size() >= sizeof(EFI_COMMON_SECTION_HEADER_APPLE) && appleHeader->Reserved == EFI_SECTION_APPLE_USED) { // Check for apple section
|
|
const EFI_COMPRESSION_SECTION_APPLE* appleSectionHeader = (const EFI_COMPRESSION_SECTION_APPLE*)(appleHeader + 1);
|
|
headerSize = sizeof(EFI_COMMON_SECTION_HEADER_APPLE) + sizeof(EFI_COMPRESSION_SECTION_APPLE);
|
|
compressionType = (UINT8)appleSectionHeader->CompressionType;
|
|
uncompressedLength = appleSectionHeader->UncompressedLength;
|
|
}
|
|
else if (pdata.ffsVersion == 3 && uint24ToUint32(sectionHeader->Size) == EFI_SECTION2_IS_USED) { // Check for extended header section
|
|
const EFI_COMPRESSION_SECTION* compressedSectionHeader = (const EFI_COMPRESSION_SECTION*)(section2Header + 1);
|
|
if ((UINT32)section.size() < sizeof(EFI_COMMON_SECTION_HEADER2) + sizeof(EFI_COMPRESSION_SECTION))
|
|
return U_INVALID_SECTION;
|
|
headerSize = sizeof(EFI_COMMON_SECTION_HEADER2) + sizeof(EFI_COMPRESSION_SECTION);
|
|
compressionType = compressedSectionHeader->CompressionType;
|
|
uncompressedLength = compressedSectionHeader->UncompressedLength;
|
|
}
|
|
else { // Normal section
|
|
const EFI_COMPRESSION_SECTION* compressedSectionHeader = (const EFI_COMPRESSION_SECTION*)(sectionHeader + 1);
|
|
headerSize = sizeof(EFI_COMMON_SECTION_HEADER) + sizeof(EFI_COMPRESSION_SECTION);
|
|
compressionType = compressedSectionHeader->CompressionType;
|
|
uncompressedLength = compressedSectionHeader->UncompressedLength;
|
|
}
|
|
|
|
// Check sanity again
|
|
if ((UINT32)section.size() < headerSize)
|
|
return U_INVALID_SECTION;
|
|
|
|
UByteArray header = section.left(headerSize);
|
|
UByteArray body = section.mid(headerSize);
|
|
|
|
// Get info
|
|
UString name = sectionTypeToUString(sectionHeader->Type) + UString(" section");
|
|
UString info = usprintf("Type: %02Xh\nFull size: %Xh (%u)\nHeader size: %Xh (%u)\nBody size: %Xh (%u)\nCompression type: %02Xh\nDecompressed size: %Xh (%u)",
|
|
sectionHeader->Type,
|
|
section.size(), section.size(),
|
|
headerSize, headerSize,
|
|
body.size(), body.size(),
|
|
compressionType,
|
|
uncompressedLength, uncompressedLength);
|
|
|
|
// Construct parsing data
|
|
pdata.offset += parentOffset;
|
|
pdata.section.compressed.compressionType = compressionType;
|
|
pdata.section.compressed.uncompressedSize = uncompressedLength;
|
|
|
|
// Add tree item
|
|
if (!preparse) {
|
|
index = model->addItem(Types::Section, sectionHeader->Type, name, UString(), info, header, body, UByteArray(), true, parsingDataToUByteArray(pdata), parent);
|
|
}
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseGuidedSectionHeader(const UByteArray & section, const UINT32 parentOffset, const UModelIndex & parent, UModelIndex & index, const bool preparse)
|
|
{
|
|
// Check sanity
|
|
if ((UINT32)section.size() < sizeof(EFI_COMMON_SECTION_HEADER))
|
|
return U_INVALID_SECTION;
|
|
|
|
// Get data from parent's parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(parent);
|
|
|
|
// Obtain header fields
|
|
UINT32 headerSize;
|
|
EFI_GUID guid;
|
|
UINT16 dataOffset;
|
|
UINT16 attributes;
|
|
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(section.constData());
|
|
const EFI_COMMON_SECTION_HEADER2* section2Header = (const EFI_COMMON_SECTION_HEADER2*)(section.constData());
|
|
const EFI_COMMON_SECTION_HEADER_APPLE* appleHeader = (const EFI_COMMON_SECTION_HEADER_APPLE*)(section.constData());
|
|
|
|
if ((UINT32)section.size() >= sizeof(EFI_COMMON_SECTION_HEADER_APPLE) && appleHeader->Reserved == EFI_SECTION_APPLE_USED) { // Check for apple section
|
|
const EFI_GUID_DEFINED_SECTION_APPLE* appleSectionHeader = (const EFI_GUID_DEFINED_SECTION_APPLE*)(appleHeader + 1);
|
|
headerSize = sizeof(EFI_COMMON_SECTION_HEADER_APPLE) + sizeof(EFI_GUID_DEFINED_SECTION_APPLE);
|
|
if ((UINT32)section.size() < headerSize)
|
|
return U_INVALID_SECTION;
|
|
guid = appleSectionHeader->SectionDefinitionGuid;
|
|
dataOffset = appleSectionHeader->DataOffset;
|
|
attributes = appleSectionHeader->Attributes;
|
|
}
|
|
else if (pdata.ffsVersion == 3 && uint24ToUint32(sectionHeader->Size) == EFI_SECTION2_IS_USED) { // Check for extended header section
|
|
const EFI_GUID_DEFINED_SECTION* guidDefinedSectionHeader = (const EFI_GUID_DEFINED_SECTION*)(section2Header + 1);
|
|
if ((UINT32)section.size() < sizeof(EFI_COMMON_SECTION_HEADER2) + sizeof(EFI_GUID_DEFINED_SECTION))
|
|
return U_INVALID_SECTION;
|
|
headerSize = sizeof(EFI_COMMON_SECTION_HEADER2) + sizeof(EFI_GUID_DEFINED_SECTION);
|
|
guid = guidDefinedSectionHeader->SectionDefinitionGuid;
|
|
dataOffset = guidDefinedSectionHeader->DataOffset;
|
|
attributes = guidDefinedSectionHeader->Attributes;
|
|
}
|
|
else { // Normal section
|
|
const EFI_GUID_DEFINED_SECTION* guidDefinedSectionHeader = (const EFI_GUID_DEFINED_SECTION*)(sectionHeader + 1);
|
|
headerSize = sizeof(EFI_COMMON_SECTION_HEADER) + sizeof(EFI_GUID_DEFINED_SECTION);
|
|
guid = guidDefinedSectionHeader->SectionDefinitionGuid;
|
|
dataOffset = guidDefinedSectionHeader->DataOffset;
|
|
attributes = guidDefinedSectionHeader->Attributes;
|
|
}
|
|
// Check sanity again
|
|
if ((UINT32)section.size() < headerSize)
|
|
return U_INVALID_SECTION;
|
|
|
|
// Check for special GUIDed sections
|
|
UString additionalInfo;
|
|
UByteArray baGuid((const char*)&guid, sizeof(EFI_GUID));
|
|
bool msgSignedSectionFound = false;
|
|
bool msgNoAuthStatusAttribute = false;
|
|
bool msgNoProcessingRequiredAttributeCompressed = false;
|
|
bool msgNoProcessingRequiredAttributeSigned = false;
|
|
bool msgInvalidCrc = false;
|
|
bool msgUnknownCertType = false;
|
|
bool msgUnknownCertSubtype = false;
|
|
if (baGuid == EFI_GUIDED_SECTION_CRC32) {
|
|
if ((attributes & EFI_GUIDED_SECTION_AUTH_STATUS_VALID) == 0) { // Check that AuthStatusValid attribute is set on compressed GUIDed sections
|
|
msgNoAuthStatusAttribute = true;
|
|
}
|
|
|
|
if ((UINT32)section.size() < headerSize + sizeof(UINT32))
|
|
return U_INVALID_SECTION;
|
|
|
|
UINT32 crc = *(UINT32*)(section.constData() + headerSize);
|
|
additionalInfo += UString("\nChecksum type: CRC32");
|
|
// Calculate CRC32 of section data
|
|
UINT32 calculated = crc32(0, (const UINT8*)section.constData() + dataOffset, section.size() - dataOffset);
|
|
if (crc == calculated) {
|
|
additionalInfo += usprintf("\nChecksum: %08Xh, valid", crc);
|
|
}
|
|
else {
|
|
additionalInfo += usprintf("\nChecksum: %08Xh, invalid, should be %08Xh", crc, calculated);
|
|
msgInvalidCrc = true;
|
|
}
|
|
// No need to change dataOffset here
|
|
}
|
|
else if (baGuid == EFI_GUIDED_SECTION_LZMA || baGuid == EFI_GUIDED_SECTION_TIANO) {
|
|
if ((attributes & EFI_GUIDED_SECTION_PROCESSING_REQUIRED) == 0) { // Check that ProcessingRequired attribute is set on compressed GUIDed sections
|
|
msgNoProcessingRequiredAttributeCompressed = true;
|
|
}
|
|
// No need to change dataOffset here
|
|
}
|
|
else if (baGuid == EFI_FIRMWARE_CONTENTS_SIGNED_GUID) {
|
|
if ((attributes & EFI_GUIDED_SECTION_PROCESSING_REQUIRED) == 0) { // Check that ProcessingRequired attribute is set on signed GUIDed sections
|
|
msgNoProcessingRequiredAttributeSigned = true;
|
|
}
|
|
|
|
// Get certificate type and length
|
|
if ((UINT32)section.size() < headerSize + sizeof(WIN_CERTIFICATE))
|
|
return U_INVALID_SECTION;
|
|
|
|
const WIN_CERTIFICATE* winCertificate = (const WIN_CERTIFICATE*)(section.constData() + headerSize);
|
|
UINT32 certLength = winCertificate->Length;
|
|
UINT16 certType = winCertificate->CertificateType;
|
|
|
|
// Adjust dataOffset
|
|
dataOffset += certLength;
|
|
|
|
// Check section size once again
|
|
if ((UINT32)section.size() < dataOffset)
|
|
return U_INVALID_SECTION;
|
|
|
|
// Check certificate type
|
|
if (certType == WIN_CERT_TYPE_EFI_GUID) {
|
|
additionalInfo += UString("\nCertificate type: UEFI");
|
|
|
|
// Get certificate GUID
|
|
const WIN_CERTIFICATE_UEFI_GUID* winCertificateUefiGuid = (const WIN_CERTIFICATE_UEFI_GUID*)(section.constData() + headerSize);
|
|
UByteArray certTypeGuid((const char*)&winCertificateUefiGuid->CertType, sizeof(EFI_GUID));
|
|
|
|
if (certTypeGuid == EFI_CERT_TYPE_RSA2048_SHA256_GUID) {
|
|
additionalInfo += UString("\nCertificate subtype: RSA2048/SHA256");
|
|
}
|
|
else {
|
|
additionalInfo += UString("\nCertificate subtype: unknown, GUID ") + guidToUString(winCertificateUefiGuid->CertType);
|
|
msgUnknownCertSubtype = true;
|
|
}
|
|
}
|
|
else {
|
|
additionalInfo += usprintf("\nCertificate type: unknown (%04Xh)", certType);
|
|
msgUnknownCertType = true;
|
|
}
|
|
msgSignedSectionFound = true;
|
|
}
|
|
|
|
UByteArray header = section.left(dataOffset);
|
|
UByteArray body = section.mid(dataOffset);
|
|
|
|
// Get info
|
|
UString name = guidToUString(guid);
|
|
UString info = UString("Section GUID: ") + name +
|
|
usprintf("\nType: %02Xh\nFull size: %Xh (%u)\nHeader size: %Xh (%u)\nBody size: %Xh (%u)\nData offset: %Xh\nAttributes: %04Xh",
|
|
sectionHeader->Type,
|
|
section.size(), section.size(),
|
|
header.size(), header.size(),
|
|
body.size(), body.size(),
|
|
dataOffset,
|
|
attributes);
|
|
|
|
// Append additional info
|
|
info += additionalInfo;
|
|
|
|
// Construct parsing data
|
|
pdata.offset += parentOffset;
|
|
pdata.section.guidDefined.guid = guid;
|
|
|
|
// Add tree item
|
|
if (!preparse) {
|
|
index = model->addItem(Types::Section, sectionHeader->Type, name, UString(), info, header, body, UByteArray(), false, parsingDataToUByteArray(pdata), parent);
|
|
|
|
// Show messages
|
|
if (msgSignedSectionFound)
|
|
msg(UString("parseGuidedSectionHeader: section signature may become invalid after any modification"), index);
|
|
if (msgNoAuthStatusAttribute)
|
|
msg(UString("parseGuidedSectionHeader: CRC32 GUIDed section without AuthStatusValid attribute"), index);
|
|
if (msgNoProcessingRequiredAttributeCompressed)
|
|
msg(UString("parseGuidedSectionHeader: compressed GUIDed section without ProcessingRequired attribute"), index);
|
|
if (msgNoProcessingRequiredAttributeSigned)
|
|
msg(UString("parseGuidedSectionHeader: signed GUIDed section without ProcessingRequired attribute"), index);
|
|
if (msgInvalidCrc)
|
|
msg(UString("parseGuidedSectionHeader: GUID defined section with invalid CRC32"), index);
|
|
if (msgUnknownCertType)
|
|
msg(UString("parseGuidedSectionHeader: signed GUIDed section with unknown type"), index);
|
|
if (msgUnknownCertSubtype)
|
|
msg(UString("parseGuidedSectionHeader: signed GUIDed section with unknown subtype"), index);
|
|
}
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseFreeformGuidedSectionHeader(const UByteArray & section, const UINT32 parentOffset, const UModelIndex & parent, UModelIndex & index, const bool preparse)
|
|
{
|
|
// Check sanity
|
|
if ((UINT32)section.size() < sizeof(EFI_COMMON_SECTION_HEADER))
|
|
return U_INVALID_SECTION;
|
|
|
|
// Get data from parent's parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(parent);
|
|
|
|
// Obtain header fields
|
|
UINT32 headerSize;
|
|
EFI_GUID guid;
|
|
UINT8 type;
|
|
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(section.constData());
|
|
const EFI_COMMON_SECTION_HEADER2* section2Header = (const EFI_COMMON_SECTION_HEADER2*)(section.constData());
|
|
const EFI_COMMON_SECTION_HEADER_APPLE* appleHeader = (const EFI_COMMON_SECTION_HEADER_APPLE*)(section.constData());
|
|
|
|
if ((UINT32)section.size() >= sizeof(EFI_COMMON_SECTION_HEADER_APPLE) && appleHeader->Reserved == EFI_SECTION_APPLE_USED) { // Check for apple section
|
|
const EFI_FREEFORM_SUBTYPE_GUID_SECTION* appleSectionHeader = (const EFI_FREEFORM_SUBTYPE_GUID_SECTION*)(appleHeader + 1);
|
|
headerSize = sizeof(EFI_COMMON_SECTION_HEADER_APPLE) + sizeof(EFI_FREEFORM_SUBTYPE_GUID_SECTION);
|
|
guid = appleSectionHeader->SubTypeGuid;
|
|
type = appleHeader->Type;
|
|
}
|
|
else if (pdata.ffsVersion == 3 && uint24ToUint32(sectionHeader->Size) == EFI_SECTION2_IS_USED) { // Check for extended header section
|
|
const EFI_FREEFORM_SUBTYPE_GUID_SECTION* fsgSectionHeader = (const EFI_FREEFORM_SUBTYPE_GUID_SECTION*)(section2Header + 1);
|
|
if ((UINT32)section.size() < sizeof(EFI_COMMON_SECTION_HEADER2) + sizeof(EFI_FREEFORM_SUBTYPE_GUID_SECTION))
|
|
return U_INVALID_SECTION;
|
|
headerSize = sizeof(EFI_COMMON_SECTION_HEADER2) + sizeof(EFI_FREEFORM_SUBTYPE_GUID_SECTION);
|
|
guid = fsgSectionHeader->SubTypeGuid;
|
|
type = section2Header->Type;
|
|
}
|
|
else { // Normal section
|
|
const EFI_FREEFORM_SUBTYPE_GUID_SECTION* fsgSectionHeader = (const EFI_FREEFORM_SUBTYPE_GUID_SECTION*)(sectionHeader + 1);
|
|
headerSize = sizeof(EFI_COMMON_SECTION_HEADER) + sizeof(EFI_FREEFORM_SUBTYPE_GUID_SECTION);
|
|
guid = fsgSectionHeader->SubTypeGuid;
|
|
type = sectionHeader->Type;
|
|
}
|
|
|
|
// Check sanity again
|
|
if ((UINT32)section.size() < headerSize)
|
|
return U_INVALID_SECTION;
|
|
|
|
UByteArray header = section.left(headerSize);
|
|
UByteArray body = section.mid(headerSize);
|
|
|
|
// Get info
|
|
UString name = sectionTypeToUString(type) + (" section");
|
|
UString info = usprintf("Type: %02Xh\nFull size: %Xh (%u)\nHeader size: %Xh (%u)\nBody size: %Xh (%u)\nSubtype GUID: ",
|
|
type,
|
|
section.size(), section.size(),
|
|
header.size(), header.size(),
|
|
body.size(), body.size())
|
|
+ guidToUString(guid);
|
|
|
|
// Construct parsing data
|
|
pdata.offset += parentOffset;
|
|
pdata.section.freeformSubtypeGuid.guid = guid;
|
|
|
|
// Add tree item
|
|
if (!preparse) {
|
|
index = model->addItem(Types::Section, type, name, UString(), info, header, body, UByteArray(), false, parsingDataToUByteArray(pdata), parent);
|
|
|
|
// Rename section
|
|
model->setName(index, guidToUString(guid));
|
|
}
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseVersionSectionHeader(const UByteArray & section, const UINT32 parentOffset, const UModelIndex & parent, UModelIndex & index, const bool preparse)
|
|
{
|
|
// Check sanity
|
|
if ((UINT32)section.size() < sizeof(EFI_COMMON_SECTION_HEADER))
|
|
return U_INVALID_SECTION;
|
|
|
|
// Get data from parent's parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(parent);
|
|
|
|
// Obtain header fields
|
|
UINT32 headerSize;
|
|
UINT16 buildNumber;
|
|
UINT8 type;
|
|
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(section.constData());
|
|
const EFI_COMMON_SECTION_HEADER2* section2Header = (const EFI_COMMON_SECTION_HEADER2*)(section.constData());
|
|
const EFI_COMMON_SECTION_HEADER_APPLE* appleHeader = (const EFI_COMMON_SECTION_HEADER_APPLE*)(section.constData());
|
|
|
|
if ((UINT32)section.size() >= sizeof(EFI_COMMON_SECTION_HEADER_APPLE) && appleHeader->Reserved == EFI_SECTION_APPLE_USED) { // Check for apple section
|
|
const EFI_VERSION_SECTION* versionHeader = (const EFI_VERSION_SECTION*)(appleHeader + 1);
|
|
headerSize = sizeof(EFI_COMMON_SECTION_HEADER_APPLE) + sizeof(EFI_VERSION_SECTION);
|
|
buildNumber = versionHeader->BuildNumber;
|
|
type = appleHeader->Type;
|
|
}
|
|
else if (pdata.ffsVersion == 3 && uint24ToUint32(sectionHeader->Size) == EFI_SECTION2_IS_USED) { // Check for extended header section
|
|
const EFI_VERSION_SECTION* versionHeader = (const EFI_VERSION_SECTION*)(section2Header + 1);
|
|
headerSize = sizeof(EFI_COMMON_SECTION_HEADER2) + sizeof(EFI_VERSION_SECTION);
|
|
buildNumber = versionHeader->BuildNumber;
|
|
type = section2Header->Type;
|
|
}
|
|
else { // Normal section
|
|
const EFI_VERSION_SECTION* versionHeader = (const EFI_VERSION_SECTION*)(sectionHeader + 1);
|
|
headerSize = sizeof(EFI_COMMON_SECTION_HEADER) + sizeof(EFI_VERSION_SECTION);
|
|
buildNumber = versionHeader->BuildNumber;
|
|
type = sectionHeader->Type;
|
|
}
|
|
|
|
// Check sanity again
|
|
if ((UINT32)section.size() < headerSize)
|
|
return U_INVALID_SECTION;
|
|
|
|
UByteArray header = section.left(headerSize);
|
|
UByteArray body = section.mid(headerSize);
|
|
|
|
// Get info
|
|
UString name = sectionTypeToUString(type) + (" section");
|
|
UString info = usprintf("Type: %02Xh\nFull size: %Xh (%u)\nHeader size: %Xh (%u)\nBody size: %Xh (%u)\nBuild number: %u",
|
|
type,
|
|
section.size(), section.size(),
|
|
header.size(), header.size(),
|
|
body.size(), body.size(),
|
|
buildNumber);
|
|
|
|
// Construct parsing data
|
|
pdata.offset += parentOffset;
|
|
|
|
// Add tree item
|
|
if (!preparse) {
|
|
index = model->addItem(Types::Section, type, name, UString(), info, header, body, UByteArray(), false, parsingDataToUByteArray(pdata), parent);
|
|
}
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parsePostcodeSectionHeader(const UByteArray & section, const UINT32 parentOffset, const UModelIndex & parent, UModelIndex & index, const bool preparse)
|
|
{
|
|
// Check sanity
|
|
if ((UINT32)section.size() < sizeof(EFI_COMMON_SECTION_HEADER))
|
|
return U_INVALID_SECTION;
|
|
|
|
// Get data from parent's parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(parent);
|
|
|
|
// Obtain header fields
|
|
UINT32 headerSize;
|
|
UINT32 postCode;
|
|
UINT8 type;
|
|
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(section.constData());
|
|
const EFI_COMMON_SECTION_HEADER2* section2Header = (const EFI_COMMON_SECTION_HEADER2*)(section.constData());
|
|
const EFI_COMMON_SECTION_HEADER_APPLE* appleHeader = (const EFI_COMMON_SECTION_HEADER_APPLE*)(section.constData());
|
|
|
|
if ((UINT32)section.size() >= sizeof(EFI_COMMON_SECTION_HEADER_APPLE) && appleHeader->Reserved == EFI_SECTION_APPLE_USED) { // Check for apple section
|
|
const POSTCODE_SECTION* postcodeHeader = (const POSTCODE_SECTION*)(appleHeader + 1);
|
|
headerSize = sizeof(EFI_COMMON_SECTION_HEADER_APPLE) + sizeof(POSTCODE_SECTION);
|
|
postCode = postcodeHeader->Postcode;
|
|
type = appleHeader->Type;
|
|
}
|
|
else if (pdata.ffsVersion == 3 && uint24ToUint32(sectionHeader->Size) == EFI_SECTION2_IS_USED) { // Check for extended header section
|
|
const POSTCODE_SECTION* postcodeHeader = (const POSTCODE_SECTION*)(section2Header + 1);
|
|
headerSize = sizeof(EFI_COMMON_SECTION_HEADER2) + sizeof(POSTCODE_SECTION);
|
|
postCode = postcodeHeader->Postcode;
|
|
type = section2Header->Type;
|
|
}
|
|
else { // Normal section
|
|
const POSTCODE_SECTION* postcodeHeader = (const POSTCODE_SECTION*)(sectionHeader + 1);
|
|
headerSize = sizeof(EFI_COMMON_SECTION_HEADER) + sizeof(POSTCODE_SECTION);
|
|
postCode = postcodeHeader->Postcode;
|
|
type = sectionHeader->Type;
|
|
}
|
|
|
|
// Check sanity again
|
|
if ((UINT32)section.size() < headerSize)
|
|
return U_INVALID_SECTION;
|
|
|
|
UByteArray header = section.left(headerSize);
|
|
UByteArray body = section.mid(headerSize);
|
|
|
|
// Get info
|
|
UString name = sectionTypeToUString(type) + (" section");
|
|
UString info = usprintf("Type: %02Xh\nFull size: %Xh (%u)\nHeader size: %Xh (%u)\nBody size: %Xh (%u)\nPostcode: %Xh",
|
|
type,
|
|
section.size(), section.size(),
|
|
header.size(), header.size(),
|
|
body.size(), body.size(),
|
|
postCode);
|
|
|
|
// Construct parsing data
|
|
pdata.offset += parentOffset;
|
|
|
|
// Add tree item
|
|
if (!preparse) {
|
|
index = model->addItem(Types::Section, sectionHeader->Type, name, UString(), info, header, body, UByteArray(), false, parsingDataToUByteArray(pdata), parent);
|
|
}
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
|
|
USTATUS FfsParser::parseSectionBody(const UModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return U_INVALID_PARAMETER;
|
|
UByteArray header = model->header(index);
|
|
if ((UINT32)header.size() < sizeof(EFI_COMMON_SECTION_HEADER))
|
|
return U_INVALID_SECTION;
|
|
|
|
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(header.constData());
|
|
|
|
switch (sectionHeader->Type) {
|
|
// Encapsulation
|
|
case EFI_SECTION_COMPRESSION: return parseCompressedSectionBody(index);
|
|
case EFI_SECTION_GUID_DEFINED: return parseGuidedSectionBody(index);
|
|
case EFI_SECTION_DISPOSABLE: return parseSections(model->body(index), index);
|
|
// Leaf
|
|
case EFI_SECTION_FREEFORM_SUBTYPE_GUID: return parseRawArea(index);
|
|
case EFI_SECTION_VERSION: return parseVersionSectionBody(index);
|
|
case EFI_SECTION_DXE_DEPEX:
|
|
case EFI_SECTION_PEI_DEPEX:
|
|
case EFI_SECTION_SMM_DEPEX: return parseDepexSectionBody(index);
|
|
case EFI_SECTION_TE: return parseTeImageSectionBody(index);
|
|
case EFI_SECTION_PE32:
|
|
case EFI_SECTION_PIC: return parsePeImageSectionBody(index);
|
|
case EFI_SECTION_USER_INTERFACE: return parseUiSectionBody(index);
|
|
case EFI_SECTION_FIRMWARE_VOLUME_IMAGE: return parseRawArea(index);
|
|
case EFI_SECTION_RAW: return parseRawSectionBody(index);
|
|
// No parsing needed
|
|
case EFI_SECTION_COMPATIBILITY16:
|
|
case PHOENIX_SECTION_POSTCODE:
|
|
case INSYDE_SECTION_POSTCODE:
|
|
default:
|
|
return U_SUCCESS;
|
|
}
|
|
}
|
|
|
|
USTATUS FfsParser::parseCompressedSectionBody(const UModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return U_INVALID_PARAMETER;
|
|
|
|
// Get data from parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(index);
|
|
UINT8 algorithm = pdata.section.compressed.compressionType;
|
|
|
|
// Decompress section
|
|
UByteArray decompressed;
|
|
UByteArray efiDecompressed;
|
|
USTATUS result = decompress(model->body(index), algorithm, decompressed, efiDecompressed);
|
|
if (result) {
|
|
msg(UString("parseCompressedSectionBody: decompression failed with error ") + errorCodeToUString(result), index);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
// Check reported uncompressed size
|
|
if (pdata.section.compressed.uncompressedSize != (UINT32)decompressed.size()) {
|
|
msg(usprintf("parseCompressedSectionBody: decompressed size stored in header %Xh (%u) differs from actual %Xh (%u)",
|
|
pdata.section.compressed.uncompressedSize,
|
|
pdata.section.compressed.uncompressedSize,
|
|
decompressed.size(),
|
|
decompressed.size()), index);
|
|
model->addInfo(index, usprintf("\nActual decompressed size: %Xh (%u)", decompressed.size(), decompressed.size()));
|
|
}
|
|
|
|
// Check for undecided compression algorithm, this is a special case
|
|
if (algorithm == COMPRESSION_ALGORITHM_UNDECIDED) {
|
|
// Try preparse of sections decompressed with Tiano algorithm
|
|
if (U_SUCCESS == parseSections(decompressed, index, true)) {
|
|
algorithm = COMPRESSION_ALGORITHM_TIANO;
|
|
}
|
|
// Try preparse of sections decompressed with EFI 1.1 algorithm
|
|
else if (U_SUCCESS == parseSections(efiDecompressed, index, true)) {
|
|
algorithm = COMPRESSION_ALGORITHM_EFI11;
|
|
decompressed = efiDecompressed;
|
|
}
|
|
else {
|
|
msg(UString("parseCompressedSectionBody: can't guess the correct decompression algorithm, both preparse steps are failed"), index);
|
|
}
|
|
}
|
|
|
|
// Add info
|
|
model->addInfo(index, UString("\nCompression algorithm: ") + compressionTypeToUString(algorithm));
|
|
|
|
// Update data
|
|
pdata.section.compressed.algorithm = algorithm;
|
|
if (algorithm != COMPRESSION_ALGORITHM_NONE)
|
|
model->setCompressed(index, true);
|
|
model->setParsingData(index, parsingDataToUByteArray(pdata));
|
|
|
|
// Parse decompressed data
|
|
return parseSections(decompressed, index);
|
|
}
|
|
|
|
USTATUS FfsParser::parseGuidedSectionBody(const UModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return U_INVALID_PARAMETER;
|
|
|
|
// Get data from parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(index);
|
|
EFI_GUID guid = pdata.section.guidDefined.guid;
|
|
|
|
// Check if section requires processing
|
|
UByteArray processed = model->body(index);
|
|
UByteArray efiDecompressed;
|
|
UString info;
|
|
bool parseCurrentSection = true;
|
|
UINT8 algorithm = COMPRESSION_ALGORITHM_NONE;
|
|
// Tiano compressed section
|
|
if (UByteArray((const char*)&guid, sizeof(EFI_GUID)) == EFI_GUIDED_SECTION_TIANO) {
|
|
algorithm = EFI_STANDARD_COMPRESSION;
|
|
USTATUS result = decompress(model->body(index), algorithm, processed, efiDecompressed);
|
|
if (result) {
|
|
parseCurrentSection = false;
|
|
msg(UString("parseGuidedSectionBody: decompression failed with error ") + errorCodeToUString(result), index);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
// Check for undecided compression algorithm, this is a special case
|
|
if (algorithm == COMPRESSION_ALGORITHM_UNDECIDED) {
|
|
// Try preparse of sections decompressed with Tiano algorithm
|
|
if (U_SUCCESS == parseSections(processed, index, true)) {
|
|
algorithm = COMPRESSION_ALGORITHM_TIANO;
|
|
}
|
|
// Try preparse of sections decompressed with EFI 1.1 algorithm
|
|
else if (U_SUCCESS == parseSections(efiDecompressed, index, true)) {
|
|
algorithm = COMPRESSION_ALGORITHM_EFI11;
|
|
processed = efiDecompressed;
|
|
}
|
|
else {
|
|
msg(UString("parseGuidedSectionBody: can't guess the correct decompression algorithm, both preparse steps are failed"), index);
|
|
parseCurrentSection = false;
|
|
}
|
|
}
|
|
|
|
info += UString("\nCompression algorithm: ") + compressionTypeToUString(algorithm);
|
|
info += usprintf("\nDecompressed size: %Xh (%u)", processed.length(), processed.length());
|
|
}
|
|
// LZMA compressed section
|
|
else if (UByteArray((const char*)&guid, sizeof(EFI_GUID)) == EFI_GUIDED_SECTION_LZMA) {
|
|
algorithm = EFI_CUSTOMIZED_COMPRESSION;
|
|
USTATUS result = decompress(model->body(index), algorithm, processed, efiDecompressed);
|
|
if (result) {
|
|
parseCurrentSection = false;
|
|
msg(UString("parseGuidedSectionBody: decompression failed with error ") + errorCodeToUString(result), index);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
if (algorithm == COMPRESSION_ALGORITHM_LZMA) {
|
|
info += UString("\nCompression algorithm: LZMA");
|
|
info += usprintf("\nDecompressed size: %Xh (%u)", processed.length(), processed.length());
|
|
}
|
|
else {
|
|
info += UString("\nCompression algorithm: unknown");
|
|
parseCurrentSection = false;
|
|
}
|
|
}
|
|
|
|
// Add info
|
|
model->addInfo(index, info);
|
|
|
|
// Update data
|
|
if (algorithm != COMPRESSION_ALGORITHM_NONE)
|
|
model->setCompressed(index, true);
|
|
model->setParsingData(index, parsingDataToUByteArray(pdata));
|
|
|
|
if (!parseCurrentSection) {
|
|
msg(UString("parseGuidedSectionBody: GUID defined section can not be processed"), index);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
return parseSections(processed, index);
|
|
}
|
|
|
|
USTATUS FfsParser::parseVersionSectionBody(const UModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return U_INVALID_PARAMETER;
|
|
|
|
// Add info
|
|
model->addInfo(index, UString("\nVersion string: ") + UString::fromUtf16((const CHAR16*)model->body(index).constData()));
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseDepexSectionBody(const UModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return U_INVALID_PARAMETER;
|
|
|
|
UByteArray body = model->body(index);
|
|
UString parsed;
|
|
|
|
// Check data to be present
|
|
if (body.size() < 2) { // 2 is a minimal sane value, i.e TRUE + END
|
|
msg(UString("parseDepexSectionBody: DEPEX section too short"), index);
|
|
return U_DEPEX_PARSE_FAILED;
|
|
}
|
|
|
|
const EFI_GUID * guid;
|
|
const UINT8* current = (const UINT8*)body.constData();
|
|
|
|
// Special cases of first opcode
|
|
switch (*current) {
|
|
case EFI_DEP_BEFORE:
|
|
if (body.size() != 2 * EFI_DEP_OPCODE_SIZE + sizeof(EFI_GUID)) {
|
|
msg(UString("parseDepexSectionBody: DEPEX section too long for a section starting with BEFORE opcode"), index);
|
|
return U_SUCCESS;
|
|
}
|
|
guid = (const EFI_GUID*)(current + EFI_DEP_OPCODE_SIZE);
|
|
parsed += UString("\nBEFORE ") + guidToUString(*guid);
|
|
current += EFI_DEP_OPCODE_SIZE + sizeof(EFI_GUID);
|
|
if (*current != EFI_DEP_END){
|
|
msg(UString("parseDepexSectionBody: DEPEX section ends with non-END opcode"), index);
|
|
return U_SUCCESS;
|
|
}
|
|
return U_SUCCESS;
|
|
case EFI_DEP_AFTER:
|
|
if (body.size() != 2 * EFI_DEP_OPCODE_SIZE + sizeof(EFI_GUID)){
|
|
msg(UString("parseDepexSectionBody: DEPEX section too long for a section starting with AFTER opcode"), index);
|
|
return U_SUCCESS;
|
|
}
|
|
guid = (const EFI_GUID*)(current + EFI_DEP_OPCODE_SIZE);
|
|
parsed += UString("\nAFTER ") + guidToUString(*guid);
|
|
current += EFI_DEP_OPCODE_SIZE + sizeof(EFI_GUID);
|
|
if (*current != EFI_DEP_END) {
|
|
msg(UString("parseDepexSectionBody: DEPEX section ends with non-END opcode"), index);
|
|
return U_SUCCESS;
|
|
}
|
|
return U_SUCCESS;
|
|
case EFI_DEP_SOR:
|
|
if (body.size() <= 2 * EFI_DEP_OPCODE_SIZE) {
|
|
msg(UString("parseDepexSectionBody: DEPEX section too short for a section starting with SOR opcode"), index);
|
|
return U_SUCCESS;
|
|
}
|
|
parsed += UString("\nSOR");
|
|
current += EFI_DEP_OPCODE_SIZE;
|
|
break;
|
|
}
|
|
|
|
// Parse the rest of depex
|
|
while (current - (const UINT8*)body.constData() < body.size()) {
|
|
switch (*current) {
|
|
case EFI_DEP_BEFORE: {
|
|
msg(UString("parseDepexSectionBody: misplaced BEFORE opcode"), index);
|
|
return U_SUCCESS;
|
|
}
|
|
case EFI_DEP_AFTER: {
|
|
msg(UString("parseDepexSectionBody: misplaced AFTER opcode"), index);
|
|
return U_SUCCESS;
|
|
}
|
|
case EFI_DEP_SOR: {
|
|
msg(UString("parseDepexSectionBody: misplaced SOR opcode"), index);
|
|
return U_SUCCESS;
|
|
}
|
|
case EFI_DEP_PUSH:
|
|
// Check that the rest of depex has correct size
|
|
if ((UINT32)body.size() - (UINT32)(current - (const UINT8*)body.constData()) <= EFI_DEP_OPCODE_SIZE + sizeof(EFI_GUID)) {
|
|
parsed.clear();
|
|
msg(UString("parseDepexSectionBody: remains of DEPEX section too short for PUSH opcode"), index);
|
|
return U_SUCCESS;
|
|
}
|
|
guid = (const EFI_GUID*)(current + EFI_DEP_OPCODE_SIZE);
|
|
parsed += UString("\nPUSH ") + guidToUString(*guid);
|
|
current += EFI_DEP_OPCODE_SIZE + sizeof(EFI_GUID);
|
|
break;
|
|
case EFI_DEP_AND:
|
|
parsed += UString("\nAND");
|
|
current += EFI_DEP_OPCODE_SIZE;
|
|
break;
|
|
case EFI_DEP_OR:
|
|
parsed += UString("\nOR");
|
|
current += EFI_DEP_OPCODE_SIZE;
|
|
break;
|
|
case EFI_DEP_NOT:
|
|
parsed += UString("\nNOT");
|
|
current += EFI_DEP_OPCODE_SIZE;
|
|
break;
|
|
case EFI_DEP_TRUE:
|
|
parsed += UString("\nTRUE");
|
|
current += EFI_DEP_OPCODE_SIZE;
|
|
break;
|
|
case EFI_DEP_FALSE:
|
|
parsed += UString("\nFALSE");
|
|
current += EFI_DEP_OPCODE_SIZE;
|
|
break;
|
|
case EFI_DEP_END:
|
|
parsed += UString("\nEND");
|
|
current += EFI_DEP_OPCODE_SIZE;
|
|
// Check that END is the last opcode
|
|
if (current - (const UINT8*)body.constData() < body.size()) {
|
|
parsed.clear();
|
|
msg(UString("parseDepexSectionBody: DEPEX section ends with non-END opcode"), index);
|
|
}
|
|
break;
|
|
default:
|
|
msg(UString("parseDepexSectionBody: unknown opcode"), index);
|
|
return U_SUCCESS;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Add info
|
|
model->addInfo(index, UString("\nParsed expression:") + parsed);
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseUiSectionBody(const UModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return U_INVALID_PARAMETER;
|
|
|
|
UString text = UString::fromUtf16((const CHAR16*)model->body(index).constData());
|
|
|
|
// Add info
|
|
model->addInfo(index, UString("\nText: ") + text);
|
|
|
|
// Rename parent file
|
|
model->setText(model->findParentOfType(index, Types::File), text);
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseAprioriRawSection(const UByteArray & body, UString & parsed)
|
|
{
|
|
// Sanity check
|
|
if (body.size() % sizeof(EFI_GUID)) {
|
|
msg(UString("parseAprioriRawSection: apriori file has size is not a multiple of 16"));
|
|
}
|
|
parsed.clear();
|
|
UINT32 count = body.size() / sizeof(EFI_GUID);
|
|
if (count > 0) {
|
|
for (UINT32 i = 0; i < count; i++) {
|
|
const EFI_GUID* guid = (const EFI_GUID*)body.constData() + i;
|
|
parsed += UString("\n") + guidToUString(*guid);
|
|
}
|
|
}
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseRawSectionBody(const UModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return U_INVALID_PARAMETER;
|
|
|
|
// Check for apriori file
|
|
UModelIndex parentFile = model->findParentOfType(index, Types::File);
|
|
|
|
// Get parent file parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(parentFile);
|
|
UByteArray parentFileGuid((const char*)&pdata.file.guid, sizeof(EFI_GUID));
|
|
|
|
if (parentFileGuid == EFI_PEI_APRIORI_FILE_GUID) { // PEI apriori file
|
|
// Parse apriori file list
|
|
UString str;
|
|
USTATUS result = parseAprioriRawSection(model->body(index), str);
|
|
if (!result && !str.isEmpty())
|
|
model->addInfo(index, UString("\nFile list:") + str);
|
|
|
|
// Set parent file text
|
|
model->setText(parentFile, UString("PEI apriori file"));
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
else if (parentFileGuid == EFI_DXE_APRIORI_FILE_GUID) { // DXE apriori file
|
|
// Parse apriori file list
|
|
UString str;
|
|
USTATUS result = parseAprioriRawSection(model->body(index), str);
|
|
if (!result && !str.isEmpty())
|
|
model->addInfo(index, UString("\nFile list:") + str);
|
|
|
|
// Set parent file text
|
|
model->setText(parentFile, UString("DXE apriori file"));
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
else if (parentFileGuid == NVRAM_NVAR_EXTERNAL_DEFAULTS_FILE_GUID) {
|
|
// Parse NVAR area
|
|
parseNvarStore(index);
|
|
|
|
// Set parent file text
|
|
model->setText(parentFile, UString("NVRAM external defaults"));
|
|
}
|
|
|
|
// Parse as raw area
|
|
return parseRawArea(index);
|
|
}
|
|
|
|
|
|
USTATUS FfsParser::parsePeImageSectionBody(const UModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return U_INVALID_PARAMETER;
|
|
|
|
// Get section body
|
|
UByteArray body = model->body(index);
|
|
if ((UINT32)body.size() < sizeof(EFI_IMAGE_DOS_HEADER)) {
|
|
msg(UString("parsePeImageSectionBody: section body size is smaller than DOS header size"), index);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
UString info;
|
|
const EFI_IMAGE_DOS_HEADER* dosHeader = (const EFI_IMAGE_DOS_HEADER*)body.constData();
|
|
if (dosHeader->e_magic != EFI_IMAGE_DOS_SIGNATURE) {
|
|
info += usprintf("\nDOS signature: %04Xh, invalid", dosHeader->e_magic);
|
|
msg(UString("parsePeImageSectionBody: PE32 image with invalid DOS signature"), index);
|
|
model->addInfo(index, info);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
const EFI_IMAGE_PE_HEADER* peHeader = (EFI_IMAGE_PE_HEADER*)(body.constData() + dosHeader->e_lfanew);
|
|
if (body.size() < (UINT8*)peHeader - (UINT8*)dosHeader) {
|
|
info += UString("\nDOS header: invalid");
|
|
msg(UString("parsePeImageSectionBody: PE32 image with invalid DOS header"), index);
|
|
model->addInfo(index, info);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
if (peHeader->Signature != EFI_IMAGE_PE_SIGNATURE) {
|
|
info += usprintf("\nPE signature: %08Xh, invalid", peHeader->Signature);
|
|
msg(UString("parsePeImageSectionBody: PE32 image with invalid PE signature"), index);
|
|
model->addInfo(index, info);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
const EFI_IMAGE_FILE_HEADER* imageFileHeader = (const EFI_IMAGE_FILE_HEADER*)(peHeader + 1);
|
|
if (body.size() < (UINT8*)imageFileHeader - (UINT8*)dosHeader) {
|
|
info += UString("\nPE header: invalid");
|
|
msg(UString("parsePeImageSectionBody: PE32 image with invalid PE header"), index);
|
|
model->addInfo(index, info);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
info += usprintf("\nDOS signature: %04Xh\nPE signature: %08Xh",
|
|
dosHeader->e_magic,
|
|
peHeader->Signature) +
|
|
UString("\nMachine type: ") + machineTypeToUString(imageFileHeader->Machine) +
|
|
usprintf("\nNumber of sections: %u\nCharacteristics: %04Xh",
|
|
imageFileHeader->NumberOfSections,
|
|
imageFileHeader->Characteristics);
|
|
|
|
EFI_IMAGE_OPTIONAL_HEADER_POINTERS_UNION optionalHeader;
|
|
optionalHeader.H32 = (const EFI_IMAGE_OPTIONAL_HEADER32*)(imageFileHeader + 1);
|
|
if (body.size() < (UINT8*)optionalHeader.H32 - (UINT8*)dosHeader) {
|
|
info += UString("\nPE optional header: invalid");
|
|
msg(UString("parsePeImageSectionBody: PE32 image with invalid PE optional header"), index);
|
|
model->addInfo(index, info);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
if (optionalHeader.H32->Magic == EFI_IMAGE_PE_OPTIONAL_HDR32_MAGIC) {
|
|
info += usprintf("\nOptional header signature: %04Xh\nSubsystem: %04Xh\nAddress of entry point: %Xh\nBase of code: %Xh\nImage base: %Xh",
|
|
optionalHeader.H32->Magic,
|
|
optionalHeader.H32->Subsystem,
|
|
optionalHeader.H32->AddressOfEntryPoint,
|
|
optionalHeader.H32->BaseOfCode,
|
|
optionalHeader.H32->ImageBase);
|
|
}
|
|
else if (optionalHeader.H32->Magic == EFI_IMAGE_PE_OPTIONAL_HDR64_MAGIC) {
|
|
info += usprintf("\nOptional header signature: %04Xh\nSubsystem: %04Xh\nAddress of entry point: %Xh\nBase of code: %Xh\nImage base: %"PRIX64"h",
|
|
optionalHeader.H64->Magic,
|
|
optionalHeader.H64->Subsystem,
|
|
optionalHeader.H64->AddressOfEntryPoint,
|
|
optionalHeader.H64->BaseOfCode,
|
|
optionalHeader.H64->ImageBase);
|
|
}
|
|
else {
|
|
info += usprintf("\nOptional header signature: %04Xh, unknown", optionalHeader.H32->Magic);
|
|
msg(UString("parsePeImageSectionBody: PE32 image with invalid optional PE header signature"), index);
|
|
}
|
|
|
|
model->addInfo(index, info);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
|
|
USTATUS FfsParser::parseTeImageSectionBody(const UModelIndex & index)
|
|
{
|
|
// Check sanity
|
|
if (!index.isValid())
|
|
return U_INVALID_PARAMETER;
|
|
|
|
// Get section body
|
|
UByteArray body = model->body(index);
|
|
if ((UINT32)body.size() < sizeof(EFI_IMAGE_TE_HEADER)) {
|
|
msg(("parsePeImageSectionBody: section body size is smaller than TE header size"), index);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
UString info;
|
|
const EFI_IMAGE_TE_HEADER* teHeader = (const EFI_IMAGE_TE_HEADER*)body.constData();
|
|
if (teHeader->Signature != EFI_IMAGE_TE_SIGNATURE) {
|
|
info += usprintf("\nSignature: %04Xh, invalid", teHeader->Signature);
|
|
msg(UString("parseTeImageSectionBody: TE image with invalid TE signature"), index);
|
|
}
|
|
else {
|
|
info += usprintf("\nSignature: %04Xh", teHeader->Signature) +
|
|
UString("\nMachine type: ") + machineTypeToUString(teHeader->Machine) +
|
|
usprintf("\nNumber of sections: %u\nSubsystem: %02Xh\nStripped size: %Xh (%u)\n"
|
|
"Base of code: %Xh\nAddress of entry point: %Xh\nImage base: %"PRIX64"h\nAdjusted image base: %"PRIX64"h",
|
|
teHeader->NumberOfSections,
|
|
teHeader->Subsystem,
|
|
teHeader->StrippedSize, teHeader->StrippedSize,
|
|
teHeader->BaseOfCode,
|
|
teHeader->AddressOfEntryPoint,
|
|
teHeader->ImageBase,
|
|
teHeader->ImageBase + teHeader->StrippedSize - sizeof(EFI_IMAGE_TE_HEADER));
|
|
}
|
|
|
|
// Get data from parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(index);
|
|
pdata.section.teImage.imageBase = teHeader->ImageBase;
|
|
pdata.section.teImage.adjustedImageBase = teHeader->ImageBase + teHeader->StrippedSize - sizeof(EFI_IMAGE_TE_HEADER);
|
|
|
|
// Update parsing data
|
|
model->setParsingData(index, parsingDataToUByteArray(pdata));
|
|
|
|
// Add TE info
|
|
model->addInfo(index, info);
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
|
|
USTATUS FfsParser::performSecondPass(const UModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid() || !lastVtf.isValid())
|
|
return U_INVALID_PARAMETER;
|
|
|
|
// Check for compressed lastVtf
|
|
if (model->compressed(lastVtf)) {
|
|
msg(UString("performSecondPass: the last VTF appears inside compressed item, the image may be damaged"), lastVtf);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
// Get parsing data for the last VTF
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(lastVtf);
|
|
|
|
// Calculate address difference
|
|
const UINT32 vtfSize = model->header(lastVtf).size() + model->body(lastVtf).size() + model->tail(lastVtf).size();
|
|
const UINT32 diff = 0xFFFFFFFFUL - pdata.offset - vtfSize + 1;
|
|
|
|
// Apply address information to index and all it's child items
|
|
addMemoryAddressesRecursive(index, diff);
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::addMemoryAddressesRecursive(const UModelIndex & index, const UINT32 diff)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return U_SUCCESS;
|
|
|
|
// Set address value for non-compressed data
|
|
if (!model->compressed(index)) {
|
|
// Get parsing data for the current item
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(index);
|
|
|
|
// Check address sanity
|
|
if ((const UINT64)diff + pdata.offset <= 0xFFFFFFFFUL) {
|
|
// Update info
|
|
pdata.address = diff + pdata.offset;
|
|
UINT32 headerSize = model->header(index).size();
|
|
if (headerSize) {
|
|
model->addInfo(index, usprintf("\nHeader memory address: %08Xh", pdata.address));
|
|
model->addInfo(index, usprintf("\nData memory address: %08Xh", pdata.address + headerSize));
|
|
}
|
|
else {
|
|
model->addInfo(index, usprintf("\nMemory address: %08Xh", pdata.address));
|
|
}
|
|
|
|
// Special case of uncompressed TE image sections
|
|
if (model->type(index) == Types::Section && model->subtype(index) == EFI_SECTION_TE) {
|
|
// Check data memory address to be equal to either ImageBase or AdjustedImageBase
|
|
if (pdata.section.teImage.imageBase == pdata.address + headerSize) {
|
|
pdata.section.teImage.revision = 1;
|
|
}
|
|
else if (pdata.section.teImage.adjustedImageBase == pdata.address + headerSize) {
|
|
pdata.section.teImage.revision = 2;
|
|
}
|
|
else {
|
|
msg(UString("addMemoryAddressesRecursive: image base is neither original nor adjusted, it's likely a part of backup PEI volume or DXE volume, but can also be damaged"), index);
|
|
pdata.section.teImage.revision = 0;
|
|
}
|
|
}
|
|
|
|
// Set modified parsing data
|
|
model->setParsingData(index, parsingDataToUByteArray(pdata));
|
|
}
|
|
}
|
|
|
|
// Process child items
|
|
for (int i = 0; i < model->rowCount(index); i++) {
|
|
addMemoryAddressesRecursive(index.child(i, 0), diff);
|
|
}
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::addOffsetsRecursive(const UModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return U_INVALID_PARAMETER;
|
|
|
|
// Get parsing data for the current item
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(index);
|
|
|
|
// Add current offset if the element is not compressed
|
|
// or it's compressed, but it's parent isn't
|
|
if ((!model->compressed(index)) || (index.parent().isValid() && !model->compressed(index.parent()))) {
|
|
model->addInfo(index, usprintf("Offset: %Xh\n", pdata.offset), false);
|
|
}
|
|
|
|
//TODO: show FIT file fixed attribute correctly
|
|
model->addInfo(index, usprintf("\nCompressed: %s", model->compressed(index) ? "Yes" : "No"));
|
|
model->addInfo(index, usprintf("\nFixed: %s", model->fixed(index) ? "Yes" : "No"));
|
|
|
|
// Process child items
|
|
for (int i = 0; i < model->rowCount(index); i++) {
|
|
addOffsetsRecursive(index.child(i, 0));
|
|
}
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseNvarStore(const UModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return U_INVALID_PARAMETER;
|
|
|
|
// Get parsing data for the current item
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(index);
|
|
UINT32 parentOffset = pdata.offset + model->header(index).size();
|
|
|
|
// Get item data
|
|
const UByteArray data = model->body(index);
|
|
|
|
// Rename parent file
|
|
model->setText(model->findParentOfType(index, Types::File), UString("NVAR store"));
|
|
|
|
UINT32 offset = 0;
|
|
UINT32 guidsInStore = 0;
|
|
const UINT8 emptyByte = pdata.emptyByte;
|
|
// Parse all entries
|
|
while (1) {
|
|
bool msgUnknownExtDataFormat = false;
|
|
bool msgExtHeaderTooLong = false;
|
|
bool msgExtDataTooShort = false;
|
|
|
|
bool isInvalid = false;
|
|
bool isInvalidLink = false;
|
|
bool isDataOnly = false;
|
|
bool hasExtendedHeader = false;
|
|
bool hasChecksum = false;
|
|
bool hasTimestampAndHash = false;
|
|
bool hasGuidIndex = false;
|
|
|
|
UINT32 guidIndex = 0;
|
|
UINT8 storedChecksum = 0;
|
|
UINT8 calculatedChecksum = 0;
|
|
UINT32 extendedHeaderSize = 0;
|
|
UINT8 extendedAttributes = 0;
|
|
UINT64 timestamp = 0;
|
|
UByteArray hash;
|
|
|
|
UINT8 subtype = Subtypes::FullNvarEntry;
|
|
UString name;
|
|
UString text;
|
|
UByteArray header;
|
|
UByteArray body;
|
|
UByteArray tail;
|
|
|
|
UINT32 guidAreaSize = guidsInStore * sizeof(EFI_GUID);
|
|
UINT32 unparsedSize = (UINT32)data.size() - offset - guidAreaSize;
|
|
|
|
// Get entry header
|
|
const NVAR_ENTRY_HEADER* entryHeader = (const NVAR_ENTRY_HEADER*)(data.constData() + offset);
|
|
|
|
// Check header size and signature
|
|
if (unparsedSize < sizeof(NVAR_ENTRY_HEADER) ||
|
|
entryHeader->Signature != NVRAM_NVAR_ENTRY_SIGNATURE ||
|
|
unparsedSize < entryHeader->Size) {
|
|
|
|
// Check if the data left is a free space or a padding
|
|
UByteArray padding = data.mid(offset, unparsedSize);
|
|
UINT8 type;
|
|
|
|
if ((UINT32)padding.count(emptyByte) == unparsedSize) {
|
|
// It's a free space
|
|
name = ("Free space");
|
|
type = Types::FreeSpace;
|
|
subtype = 0;
|
|
}
|
|
else {
|
|
// Nothing is parsed yet, but the file is not empty
|
|
if (!offset) {
|
|
msg(UString("parseNvarStore: file can't be parsed as NVAR variables store"), index);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
// It's a padding
|
|
name = UString("Padding");
|
|
type = Types::Padding;
|
|
subtype = getPaddingType(padding);
|
|
}
|
|
// Get info
|
|
UString info = usprintf("Full size: %Xh (%u)", padding.size(), padding.size());
|
|
// Construct parsing data
|
|
pdata.offset = parentOffset + offset;
|
|
// Add tree item
|
|
model->addItem(type, subtype, name, UString(), info, UByteArray(), padding, UByteArray(), false, parsingDataToUByteArray(pdata), index);
|
|
|
|
// Add GUID store area
|
|
UByteArray guidArea = data.right(guidAreaSize);
|
|
// Get info
|
|
name = UString("GUID store area");
|
|
info = usprintf("Full size: %Xh (%u)\nGUIDs in store: %u",
|
|
guidArea.size(), guidArea.size(),
|
|
guidsInStore);
|
|
// Construct parsing data
|
|
pdata.offset = parentOffset + offset + padding.size();
|
|
// Add tree item
|
|
model->addItem(Types::Padding, getPaddingType(guidArea), name, UString(), info, UByteArray(), guidArea, UByteArray(), false, parsingDataToUByteArray(pdata), index);
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
// Contruct generic header and body
|
|
header = data.mid(offset, sizeof(NVAR_ENTRY_HEADER));
|
|
body = data.mid(offset + sizeof(NVAR_ENTRY_HEADER), entryHeader->Size - sizeof(NVAR_ENTRY_HEADER));
|
|
|
|
UINT32 lastVariableFlag = pdata.emptyByte ? 0xFFFFFF : 0;
|
|
|
|
// Set default next to predefined last value
|
|
pdata.nvar.next = lastVariableFlag;
|
|
|
|
// Entry is marked as invalid
|
|
if ((entryHeader->Attributes & NVRAM_NVAR_ENTRY_VALID) == 0) { // Valid attribute is not set
|
|
isInvalid = true;
|
|
// Do not parse further
|
|
goto parsing_done;
|
|
}
|
|
|
|
// Add next node information to parsing data
|
|
if (entryHeader->Next != lastVariableFlag) {
|
|
subtype = Subtypes::LinkNvarEntry;
|
|
pdata.nvar.next = entryHeader->Next;
|
|
}
|
|
|
|
// Entry with extended header
|
|
if (entryHeader->Attributes & NVRAM_NVAR_ENTRY_EXT_HEADER) {
|
|
hasExtendedHeader = true;
|
|
msgUnknownExtDataFormat = true;
|
|
|
|
extendedHeaderSize = *(UINT16*)(body.constData() + body.size() - sizeof(UINT16));
|
|
if (extendedHeaderSize > (UINT32)body.size()) {
|
|
msgExtHeaderTooLong = true;
|
|
isInvalid = true;
|
|
// Do not parse further
|
|
goto parsing_done;
|
|
}
|
|
|
|
extendedAttributes = *(UINT8*)(body.constData() + body.size() - extendedHeaderSize);
|
|
|
|
// Variable with checksum
|
|
if (extendedAttributes & NVRAM_NVAR_ENTRY_EXT_CHECKSUM) {
|
|
// Get stored checksum
|
|
storedChecksum = *(UINT8*)(body.constData() + body.size() - sizeof(UINT16) - sizeof(UINT8));
|
|
|
|
// Recalculate checksum for the variable
|
|
calculatedChecksum = 0;
|
|
// Include entry data
|
|
UINT8* start = (UINT8*)(entryHeader + 1);
|
|
for (UINT8* p = start; p < start + entryHeader->Size - sizeof(NVAR_ENTRY_HEADER); p++) {
|
|
calculatedChecksum += *p;
|
|
}
|
|
// Include entry size and flags
|
|
start = (UINT8*)&entryHeader->Size;
|
|
for (UINT8*p = start; p < start + sizeof(UINT16); p++) {
|
|
calculatedChecksum += *p;
|
|
}
|
|
// Include entry attributes
|
|
calculatedChecksum += entryHeader->Attributes;
|
|
|
|
hasChecksum = true;
|
|
msgUnknownExtDataFormat = false;
|
|
}
|
|
|
|
tail = body.mid(body.size() - extendedHeaderSize);
|
|
body = body.left(body.size() - extendedHeaderSize);
|
|
|
|
// Entry with authenticated write (for SecureBoot)
|
|
if (entryHeader->Attributes & NVRAM_NVAR_ENTRY_AUTH_WRITE) {
|
|
if ((UINT32)tail.size() < sizeof(UINT64) + SHA256_HASH_SIZE) {
|
|
msgExtDataTooShort = true;
|
|
isInvalid = true;
|
|
// Do not parse further
|
|
goto parsing_done;
|
|
}
|
|
|
|
timestamp = *(UINT64*)(tail.constData() + sizeof(UINT8));
|
|
hash = tail.mid(sizeof(UINT64) + sizeof(UINT8), SHA256_HASH_SIZE);
|
|
hasTimestampAndHash = true;
|
|
msgUnknownExtDataFormat = false;
|
|
}
|
|
}
|
|
|
|
// Entry is data-only (nameless and GUIDless entry or link)
|
|
if (entryHeader->Attributes & NVRAM_NVAR_ENTRY_DATA_ONLY) { // Data-only attribute is set
|
|
isInvalidLink = true;
|
|
UModelIndex nvarIndex;
|
|
// Search prevously added entries for a link to this variable //TODO:replace with linked lists
|
|
for (int i = 0; i < model->rowCount(index); i++) {
|
|
nvarIndex = index.child(i, 0);
|
|
PARSING_DATA nvarPdata = parsingDataFromUModelIndex(nvarIndex);
|
|
if (nvarPdata.nvar.isValid && nvarPdata.nvar.next + nvarPdata.offset - parentOffset == offset) { // Previous link is present and valid
|
|
isInvalidLink = false;
|
|
break;
|
|
}
|
|
}
|
|
// Check if the link is valid
|
|
if (!isInvalidLink) {
|
|
// Use the name and text of the previous link
|
|
name = model->name(nvarIndex);
|
|
text = model->text(nvarIndex);
|
|
|
|
if (entryHeader->Next == lastVariableFlag)
|
|
subtype = Subtypes::DataNvarEntry;
|
|
}
|
|
|
|
isDataOnly = true;
|
|
// Do not parse further
|
|
goto parsing_done;
|
|
}
|
|
|
|
// Get entry name
|
|
{
|
|
UINT32 nameOffset = (entryHeader->Attributes & NVRAM_NVAR_ENTRY_GUID) ? sizeof(EFI_GUID) : sizeof(UINT8); // GUID can be stored with the variable or in a separate store, so there will only be an index of it
|
|
CHAR8* namePtr = (CHAR8*)(entryHeader + 1) + nameOffset;
|
|
UINT32 nameSize = 0;
|
|
if (entryHeader->Attributes & NVRAM_NVAR_ENTRY_ASCII_NAME) { // Name is stored as ASCII string of CHAR8s
|
|
text = UString(namePtr);
|
|
nameSize = text.length() + 1;
|
|
}
|
|
else { // Name is stored as UCS2 string of CHAR16s
|
|
text = UString::fromUtf16((CHAR16*)namePtr);
|
|
nameSize = (text.length() + 1) * 2;
|
|
}
|
|
|
|
// Get entry GUID
|
|
if (entryHeader->Attributes & NVRAM_NVAR_ENTRY_GUID) { // GUID is strored in the variable itself
|
|
name = guidToUString(*(EFI_GUID*)(entryHeader + 1));
|
|
}
|
|
// GUID is stored in GUID list at the end of the store
|
|
else {
|
|
guidIndex = *(UINT8*)(entryHeader + 1);
|
|
if (guidsInStore < guidIndex + 1)
|
|
guidsInStore = guidIndex + 1;
|
|
|
|
// The list begins at the end of the store and goes backwards
|
|
const EFI_GUID* guidPtr = (const EFI_GUID*)(data.constData() + data.size()) - 1 - guidIndex;
|
|
name = guidToUString(*guidPtr);
|
|
hasGuidIndex = true;
|
|
}
|
|
|
|
// Include name and GUID into the header and remove them from body
|
|
header = data.mid(offset, sizeof(NVAR_ENTRY_HEADER) + nameOffset + nameSize);
|
|
body = body.mid(nameOffset + nameSize);
|
|
}
|
|
parsing_done:
|
|
UString info;
|
|
|
|
// Rename invalid entries according to their types
|
|
pdata.nvar.isValid = TRUE;
|
|
if (isInvalid) {
|
|
name = UString("Invalid");
|
|
subtype = Subtypes::InvalidNvarEntry;
|
|
pdata.nvar.isValid = FALSE;
|
|
}
|
|
else if (isInvalidLink) {
|
|
name = UString("Invalid link");
|
|
subtype = Subtypes::InvalidLinkNvarEntry;
|
|
pdata.nvar.isValid = FALSE;
|
|
}
|
|
else // Add GUID info for valid entries
|
|
info += UString("Variable GUID: ") + name + UString("\n");
|
|
|
|
// Add GUID index information
|
|
if (hasGuidIndex)
|
|
info += usprintf("GUID index: %u\n", guidIndex);
|
|
|
|
// Add header, body and extended data info
|
|
info += usprintf("Full size: %Xh (%u)\nHeader size: %Xh (%u)\nBody size: %Xh (%u)",
|
|
entryHeader->Size, entryHeader->Size,
|
|
header.size(), header.size(),
|
|
body.size(), body.size());
|
|
|
|
// Add attributes info
|
|
info += usprintf("\nAttributes: %02Xh", entryHeader->Attributes);
|
|
// Translate attributes to text
|
|
if (entryHeader->Attributes && entryHeader->Attributes != 0xFF)
|
|
info += UString(" (") + nvarAttributesToUString(entryHeader->Attributes) + UString(")");
|
|
|
|
// Add next node info
|
|
if (!isInvalid && entryHeader->Next != lastVariableFlag)
|
|
info += usprintf("\nNext node at offset: %Xh", parentOffset + offset + entryHeader->Next);
|
|
|
|
// Add extended header info
|
|
if (hasExtendedHeader) {
|
|
info += usprintf("\nExtended header size: %Xh (%u)\nExtended attributes: %Xh (",
|
|
extendedHeaderSize, extendedHeaderSize,
|
|
extendedAttributes) + nvarExtendedAttributesToUString(extendedAttributes) + UString(")");
|
|
|
|
// Checksum
|
|
if (hasChecksum)
|
|
info += usprintf("\nChecksum: %02Xh", storedChecksum) +
|
|
(calculatedChecksum ? usprintf(", invalid, should be %02Xh", 0x100 - calculatedChecksum) : UString(", valid"));
|
|
// Authentication data
|
|
if (hasTimestampAndHash) {
|
|
info += usprintf("\nTimestamp: %"PRIX64"h\nHash: ",
|
|
timestamp) + UString(hash.toHex().toUpper());
|
|
}
|
|
}
|
|
|
|
// Add correct offset to parsing data
|
|
pdata.offset = parentOffset + offset;
|
|
|
|
// Add tree item
|
|
UModelIndex varIndex = model->addItem(Types::NvarEntry, subtype, name, text, info, header, body, tail, false, parsingDataToUByteArray(pdata), index);
|
|
|
|
// Show messages
|
|
if (msgUnknownExtDataFormat) msg(UString("parseNvarStore: unknown extended data format"), varIndex);
|
|
if (msgExtHeaderTooLong) msg(usprintf("parseNvarStore: extended header size (%Xh) is greater than body size (%Xh)",
|
|
extendedHeaderSize, body.size()), varIndex);
|
|
if (msgExtDataTooShort) msg(usprintf("parseNvarStore: extended header size (%Xh) is too small for timestamp and hash",
|
|
tail.size()), varIndex);
|
|
|
|
// Try parsing the entry data as NVAR storage if it begins with NVAR signature
|
|
if ((subtype == Subtypes::DataNvarEntry || subtype == Subtypes::FullNvarEntry)
|
|
&& *(const UINT32*)body.constData() == NVRAM_NVAR_ENTRY_SIGNATURE)
|
|
parseNvarStore(varIndex);
|
|
|
|
// Move to next exntry
|
|
offset += entryHeader->Size;
|
|
}
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseNvramVolumeBody(const UModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return U_INVALID_PARAMETER;
|
|
|
|
// Get parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(index);
|
|
UINT32 parentOffset = pdata.offset + model->header(index).size();
|
|
|
|
// Get item data
|
|
UByteArray data = model->body(index);
|
|
|
|
// Search for first store
|
|
USTATUS result;
|
|
UINT32 prevStoreOffset;
|
|
result = findNextStore(index, data, parentOffset, 0, prevStoreOffset);
|
|
if (result)
|
|
return result;
|
|
|
|
// First store is not at the beginning of volume body
|
|
UString name;
|
|
UString info;
|
|
if (prevStoreOffset > 0) {
|
|
// Get info
|
|
UByteArray padding = data.left(prevStoreOffset);
|
|
name = UString("Padding");
|
|
info = usprintf("Full size: %Xh (%u)", padding.size(), padding.size());
|
|
|
|
// Construct parsing data
|
|
pdata.offset = parentOffset;
|
|
|
|
// Add tree item
|
|
model->addItem(Types::Padding, getPaddingType(padding), name, UString(), info, UByteArray(), padding, UByteArray(), true, parsingDataToUByteArray(pdata), index);
|
|
}
|
|
|
|
// Search for and parse all stores
|
|
UINT32 storeOffset = prevStoreOffset;
|
|
UINT32 prevStoreSize = 0;
|
|
|
|
while (!result)
|
|
{
|
|
// Padding between stores
|
|
if (storeOffset > prevStoreOffset + prevStoreSize) {
|
|
UINT32 paddingOffset = prevStoreOffset + prevStoreSize;
|
|
UINT32 paddingSize = storeOffset - paddingOffset;
|
|
UByteArray padding = data.mid(paddingOffset, paddingSize);
|
|
|
|
// Get info
|
|
name = UString("Padding");
|
|
info = usprintf("Full size: %Xh (%u)", padding.size(), padding.size());
|
|
|
|
// Construct parsing data
|
|
pdata.offset = parentOffset + paddingOffset;
|
|
|
|
// Add tree item
|
|
model->addItem(Types::Padding, getPaddingType(padding), name, UString(), info, UByteArray(), padding, UByteArray(), true, parsingDataToUByteArray(pdata), index);
|
|
}
|
|
|
|
// Get store size
|
|
UINT32 storeSize = 0;
|
|
result = getStoreSize(data, storeOffset, storeSize);
|
|
if (result) {
|
|
msg(UString("parseNvramVolumeBody: getStoreSize failed with error ") + errorCodeToUString(result), index);
|
|
return result;
|
|
}
|
|
|
|
// Check that current store is fully present in input
|
|
if (storeSize > (UINT32)data.size() || storeOffset + storeSize > (UINT32)data.size()) {
|
|
// Mark the rest as padding and finish parsing
|
|
UByteArray padding = data.mid(storeOffset);
|
|
|
|
// Get info
|
|
name = UString("Padding");
|
|
info = usprintf("Full size: %Xh (%u)", padding.size(), padding.size());
|
|
|
|
// Construct parsing data
|
|
pdata.offset = parentOffset + storeOffset;
|
|
|
|
// Add tree item
|
|
UModelIndex paddingIndex = model->addItem(Types::Padding, getPaddingType(padding), name, UString(), info, UByteArray(), padding, UByteArray(), true, parsingDataToUByteArray(pdata), index);
|
|
msg(UString("parseNvramVolumeBody: one of stores inside overlaps the end of data"), paddingIndex);
|
|
|
|
// Update variables
|
|
prevStoreOffset = storeOffset;
|
|
prevStoreSize = padding.size();
|
|
break;
|
|
}
|
|
|
|
UByteArray store = data.mid(storeOffset, storeSize);
|
|
// Parse current store header
|
|
UModelIndex storeIndex;
|
|
result = parseStoreHeader(store, parentOffset + storeOffset, index, storeIndex);
|
|
if (result)
|
|
msg(UString("parseNvramVolumeBody: store header parsing failed with error ") + errorCodeToUString(result), index);
|
|
|
|
// Go to next store
|
|
prevStoreOffset = storeOffset;
|
|
prevStoreSize = storeSize;
|
|
result = findNextStore(index, data, parentOffset, storeOffset + prevStoreSize, storeOffset);
|
|
}
|
|
|
|
// Padding/free space at the end
|
|
storeOffset = prevStoreOffset + prevStoreSize;
|
|
if ((UINT32)data.size() > storeOffset) {
|
|
UByteArray padding = data.mid(storeOffset);
|
|
UINT8 type;
|
|
UINT8 subtype;
|
|
if (padding.count(pdata.emptyByte) == padding.size()) {
|
|
// It's a free space
|
|
name = UString("Free space");
|
|
type = Types::FreeSpace;
|
|
subtype = 0;
|
|
}
|
|
else {
|
|
// Nothing is parsed yet, but the file is not empty
|
|
if (!storeOffset) {
|
|
msg(UString("parseNvramVolumeBody: can't be parsed as NVRAM volume"), index);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
// It's a padding
|
|
name = UString("Padding");
|
|
type = Types::Padding;
|
|
subtype = getPaddingType(padding);
|
|
}
|
|
|
|
// Add info
|
|
info = usprintf("Full size: %Xh (%u)", padding.size(), padding.size());
|
|
|
|
// Construct parsing data
|
|
pdata.offset = parentOffset + storeOffset;
|
|
|
|
// Add tree item
|
|
model->addItem(type, subtype, name, UString(), info, UByteArray(), padding, UByteArray(), true, parsingDataToUByteArray(pdata), index);
|
|
}
|
|
|
|
// Parse bodies
|
|
for (int i = 0; i < model->rowCount(index); i++) {
|
|
UModelIndex current = index.child(i, 0);
|
|
switch (model->type(current)) {
|
|
case Types::VssStore:
|
|
case Types::FdcStore: parseVssStoreBody(current); break;
|
|
case Types::FsysStore: parseFsysStoreBody(current); break;
|
|
case Types::EvsaStore: parseEvsaStoreBody(current); break;
|
|
case Types::FlashMapStore: parseFlashMapBody(current); break;
|
|
}
|
|
}
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::findNextStore(const UModelIndex & index, const UByteArray & volume, const UINT32 parentOffset, const UINT32 storeOffset, UINT32 & nextStoreOffset)
|
|
{
|
|
UINT32 dataSize = volume.size();
|
|
|
|
if (dataSize < sizeof(UINT32))
|
|
return U_STORES_NOT_FOUND;
|
|
|
|
UINT32 offset = storeOffset;
|
|
for (; offset < dataSize - sizeof(UINT32); offset++) {
|
|
const UINT32* currentPos = (const UINT32*)(volume.constData() + offset);
|
|
if (*currentPos == NVRAM_VSS_STORE_SIGNATURE || *currentPos == NVRAM_APPLE_SVS_STORE_SIGNATURE) { //$VSS or $SVS signatures found, perform checks
|
|
const VSS_VARIABLE_STORE_HEADER* vssHeader = (const VSS_VARIABLE_STORE_HEADER*)currentPos;
|
|
if (vssHeader->Format != NVRAM_VSS_VARIABLE_STORE_FORMATTED) {
|
|
msg(usprintf("findNextStore: VSS store candidate at offset %Xh skipped, has invalid format %02Xh", parentOffset + offset, vssHeader->Format), index);
|
|
continue;
|
|
}
|
|
if (vssHeader->Size == 0 || vssHeader->Size == 0xFFFFFFFF) {
|
|
msg(usprintf("findNextStore: VSS store candidate at offset %Xh skipped, has invalid size %Xh", parentOffset + offset, vssHeader->Size), index);
|
|
continue;
|
|
}
|
|
// All checks passed, store found
|
|
break;
|
|
}
|
|
else if (*currentPos == NVRAM_FDC_VOLUME_SIGNATURE) { //FDC signature found
|
|
const FDC_VOLUME_HEADER* fdcHeader = (const FDC_VOLUME_HEADER*)currentPos;
|
|
if (fdcHeader->Size == 0 || fdcHeader->Size == 0xFFFFFFFF) {
|
|
msg(usprintf("findNextStore: FDC store candidate at offset %Xh skipped, has invalid size %Xh", parentOffset + offset, fdcHeader->Size), index);
|
|
continue;
|
|
}
|
|
// All checks passed, store found
|
|
break;
|
|
}
|
|
else if (*currentPos == NVRAM_APPLE_FSYS_STORE_SIGNATURE || *currentPos == NVRAM_APPLE_GAID_STORE_SIGNATURE) { //Fsys or Gaid signature found
|
|
const APPLE_FSYS_STORE_HEADER* fsysHeader = (const APPLE_FSYS_STORE_HEADER*)currentPos;
|
|
if (fsysHeader->Size == 0 || fsysHeader->Size == 0xFFFF) {
|
|
msg(usprintf("findNextStore: Fsys store candidate at offset %Xh skipped, has invalid size %Xh", parentOffset + offset, fsysHeader->Size), index);
|
|
continue;
|
|
}
|
|
// All checks passed, store found
|
|
break;
|
|
}
|
|
else if (*currentPos == NVRAM_EVSA_STORE_SIGNATURE) { //EVSA signature found
|
|
if (offset < sizeof(UINT32))
|
|
continue;
|
|
|
|
const EVSA_STORE_ENTRY* evsaHeader = (const EVSA_STORE_ENTRY*)(currentPos - 1);
|
|
if (evsaHeader->Header.Type != NVRAM_EVSA_ENTRY_TYPE_STORE) {
|
|
msg(usprintf("findNextStore: EVSA store candidate at offset %Xh skipped, has invalid type %02Xh", parentOffset + offset - 4, evsaHeader->Header.Type), index);
|
|
continue;
|
|
}
|
|
if (evsaHeader->StoreSize == 0 || evsaHeader->StoreSize == 0xFFFFFFFF) {
|
|
msg(usprintf("findNextStore: EVSA store candidate at offset %Xh skipped, has invalid size %Xh", parentOffset + offset, evsaHeader->StoreSize), index);
|
|
continue;
|
|
}
|
|
// All checks passed, store found
|
|
offset -= sizeof(UINT32);
|
|
break;
|
|
}
|
|
else if (*currentPos == NVRAM_MAIN_STORE_VOLUME_GUID_DATA1 || *currentPos == EDKII_WORKING_BLOCK_SIGNATURE_GUID_DATA1) { //Possible FTW block signature found
|
|
UByteArray guid = UByteArray(volume.constData() + offset, sizeof(EFI_GUID));
|
|
if (guid != NVRAM_MAIN_STORE_VOLUME_GUID && guid != EDKII_WORKING_BLOCK_SIGNATURE_GUID) // Check the whole signature
|
|
continue;
|
|
|
|
// Detect header variant based on WriteQueueSize
|
|
const EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER32* ftwHeader = (const EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER32*)currentPos;
|
|
if (ftwHeader->WriteQueueSize % 0x10 == 0x04) { // Header with 32 bit WriteQueueSize
|
|
if (ftwHeader->WriteQueueSize == 0 || ftwHeader->WriteQueueSize == 0xFFFFFFFF) {
|
|
msg(usprintf("findNextStore: FTW block candidate at offset %Xh skipped, has invalid body size %Xh", parentOffset + offset, ftwHeader->WriteQueueSize), index);
|
|
continue;
|
|
}
|
|
}
|
|
else if (ftwHeader->WriteQueueSize % 0x10 == 0x00) { // Header with 64 bit WriteQueueSize
|
|
const EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER64* ftw64Header = (const EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER64*)currentPos;
|
|
if (ftw64Header->WriteQueueSize == 0 || ftw64Header->WriteQueueSize >= 0xFFFFFFFF) {
|
|
msg(usprintf("findNextStore: FTW block candidate at offset %Xh skipped, has invalid body size %Xh", parentOffset + offset, ftw64Header->WriteQueueSize), index);
|
|
continue;
|
|
}
|
|
}
|
|
else // Unknown header
|
|
continue;
|
|
|
|
// All checks passed, store found
|
|
break;
|
|
}
|
|
else if (*currentPos == NVRAM_PHOENIX_FLASH_MAP_SIGNATURE_PART1) {// Phoenix SCT flash map
|
|
UByteArray signature = UByteArray(volume.constData() + offset, NVRAM_PHOENIX_FLASH_MAP_SIGNATURE_LENGTH);
|
|
if (signature != NVRAM_PHOENIX_FLASH_MAP_SIGNATURE) // Check the whole signature
|
|
continue;
|
|
|
|
// All checks passed, store found
|
|
break;
|
|
}
|
|
else if (*currentPos == NVRAM_PHOENIX_CMDB_HEADER_SIGNATURE) { // Phoenix SCT CMDB store
|
|
const PHOENIX_CMDB_HEADER* cmdbHeader = (const PHOENIX_CMDB_HEADER*)currentPos;
|
|
|
|
// Check size
|
|
if (cmdbHeader->HeaderSize != sizeof(PHOENIX_CMDB_HEADER))
|
|
continue;
|
|
|
|
// All checks passed, store found
|
|
break;
|
|
}
|
|
else if (*currentPos == INTEL_MICROCODE_HEADER_VERSION) {// Intel microcode
|
|
if (!INTEL_MICROCODE_HEADER_SIZES_VALID(currentPos)) // Check header sizes
|
|
continue;
|
|
|
|
// Check reserved bytes
|
|
const INTEL_MICROCODE_HEADER* ucodeHeader = (const INTEL_MICROCODE_HEADER*)currentPos;
|
|
bool reservedBytesValid = true;
|
|
for (UINT32 i = 0; i < sizeof(ucodeHeader->Reserved); i++)
|
|
if (ucodeHeader->Reserved[i] != INTEL_MICROCODE_HEADER_RESERVED_BYTE) {
|
|
reservedBytesValid = false;
|
|
break;
|
|
}
|
|
if (!reservedBytesValid)
|
|
continue;
|
|
|
|
// All checks passed, store found
|
|
break;
|
|
}
|
|
else if (*currentPos == OEM_ACTIVATION_PUBKEY_MAGIC) { // SLIC pubkey
|
|
if (offset < 4 * sizeof(UINT32))
|
|
continue;
|
|
|
|
const OEM_ACTIVATION_PUBKEY* pubkeyHeader = (const OEM_ACTIVATION_PUBKEY*)(currentPos - 4);
|
|
// Check type
|
|
if (pubkeyHeader->Type != OEM_ACTIVATION_PUBKEY_TYPE)
|
|
continue;
|
|
|
|
// All checks passed, store found
|
|
offset -= 4 * sizeof(UINT32);
|
|
break;
|
|
}
|
|
else if (*currentPos == OEM_ACTIVATION_MARKER_WINDOWS_FLAG_PART1) { // SLIC marker
|
|
if (offset >= dataSize - sizeof(UINT64) ||
|
|
*(const UINT64*)currentPos != OEM_ACTIVATION_MARKER_WINDOWS_FLAG ||
|
|
offset < 26) // Check full windows flag and structure size
|
|
continue;
|
|
|
|
const OEM_ACTIVATION_MARKER* markerHeader = (const OEM_ACTIVATION_MARKER*)(volume.constData() + offset - 26);
|
|
// Check reserved bytes
|
|
bool reservedBytesValid = true;
|
|
for (UINT32 i = 0; i < sizeof(markerHeader->Reserved); i++)
|
|
if (markerHeader->Reserved[i] != OEM_ACTIVATION_MARKER_RESERVED_BYTE) {
|
|
reservedBytesValid = false;
|
|
break;
|
|
}
|
|
if (!reservedBytesValid)
|
|
continue;
|
|
|
|
// All checks passed, store found
|
|
offset -= 26;
|
|
break;
|
|
}
|
|
}
|
|
// No more stores found
|
|
if (offset >= dataSize - sizeof(UINT32))
|
|
return U_STORES_NOT_FOUND;
|
|
|
|
nextStoreOffset = offset;
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::getStoreSize(const UByteArray & data, const UINT32 storeOffset, UINT32 & storeSize)
|
|
{
|
|
const UINT32* signature = (const UINT32*)(data.constData() + storeOffset);
|
|
if (*signature == NVRAM_VSS_STORE_SIGNATURE || *signature == NVRAM_APPLE_SVS_STORE_SIGNATURE) {
|
|
const VSS_VARIABLE_STORE_HEADER* vssHeader = (const VSS_VARIABLE_STORE_HEADER*)signature;
|
|
storeSize = vssHeader->Size;
|
|
}
|
|
else if (*signature == NVRAM_FDC_VOLUME_SIGNATURE) {
|
|
const FDC_VOLUME_HEADER* fdcHeader = (const FDC_VOLUME_HEADER*)signature;
|
|
storeSize = fdcHeader->Size;
|
|
}
|
|
else if (*signature == NVRAM_APPLE_FSYS_STORE_SIGNATURE || *signature == NVRAM_APPLE_GAID_STORE_SIGNATURE) {
|
|
const APPLE_FSYS_STORE_HEADER* fsysHeader = (const APPLE_FSYS_STORE_HEADER*)signature;
|
|
storeSize = fsysHeader->Size;
|
|
}
|
|
else if (*(signature + 1) == NVRAM_EVSA_STORE_SIGNATURE) {
|
|
const EVSA_STORE_ENTRY* evsaHeader = (const EVSA_STORE_ENTRY*)signature;
|
|
storeSize = evsaHeader->StoreSize;
|
|
}
|
|
else if (*signature == NVRAM_MAIN_STORE_VOLUME_GUID_DATA1 || *signature == EDKII_WORKING_BLOCK_SIGNATURE_GUID_DATA1) {
|
|
const EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER32* ftwHeader = (const EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER32*)signature;
|
|
if (ftwHeader->WriteQueueSize % 0x10 == 0x04) { // Header with 32 bit WriteQueueSize
|
|
storeSize = sizeof(EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER32) + ftwHeader->WriteQueueSize;
|
|
}
|
|
else { // Header with 64 bit WriteQueueSize
|
|
const EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER64* ftw64Header = (const EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER64*)signature;
|
|
storeSize = sizeof(EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER64) + ftw64Header->WriteQueueSize;
|
|
}
|
|
}
|
|
else if (*signature == NVRAM_PHOENIX_FLASH_MAP_SIGNATURE_PART1) { // Phoenix SCT flash map
|
|
const PHOENIX_FLASH_MAP_HEADER* flashMapHeader = (const PHOENIX_FLASH_MAP_HEADER*)signature;
|
|
storeSize = sizeof(PHOENIX_FLASH_MAP_HEADER) + sizeof(PHOENIX_FLASH_MAP_ENTRY) * flashMapHeader->NumEntries;
|
|
}
|
|
else if (*signature == NVRAM_PHOENIX_CMDB_HEADER_SIGNATURE) { // Phoenix SCT CMDB store
|
|
storeSize = NVRAM_PHOENIX_CMDB_SIZE; // It's a predefined max size, no need to calculate
|
|
}
|
|
else if (*(signature + 4) == OEM_ACTIVATION_PUBKEY_MAGIC) { // SLIC pubkey
|
|
const OEM_ACTIVATION_PUBKEY* pubkeyHeader = (const OEM_ACTIVATION_PUBKEY*)signature;
|
|
storeSize = pubkeyHeader->Size;
|
|
}
|
|
else if (*(const UINT64*)(data.constData() + storeOffset + 26) == OEM_ACTIVATION_MARKER_WINDOWS_FLAG) { // SLIC marker
|
|
const OEM_ACTIVATION_MARKER* markerHeader = (const OEM_ACTIVATION_MARKER*)signature;
|
|
storeSize = markerHeader->Size;
|
|
}
|
|
else if (*signature == INTEL_MICROCODE_HEADER_VERSION) { // Intel microcode, must be checked after SLIC marker because of the same *signature values
|
|
const INTEL_MICROCODE_HEADER* ucodeHeader = (const INTEL_MICROCODE_HEADER*)signature;
|
|
storeSize = ucodeHeader->TotalSize;
|
|
}
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseVssStoreHeader(const UByteArray & store, const UINT32 parentOffset, const UModelIndex & parent, UModelIndex & index)
|
|
{
|
|
const UINT32 dataSize = (const UINT32)store.size();
|
|
|
|
// Check store size
|
|
if (dataSize < sizeof(VSS_VARIABLE_STORE_HEADER)) {
|
|
msg(UString("parseVssStoreHeader: volume body is too small even for VSS store header"), parent);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
// Get VSS store header
|
|
const VSS_VARIABLE_STORE_HEADER* vssStoreHeader = (const VSS_VARIABLE_STORE_HEADER*)store.constData();
|
|
|
|
// Check store size
|
|
if (dataSize < vssStoreHeader->Size) {
|
|
msg(usprintf("parseVssStoreHeader: VSS store size %Xh (%u) is greater than volume body size %Xh (%u)",
|
|
vssStoreHeader->Size, vssStoreHeader->Size,
|
|
dataSize, dataSize), parent);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
// Get parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(parent);
|
|
|
|
// Construct header and body
|
|
UByteArray header = store.left(sizeof(VSS_VARIABLE_STORE_HEADER));
|
|
UByteArray body = store.mid(sizeof(VSS_VARIABLE_STORE_HEADER), vssStoreHeader->Size - sizeof(VSS_VARIABLE_STORE_HEADER));
|
|
|
|
// Add info
|
|
bool isSvsStore = (vssStoreHeader->Signature == NVRAM_APPLE_SVS_STORE_SIGNATURE);
|
|
UString name = isSvsStore ? UString("SVS store") : UString("VSS store");
|
|
UString info = usprintf("Signature: %s\nFull size: %Xh (%u)\nHeader size: %Xh (%u)\nBody size: %Xh (%u)\nFormat: %02Xh\nState: %02Xh\nUnknown: %04Xh",
|
|
isSvsStore ? "$SVS" : "$VSS",
|
|
vssStoreHeader->Size, vssStoreHeader->Size,
|
|
header.size(), header.size(),
|
|
body.size(), body.size(),
|
|
vssStoreHeader->Format,
|
|
vssStoreHeader->State,
|
|
vssStoreHeader->Unknown);
|
|
|
|
// Add correct offset
|
|
pdata.offset = parentOffset;
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::VssStore, 0, name, UString(), info, header, body, UByteArray(), true, parsingDataToUByteArray(pdata), parent);
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseFtwStoreHeader(const UByteArray & store, const UINT32 parentOffset, const UModelIndex & parent, UModelIndex & index)
|
|
{
|
|
const UINT32 dataSize = (const UINT32)store.size();
|
|
|
|
// Check store size
|
|
if (dataSize < sizeof(EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER64)) {
|
|
msg(UString("parseFtwStoreHeader: volume body is too small even for FTW store header"), parent);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
// Get FTW block headers
|
|
const EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER32* ftw32BlockHeader = (const EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER32*)store.constData();
|
|
const EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER64* ftw64BlockHeader = (const EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER64*)store.constData();
|
|
|
|
// Check store size
|
|
UINT32 ftwBlockSize;
|
|
bool has32bitHeader;
|
|
if (ftw32BlockHeader->WriteQueueSize % 0x10 == 0x04) { // Header with 32 bit WriteQueueSize
|
|
ftwBlockSize = sizeof(EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER32) + ftw32BlockHeader->WriteQueueSize;
|
|
has32bitHeader = true;
|
|
}
|
|
else { // Header with 64 bit WriteQueueSize
|
|
ftwBlockSize = sizeof(EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER64) + ftw64BlockHeader->WriteQueueSize;
|
|
has32bitHeader = false;
|
|
}
|
|
if (dataSize < ftwBlockSize) {
|
|
msg(usprintf("parseFtwStoreHeader: FTW store size %Xh (%u) is greater than volume body size %Xh (%u)",
|
|
ftwBlockSize, ftwBlockSize,
|
|
dataSize, dataSize), parent);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
// Get parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(parent);
|
|
|
|
// Construct header and body
|
|
UINT32 headerSize = has32bitHeader ? sizeof(EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER32) : sizeof(EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER64);
|
|
UByteArray header = store.left(headerSize);
|
|
UByteArray body = store.mid(headerSize, ftwBlockSize - headerSize);
|
|
|
|
// Check block header checksum
|
|
UByteArray crcHeader = header;
|
|
EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER32* crcFtwBlockHeader = (EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER32*)header.data();
|
|
crcFtwBlockHeader->Crc = pdata.emptyByte ? 0xFFFFFFFF : 0;
|
|
crcFtwBlockHeader->State = pdata.emptyByte ? 0xFF : 0;
|
|
UINT32 calculatedCrc = crc32(0, (const UINT8*)crcFtwBlockHeader, headerSize);
|
|
|
|
// Add info
|
|
UString name("FTW store");
|
|
UString info = UString("Signature: ") + guidToUString(ftw32BlockHeader->Signature) +
|
|
usprintf("\nFull size: %Xh (%u)\nHeader size: %Xh (%u)\nBody size: %Xh (%u)\nState: %02Xh\nHeader CRC32: %08Xh",
|
|
ftwBlockSize, ftwBlockSize,
|
|
headerSize, headerSize,
|
|
body.size(), body.size(),
|
|
ftw32BlockHeader->State,
|
|
ftw32BlockHeader->Crc) +
|
|
(ftw32BlockHeader->Crc != calculatedCrc ? usprintf(", invalid, should be %08Xh", calculatedCrc) : UString(", valid"));
|
|
|
|
// Add correct offset
|
|
pdata.offset = parentOffset;
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::FtwStore, 0, name, UString(), info, header, body, UByteArray(), true, parsingDataToUByteArray(pdata), parent);
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseFdcStoreHeader(const UByteArray & store, const UINT32 parentOffset, const UModelIndex & parent, UModelIndex & index)
|
|
{
|
|
const UINT32 dataSize = (const UINT32)store.size();
|
|
|
|
// Check store size
|
|
if (dataSize < sizeof(FDC_VOLUME_HEADER)) {
|
|
msg(UString("parseFdcStoreHeader: volume body is too small even for FDC store header"), parent);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
// Get Fdc store header
|
|
const FDC_VOLUME_HEADER* fdcStoreHeader = (const FDC_VOLUME_HEADER*)store.constData();
|
|
|
|
// Check store size
|
|
if (dataSize < fdcStoreHeader->Size) {
|
|
msg(usprintf("parseFdcStoreHeader: FDC store size %Xh (%u) is greater than volume body size %Xh (%u)",
|
|
fdcStoreHeader->Size, fdcStoreHeader->Size,
|
|
dataSize, dataSize), parent);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
// Determine internal volume header size
|
|
const EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (const EFI_FIRMWARE_VOLUME_HEADER*)(fdcStoreHeader + 1);
|
|
UINT32 headerSize;
|
|
if (volumeHeader->Revision > 1 && volumeHeader->ExtHeaderOffset) {
|
|
const EFI_FIRMWARE_VOLUME_EXT_HEADER* extendedHeader = (const EFI_FIRMWARE_VOLUME_EXT_HEADER*)((const UINT8*)volumeHeader + volumeHeader->ExtHeaderOffset);
|
|
headerSize = volumeHeader->ExtHeaderOffset + extendedHeader->ExtHeaderSize;
|
|
}
|
|
else
|
|
headerSize = volumeHeader->HeaderLength;
|
|
|
|
// Extended header end can be unaligned
|
|
headerSize = ALIGN8(headerSize);
|
|
|
|
// Add VSS store header
|
|
headerSize += sizeof(VSS_VARIABLE_STORE_HEADER);
|
|
|
|
// Add FDC header
|
|
headerSize += sizeof(FDC_VOLUME_HEADER);
|
|
|
|
// Check sanity of combined header size
|
|
if (dataSize < headerSize) {
|
|
msg(usprintf("parseFdcStoreHeader: FDC store header size %Xh (%u) is greater than volume body size %Xh (%u)",
|
|
fdcStoreHeader->Size,fdcStoreHeader->Size,
|
|
dataSize, dataSize), parent);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
// Get parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(parent);
|
|
|
|
// Construct header and body
|
|
UByteArray header = store.left(headerSize);
|
|
UByteArray body = store.mid(headerSize, fdcStoreHeader->Size - headerSize);
|
|
|
|
// Add info
|
|
UString name("FDC store");
|
|
UString info = usprintf("Signature: _FDC\nFull size: %Xh (%u)\nHeader size: %Xh (%u)\nBody size: %Xh (%u)",
|
|
fdcStoreHeader->Size, fdcStoreHeader->Size,
|
|
header.size(), header.size(),
|
|
body.size(), body.size());
|
|
|
|
// TODO: add internal headers info
|
|
|
|
// Add correct offset
|
|
pdata.offset = parentOffset;
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::FdcStore, 0, name, UString(), info, header, body, UByteArray(), true, parsingDataToUByteArray(pdata), parent);
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseFsysStoreHeader(const UByteArray & store, const UINT32 parentOffset, const UModelIndex & parent, UModelIndex & index)
|
|
{
|
|
const UINT32 dataSize = (const UINT32)store.size();
|
|
|
|
// Check store size
|
|
if (dataSize < sizeof(APPLE_FSYS_STORE_HEADER)) {
|
|
msg(UString("parseFsysStoreHeader: volume body is too small even for Fsys store header"), parent);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
// Get Fsys store header
|
|
const APPLE_FSYS_STORE_HEADER* fsysStoreHeader = (const APPLE_FSYS_STORE_HEADER*)store.constData();
|
|
|
|
// Check store size
|
|
if (dataSize < fsysStoreHeader->Size) {
|
|
msg(usprintf("parseFsysStoreHeader: Fsys store size %Xh (%u) is greater than volume body size %Xh (%u)",
|
|
fsysStoreHeader->Size, fsysStoreHeader->Size,
|
|
dataSize, dataSize), parent);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
// Get parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(parent);
|
|
|
|
// Construct header and body
|
|
UByteArray header = store.left(sizeof(APPLE_FSYS_STORE_HEADER));
|
|
UByteArray body = store.mid(sizeof(APPLE_FSYS_STORE_HEADER), fsysStoreHeader->Size - sizeof(APPLE_FSYS_STORE_HEADER) - sizeof(UINT32));
|
|
|
|
// Check store checksum
|
|
UINT32 storedCrc = *(UINT32*)store.right(sizeof(UINT32)).constBegin();
|
|
UINT32 calculatedCrc = crc32(0, (const UINT8*)store.constData(), (const UINT32)store.size() - sizeof(UINT32));
|
|
|
|
// Add info
|
|
bool isGaidStore = (fsysStoreHeader->Signature == NVRAM_APPLE_GAID_STORE_SIGNATURE);
|
|
UString name = isGaidStore ? UString("Gaid store") : UString("Fsys store");
|
|
UString info = usprintf("Signature: %s\nFull size: %Xh (%u)\nHeader size: %Xh (%u)\nBody size: %Xh (%u)\nUnknown0: %02Xh\nUnknown1: %08Xh\nCRC32: %08Xh",
|
|
isGaidStore ? "Gaid" : "Fsys",
|
|
fsysStoreHeader->Size, fsysStoreHeader->Size,
|
|
header.size(), header.size(),
|
|
body.size(), body.size(),
|
|
fsysStoreHeader->Unknown0,
|
|
fsysStoreHeader->Unknown1)
|
|
+ (storedCrc != calculatedCrc ? usprintf(", invalid, should be %08Xh", calculatedCrc) : UString(", valid"));
|
|
|
|
// Add correct offset
|
|
pdata.offset = parentOffset;
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::FsysStore, 0, name, UString(), info, header, body, UByteArray(), true, parsingDataToUByteArray(pdata), parent);
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseEvsaStoreHeader(const UByteArray & store, const UINT32 parentOffset, const UModelIndex & parent, UModelIndex & index)
|
|
{
|
|
const UINT32 dataSize = (const UINT32)store.size();
|
|
|
|
// Check dataSize
|
|
if (dataSize < sizeof(EVSA_STORE_ENTRY)) {
|
|
msg(UString("parseEvsaStoreHeader: volume body is too small even for EVSA store header"), parent);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
// Get EVSA store header
|
|
const EVSA_STORE_ENTRY* evsaStoreHeader = (const EVSA_STORE_ENTRY*)store.constData();
|
|
|
|
// Check store size
|
|
if (dataSize < evsaStoreHeader->StoreSize) {
|
|
msg(usprintf("parseEvsaStoreHeader: EVSA store size %Xh (%u) is greater than volume body size %Xh (%u)",
|
|
evsaStoreHeader->StoreSize, evsaStoreHeader->StoreSize,
|
|
dataSize, dataSize), parent);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
// Get parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(parent);
|
|
|
|
// Construct header and body
|
|
UByteArray header = store.left(evsaStoreHeader->Header.Size);
|
|
UByteArray body = store.mid(evsaStoreHeader->Header.Size, evsaStoreHeader->StoreSize - evsaStoreHeader->Header.Size);
|
|
|
|
// Recalculate checksum
|
|
UINT8 calculated = calculateChecksum8(((const UINT8*)evsaStoreHeader) + 2, evsaStoreHeader->Header.Size - 2);
|
|
|
|
// Add info
|
|
UString name("EVSA store");
|
|
UString info = usprintf("Signature: EVSA\nFull size: %Xh (%u)\nHeader size: %Xh (%u)\nBody size: %Xh (%u)\nType: %02Xh\nAttributes: %08Xh\nChecksum: %02Xh",
|
|
evsaStoreHeader->StoreSize, evsaStoreHeader->StoreSize,
|
|
header.size(), header.size(),
|
|
body.size(), body.size(),
|
|
evsaStoreHeader->Header.Type,
|
|
evsaStoreHeader->Attributes,
|
|
evsaStoreHeader->Header.Checksum) +
|
|
(evsaStoreHeader->Header.Checksum != calculated ? usprintf("%, invalid, should be %02Xh", calculated) : UString(", valid"));
|
|
|
|
// Add correct offset
|
|
pdata.offset = parentOffset;
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::EvsaStore, 0, name, UString(), info, header, body, UByteArray(), true, parsingDataToUByteArray(pdata), parent);
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseFlashMapStoreHeader(const UByteArray & store, const UINT32 parentOffset, const UModelIndex & parent, UModelIndex & index)
|
|
{
|
|
const UINT32 dataSize = (const UINT32)store.size();
|
|
|
|
// Check data size
|
|
if (dataSize < sizeof(PHOENIX_FLASH_MAP_HEADER)) {
|
|
msg(UString("parseFlashMapStoreHeader: volume body is too small even for FlashMap block header"), parent);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
// Get FlashMap block header
|
|
const PHOENIX_FLASH_MAP_HEADER* flashMapHeader = (const PHOENIX_FLASH_MAP_HEADER*)store.constData();
|
|
|
|
// Check store size
|
|
UINT32 flashMapSize = sizeof(PHOENIX_FLASH_MAP_HEADER) + flashMapHeader->NumEntries * sizeof(PHOENIX_FLASH_MAP_ENTRY);
|
|
if (dataSize < flashMapSize) {
|
|
msg(usprintf("parseFlashMapStoreHeader: FlashMap block size %Xh (%u) is greater than volume body size %Xh (%u)",
|
|
flashMapSize, flashMapSize,
|
|
dataSize, dataSize), parent);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
// Get parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(parent);
|
|
|
|
// Construct header and body
|
|
UByteArray header = store.left(sizeof(PHOENIX_FLASH_MAP_HEADER));
|
|
UByteArray body = store.mid(sizeof(PHOENIX_FLASH_MAP_HEADER), flashMapSize - sizeof(PHOENIX_FLASH_MAP_HEADER));
|
|
|
|
// Add info
|
|
UString name("Phoenix SCT flash map");
|
|
UString info = usprintf("Signature: _FLASH_MAP\nFull size: %Xh (%u)\nHeader size: %Xh (%u)\nBody size: %Xh (%u)\nNumber of entries: %u",
|
|
flashMapSize, flashMapSize,
|
|
header.size(), header.size(),
|
|
body.size(), body.size(),
|
|
flashMapHeader->NumEntries);
|
|
|
|
// Add correct offset
|
|
pdata.offset = parentOffset;
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::FlashMapStore, 0, name, UString(), info, header, body, UByteArray(), true, parsingDataToUByteArray(pdata), parent);
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseCmdbStoreHeader(const UByteArray & store, const UINT32 parentOffset, const UModelIndex & parent, UModelIndex & index)
|
|
{
|
|
const UINT32 dataSize = (const UINT32)store.size();
|
|
|
|
// Check store size
|
|
if (dataSize < sizeof(PHOENIX_CMDB_HEADER)) {
|
|
msg(UString("parseCmdbStoreHeader: volume body is too small even for CMDB store header"), parent);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
UINT32 cmdbSize = NVRAM_PHOENIX_CMDB_SIZE;
|
|
if (dataSize < cmdbSize) {
|
|
msg(usprintf("parseCmdbStoreHeader: CMDB store size %Xh (%u) is greater than volume body size %Xh (%u)",
|
|
cmdbSize, cmdbSize,
|
|
dataSize, dataSize), parent);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
// Get store header
|
|
const PHOENIX_CMDB_HEADER* cmdbHeader = (const PHOENIX_CMDB_HEADER*)store.constData();
|
|
|
|
// Get parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(parent);
|
|
|
|
// Construct header and body
|
|
UByteArray header = store.left(cmdbHeader->TotalSize);
|
|
UByteArray body = store.mid(cmdbHeader->TotalSize, cmdbSize - cmdbHeader->TotalSize);
|
|
|
|
// Add info
|
|
UString name("CMDB store");
|
|
UString info = usprintf("Signature: CMDB\nFull size: %Xh (%u)\nHeader size: %Xh (%u)\nBody size: %Xh (%u)",
|
|
cmdbSize, cmdbSize,
|
|
header.size(), header.size(),
|
|
body.size(), body.size());
|
|
|
|
// Add correct offset
|
|
pdata.offset = parentOffset;
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::CmdbStore, 0, name, UString(), info, header, body, UByteArray(), true, parsingDataToUByteArray(pdata), parent);
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseSlicPubkeyHeader(const UByteArray & store, const UINT32 parentOffset, const UModelIndex & parent, UModelIndex & index)
|
|
{
|
|
const UINT32 dataSize = (const UINT32)store.size();
|
|
|
|
// Check data size
|
|
if (dataSize < sizeof(OEM_ACTIVATION_PUBKEY)) {
|
|
msg(UString("parseSlicPubkeyHeader: volume body is too small even for SLIC pubkey header"), parent);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
// Get SLIC pubkey header
|
|
const OEM_ACTIVATION_PUBKEY* pubkeyHeader = (const OEM_ACTIVATION_PUBKEY*)store.constData();
|
|
|
|
// Check store size
|
|
if (dataSize < pubkeyHeader->Size) {
|
|
msg(usprintf("parseSlicPubkeyHeader: SLIC pubkey size %Xh (%u) is greater than volume body size %Xh (%u)",
|
|
pubkeyHeader->Size, pubkeyHeader->Size,
|
|
dataSize, dataSize), parent);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
// Get parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(parent);
|
|
|
|
// Construct header and body
|
|
UByteArray header = store.left(sizeof(OEM_ACTIVATION_PUBKEY));
|
|
|
|
// Add info
|
|
UString name("SLIC pubkey");
|
|
UString info = usprintf("Type: 0h\nFull size: %Xh (%u)\nHeader size: %Xh (%u)\nBody size: 0h (0)\n"
|
|
"Key type :%02Xh\nVersion: %02Xh\nAlgorithm: %08Xh\nMagic: RSA1\nBit length: %08Xh\nExponent: %08Xh",
|
|
pubkeyHeader->Size, pubkeyHeader->Size,
|
|
header.size(), header.size(),
|
|
pubkeyHeader->KeyType,
|
|
pubkeyHeader->Version,
|
|
pubkeyHeader->Algorithm,
|
|
pubkeyHeader->BitLength,
|
|
pubkeyHeader->Exponent);
|
|
|
|
// Add correct offset
|
|
pdata.offset = parentOffset;
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::SlicData, Subtypes::PubkeySlicData, name, UString(), info, header, UByteArray(), UByteArray(), true, parsingDataToUByteArray(pdata), parent);
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseSlicMarkerHeader(const UByteArray & store, const UINT32 parentOffset, const UModelIndex & parent, UModelIndex & index)
|
|
{
|
|
const UINT32 dataSize = (const UINT32)store.size();
|
|
|
|
// Check data size
|
|
if (dataSize < sizeof(OEM_ACTIVATION_MARKER)) {
|
|
msg(UString("parseSlicMarkerHeader: volume body is too small even for SLIC marker header"), parent);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
// Get SLIC marker header
|
|
const OEM_ACTIVATION_MARKER* markerHeader = (const OEM_ACTIVATION_MARKER*)store.constData();
|
|
|
|
// Check store size
|
|
if (dataSize < markerHeader->Size) {
|
|
msg(usprintf("parseSlicMarkerHeader: SLIC marker size %Xh (%u) is greater than volume body size %Xh (%u)",
|
|
markerHeader->Size, markerHeader->Size,
|
|
dataSize, dataSize), parent);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
// Get parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(parent);
|
|
|
|
// Construct header and body
|
|
UByteArray header = store.left(sizeof(OEM_ACTIVATION_MARKER));
|
|
|
|
// Add info
|
|
UString name("SLIC marker");
|
|
UString info = usprintf("Type: 1h\nFull size: %Xh (%u)\nHeader size: %Xh (%u)\nBody size: 0h (0)\n"
|
|
"Version :%08Xh\nOEM ID: %s\nOEM table ID: %s\nWindows flag: WINDOWS\nSLIC version: %08Xh",
|
|
markerHeader->Size, markerHeader->Size,
|
|
header.size(), header.size(),
|
|
markerHeader->Version,
|
|
(const char*)UString((const char*)&(markerHeader->OemId), 6),
|
|
(const char*)UString((const char*)&(markerHeader->OemTableId), 8),
|
|
markerHeader->SlicVersion);
|
|
|
|
// Add correct offset
|
|
pdata.offset = parentOffset;
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::SlicData, Subtypes::MarkerSlicData, name, UString(), info, header, UByteArray(), UByteArray(), true, parsingDataToUByteArray(pdata), parent);
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseIntelMicrocodeHeader(const UByteArray & store, const UINT32 parentOffset, const UModelIndex & parent, UModelIndex & index)
|
|
{
|
|
const UINT32 dataSize = (const UINT32)store.size();
|
|
|
|
// Check data size
|
|
if (dataSize < sizeof(INTEL_MICROCODE_HEADER)) {
|
|
msg(UString("parseIntelMicrocodeHeader: volume body is too small even for Intel microcode header"), parent);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
// Get Intel microcode header
|
|
const INTEL_MICROCODE_HEADER* ucodeHeader = (const INTEL_MICROCODE_HEADER*)store.constData();
|
|
|
|
// Check store size
|
|
if (dataSize < ucodeHeader->TotalSize) {
|
|
msg(usprintf("parseIntelMicrocodeHeader: Intel microcode size %Xh (%u) is greater than volume body size %Xh (%u)",
|
|
ucodeHeader->TotalSize, ucodeHeader->TotalSize,
|
|
dataSize, dataSize), parent);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
// Get parsing data
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(parent);
|
|
|
|
// Construct header and body
|
|
UByteArray header = store.left(sizeof(INTEL_MICROCODE_HEADER));
|
|
UByteArray body = store.mid(sizeof(INTEL_MICROCODE_HEADER), ucodeHeader->DataSize);
|
|
|
|
//TODO: recalculate checksum
|
|
|
|
// Add info
|
|
UString name("Intel microcode");
|
|
UString info = usprintf("Revision: 1h\nFull size: %Xh (%u)\nHeader size: %Xh (%u)\nBody size: %Xh (%u)\n"
|
|
"Date: %08Xh\nCPU signature: %08Xh\nChecksum: %08Xh\nLoader revision: %08Xh\nCPU flags: %08Xh",
|
|
ucodeHeader->TotalSize, ucodeHeader->TotalSize,
|
|
header.size(), header.size(),
|
|
body.size(), body.size(),
|
|
ucodeHeader->Date,
|
|
ucodeHeader->CpuSignature,
|
|
ucodeHeader->Checksum,
|
|
ucodeHeader->LoaderRevision,
|
|
ucodeHeader->CpuFlags);
|
|
|
|
// Add correct offset
|
|
pdata.offset = parentOffset;
|
|
|
|
// Add tree item
|
|
index = model->addItem(Types::Microcode, Subtypes::IntelMicrocode, name, UString(), info, header, body, UByteArray(), true, parsingDataToUByteArray(pdata), parent);
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseStoreHeader(const UByteArray & store, const UINT32 parentOffset, const UModelIndex & parent, UModelIndex & index)
|
|
{
|
|
const UINT32 dataSize = (const UINT32)store.size();
|
|
const UINT32* signature = (const UINT32*)store.constData();
|
|
// Check store size
|
|
if (dataSize < sizeof(UINT32)) {
|
|
msg(UString("parseStoreHeader: volume body is too small even for store signature"), parent);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
// Check signature and run parser function needed
|
|
// VSS/SVS store
|
|
if (*signature == NVRAM_VSS_STORE_SIGNATURE || *signature == NVRAM_APPLE_SVS_STORE_SIGNATURE)
|
|
return parseVssStoreHeader(store, parentOffset, parent, index);
|
|
// FTW store
|
|
else if (*signature == NVRAM_MAIN_STORE_VOLUME_GUID_DATA1 || *signature == EDKII_WORKING_BLOCK_SIGNATURE_GUID_DATA1)
|
|
return parseFtwStoreHeader(store, parentOffset, parent, index);
|
|
// FDC store
|
|
else if (*signature == NVRAM_FDC_VOLUME_SIGNATURE)
|
|
return parseFdcStoreHeader(store, parentOffset, parent, index);
|
|
// Apple Fsys/Gaid store
|
|
else if (*signature == NVRAM_APPLE_FSYS_STORE_SIGNATURE || *signature == NVRAM_APPLE_GAID_STORE_SIGNATURE)
|
|
return parseFsysStoreHeader(store, parentOffset, parent, index);
|
|
// EVSA store
|
|
else if (*(signature + 1) == NVRAM_EVSA_STORE_SIGNATURE)
|
|
return parseEvsaStoreHeader(store, parentOffset, parent, index);
|
|
// Phoenix SCT flash map
|
|
else if (*signature == NVRAM_PHOENIX_FLASH_MAP_SIGNATURE_PART1)
|
|
return parseFlashMapStoreHeader(store, parentOffset, parent, index);
|
|
// Phoenix CMDB store
|
|
else if (*signature == NVRAM_PHOENIX_CMDB_HEADER_SIGNATURE)
|
|
return parseCmdbStoreHeader(store, parentOffset, parent, index);
|
|
// SLIC pubkey
|
|
else if (*(signature + 4) == OEM_ACTIVATION_PUBKEY_MAGIC)
|
|
return parseSlicPubkeyHeader(store, parentOffset, parent, index);
|
|
// SLIC marker
|
|
else if (*(const UINT64*)(store.constData() + 26) == OEM_ACTIVATION_MARKER_WINDOWS_FLAG)
|
|
return parseSlicMarkerHeader(store, parentOffset, parent, index);
|
|
// Intel microcode
|
|
// Must be checked after SLIC marker because of the same *signature values
|
|
else if (*signature == INTEL_MICROCODE_HEADER_VERSION)
|
|
return parseIntelMicrocodeHeader(store, parentOffset, parent, index);
|
|
|
|
msg(usprintf("parseStoreHeader: don't know how to parse a header with signature %08Xh", *signature), parent);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseVssStoreBody(const UModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return U_INVALID_PARAMETER;
|
|
|
|
// Get parsing data for the current item
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(index);
|
|
UINT32 parentOffset = pdata.offset + model->header(index).size();
|
|
const UByteArray data = model->body(index);
|
|
|
|
// Check that the is enough space for variable header
|
|
const UINT32 dataSize = (UINT32)data.size();
|
|
if (dataSize < sizeof(VSS_VARIABLE_HEADER)) {
|
|
msg(UString("parseVssStoreBody: store body is too small even for VSS variable header"), index);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
UINT32 offset = 0;
|
|
|
|
// Parse all variables
|
|
while (1) {
|
|
bool isInvalid = false;
|
|
bool isAuthenticated = false;
|
|
bool isAppleCrc32 = false;
|
|
|
|
UINT32 storedCrc32 = 0;
|
|
UINT32 calculatedCrc32 = 0;
|
|
UINT64 monotonicCounter = 0;
|
|
EFI_TIME timestamp = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
|
|
UINT32 pubKeyIndex = 0;
|
|
|
|
UINT8 subtype = 0;
|
|
UString name;
|
|
UString text;
|
|
EFI_GUID* variableGuid;
|
|
CHAR16* variableName;
|
|
UByteArray header;
|
|
UByteArray body;
|
|
|
|
UINT32 unparsedSize = dataSize - offset;
|
|
|
|
// Get variable header
|
|
const VSS_VARIABLE_HEADER* variableHeader = (const VSS_VARIABLE_HEADER*)(data.constData() + offset);
|
|
|
|
// Check variable header to fit in still unparsed data
|
|
UINT32 variableSize = 0;
|
|
if (unparsedSize >= sizeof(VSS_VARIABLE_HEADER)
|
|
&& variableHeader->StartId == NVRAM_VSS_VARIABLE_START_ID) {
|
|
|
|
// Apple VSS variable with CRC32 of the data
|
|
if (variableHeader->Attributes & NVRAM_VSS_VARIABLE_APPLE_DATA_CHECKSUM) {
|
|
isAppleCrc32 = true;
|
|
if (unparsedSize < sizeof(VSS_APPLE_VARIABLE_HEADER)) {
|
|
variableSize = 0;
|
|
}
|
|
else {
|
|
const VSS_APPLE_VARIABLE_HEADER* appleVariableHeader = (const VSS_APPLE_VARIABLE_HEADER*)variableHeader;
|
|
variableSize = sizeof(VSS_APPLE_VARIABLE_HEADER) + appleVariableHeader->NameSize + appleVariableHeader->DataSize;
|
|
variableGuid = (EFI_GUID*)&appleVariableHeader->VendorGuid;
|
|
variableName = (CHAR16*)(appleVariableHeader + 1);
|
|
|
|
header = data.mid(offset, sizeof(VSS_APPLE_VARIABLE_HEADER) + appleVariableHeader->NameSize);
|
|
body = data.mid(offset + header.size(), appleVariableHeader->DataSize);
|
|
|
|
// Calculate CRC32 of the variable data
|
|
storedCrc32 = appleVariableHeader->DataCrc32;
|
|
calculatedCrc32 = crc32(0, (const UINT8*)body.constData(), body.size());
|
|
}
|
|
}
|
|
|
|
// Authenticated variable
|
|
else if ((variableHeader->Attributes & NVRAM_VSS_VARIABLE_AUTHENTICATED_WRITE_ACCESS)
|
|
|| (variableHeader->Attributes & NVRAM_VSS_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS)
|
|
|| (variableHeader->Attributes & NVRAM_VSS_VARIABLE_APPEND_WRITE)
|
|
|| (variableHeader->NameSize == 0 && variableHeader->DataSize == 0)) { // If both NameSize and DataSize are zeros, it's auth variable with zero montonic counter
|
|
isAuthenticated = true;
|
|
if (unparsedSize < sizeof(VSS_AUTH_VARIABLE_HEADER)) {
|
|
variableSize = 0;
|
|
}
|
|
else {
|
|
const VSS_AUTH_VARIABLE_HEADER* authVariableHeader = (const VSS_AUTH_VARIABLE_HEADER*)variableHeader;
|
|
variableSize = sizeof(VSS_AUTH_VARIABLE_HEADER) + authVariableHeader->NameSize + authVariableHeader->DataSize;
|
|
variableGuid = (EFI_GUID*)&authVariableHeader->VendorGuid;
|
|
variableName = (CHAR16*)(authVariableHeader + 1);
|
|
|
|
header = data.mid(offset, sizeof(VSS_AUTH_VARIABLE_HEADER) + authVariableHeader->NameSize);
|
|
body = data.mid(offset + header.size(), authVariableHeader->DataSize);
|
|
|
|
monotonicCounter = authVariableHeader->MonotonicCounter;
|
|
timestamp = authVariableHeader->Timestamp;
|
|
pubKeyIndex = authVariableHeader->PubKeyIndex;
|
|
}
|
|
}
|
|
|
|
// Normal VSS variable
|
|
if (!isAuthenticated && !isAppleCrc32) {
|
|
variableSize = sizeof(VSS_VARIABLE_HEADER) + variableHeader->NameSize + variableHeader->DataSize;
|
|
variableGuid = (EFI_GUID*)&variableHeader->VendorGuid;
|
|
variableName = (CHAR16*)(variableHeader + 1);
|
|
|
|
header = data.mid(offset, sizeof(VSS_VARIABLE_HEADER) + variableHeader->NameSize);
|
|
body = data.mid(offset + header.size(), variableHeader->DataSize);
|
|
}
|
|
|
|
// There is also a case of authenticated Apple variables, but I haven't seen one yet
|
|
|
|
// Check variable state
|
|
if (variableHeader->State != NVRAM_VSS_VARIABLE_ADDED && variableHeader->State != NVRAM_VSS_VARIABLE_HEADER_VALID) {
|
|
isInvalid = true;
|
|
}
|
|
}
|
|
|
|
// Can't parse further, add the last element and break the loop
|
|
if (!variableSize) {
|
|
// Check if the data left is a free space or a padding
|
|
UByteArray padding = data.mid(offset, unparsedSize);
|
|
UINT8 type;
|
|
|
|
if (padding.count(pdata.emptyByte) == padding.size()) {
|
|
// It's a free space
|
|
name = UString("Free space");
|
|
type = Types::FreeSpace;
|
|
subtype = 0;
|
|
}
|
|
else {
|
|
// Nothing is parsed yet, but the store is not empty
|
|
if (!offset) {
|
|
msg(UString("parseVssStoreBody: store can't be parsed as VSS store"), index);
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
// It's a padding
|
|
name = UString("Padding");
|
|
type = Types::Padding;
|
|
subtype = getPaddingType(padding);
|
|
}
|
|
|
|
// Get info
|
|
UString info = usprintf("Full size: %Xh (%u)", padding.size(), padding.size());
|
|
|
|
// Construct parsing data
|
|
pdata.offset = parentOffset + offset;
|
|
|
|
// Add tree item
|
|
model->addItem(type, subtype, name, UString(), info, UByteArray(), padding, UByteArray(), false, parsingDataToUByteArray(pdata), index);
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
UString info;
|
|
|
|
// Rename invalid variables
|
|
if (isInvalid) {
|
|
name = UString("Invalid");
|
|
}
|
|
else { // Add GUID and text for valid variables
|
|
name = guidToUString(*variableGuid);
|
|
info += UString("Variable GUID: ") + name + UString("\n");
|
|
text = UString::fromUtf16(variableName);
|
|
}
|
|
|
|
// Add info
|
|
info += usprintf("Full size: %Xh (%u)\nHeader size %Xh (%u)\nBody size: %Xh (%u)\nState: %02Xh\nAttributes: %08Xh (",
|
|
variableSize, variableSize,
|
|
header.size(), header.size(),
|
|
body.size(), body.size(),
|
|
variableHeader->State,
|
|
variableHeader->Attributes) + vssAttributesToUString(variableHeader->Attributes) + UString(")");
|
|
|
|
// Set subtype and add related info
|
|
if (isInvalid)
|
|
subtype = Subtypes::InvalidVssEntry;
|
|
else if (isAuthenticated) {
|
|
subtype = Subtypes::AuthVssEntry;
|
|
info += usprintf("\nMonotonic counter: %"PRIX64"h\nTimestamp: ", monotonicCounter) + efiTimeToUString(timestamp)
|
|
+ usprintf("\nPubKey index: %u", pubKeyIndex);
|
|
}
|
|
else if (isAppleCrc32) {
|
|
subtype = Subtypes::AppleVssEntry;
|
|
info += usprintf("\nData checksum: %08Xh", storedCrc32) +
|
|
(storedCrc32 != calculatedCrc32 ? usprintf(", invalid, should be %08Xh", calculatedCrc32) : UString(", valid"));
|
|
}
|
|
else
|
|
subtype = Subtypes::StandardVssEntry;
|
|
|
|
// Add correct offset to parsing data
|
|
pdata.offset = parentOffset + offset;
|
|
|
|
// Add tree item
|
|
model->addItem(Types::VssEntry, subtype, name, text, info, header, body, UByteArray(), false, parsingDataToUByteArray(pdata), index);
|
|
|
|
// Move to next variable
|
|
offset += variableSize;
|
|
}
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseFsysStoreBody(const UModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return U_INVALID_PARAMETER;
|
|
|
|
// Get parsing data for the current item
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(index);
|
|
UINT32 parentOffset = pdata.offset + model->header(index).size();
|
|
const UByteArray data = model->body(index);
|
|
|
|
// Check that the is enough space for variable header
|
|
const UINT32 dataSize = (UINT32)data.size();
|
|
UINT32 offset = 0;
|
|
|
|
// Parse all variables
|
|
while (1) {
|
|
UINT32 unparsedSize = dataSize - offset;
|
|
UINT32 variableSize = 0;
|
|
|
|
// Get nameSize and name of the variable
|
|
const UINT8 nameSize = *(UINT8*)(data.constData() + offset);
|
|
// Check sanity
|
|
if (unparsedSize >= nameSize + sizeof(UINT8)) {
|
|
variableSize = nameSize + sizeof(UINT8);
|
|
}
|
|
|
|
UByteArray name;
|
|
if (variableSize) {
|
|
name = data.mid(offset + sizeof(UINT8), nameSize);
|
|
// Check for EOF variable
|
|
if (nameSize == 3 && name[0] == 'E' && name[1] == 'O' && name[2] == 'F') {
|
|
// There is no data afterward, add EOF variable and free space and return
|
|
UByteArray header = data.mid(offset, sizeof(UINT8) + nameSize);
|
|
UString info = usprintf("Full size: %Xh (%u)", header.size(), header.size());
|
|
|
|
// Add correct offset to parsing data
|
|
pdata.offset = parentOffset + offset;
|
|
|
|
// Add EOF tree item
|
|
model->addItem(Types::FsysEntry, 0, UString(name), UString(), info, header, UByteArray(), UByteArray(), false, parsingDataToUByteArray(pdata), index);
|
|
|
|
// Add free space
|
|
offset += header.size();
|
|
unparsedSize = dataSize - offset;
|
|
UByteArray body = data.mid(offset);
|
|
info = usprintf("Full size: %Xh (%u)", body.size(), body.size());
|
|
|
|
// Add correct offset to parsing data
|
|
pdata.offset = parentOffset + offset;
|
|
|
|
// Add free space tree item
|
|
model->addItem(Types::FreeSpace, 0, UString("Free space"), UString(), info, UByteArray(), body, UByteArray(), false, parsingDataToUByteArray(pdata), index);
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
}
|
|
|
|
// Get dataSize and data of the variable
|
|
const UINT16 dataSize = *(UINT16*)(data.constData() + offset + sizeof(UINT8) + nameSize);
|
|
if (unparsedSize >= sizeof(UINT8) + nameSize + sizeof(UINT16) + dataSize) {
|
|
variableSize = sizeof(UINT8) + nameSize + sizeof(UINT16) + dataSize;
|
|
}
|
|
else {
|
|
// Last variable is bad, add the rest as padding and return
|
|
UByteArray body = data.mid(offset);
|
|
UString info = usprintf("Full size: %Xh (%u)", body.size(), body.size());
|
|
|
|
// Add correct offset to parsing data
|
|
pdata.offset = parentOffset + offset;
|
|
|
|
// Add free space tree item
|
|
model->addItem(Types::Padding, getPaddingType(body), UString("Padding"), UString(), info, UByteArray(), body, UByteArray(), false, parsingDataToUByteArray(pdata), index);
|
|
|
|
// Show message
|
|
msg(UString("parseFsysStoreBody: next variable appears too big, added as padding"), index);
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
// Construct header and body
|
|
UByteArray header = data.mid(offset, sizeof(UINT8) + nameSize + sizeof(UINT16));
|
|
UByteArray body = data.mid(offset + sizeof(UINT8) + nameSize + sizeof(UINT16), dataSize);
|
|
|
|
// Add info
|
|
UString info = usprintf("Full size: %Xh (%u)\nHeader size %Xh (%u)\nBody size: %Xh (%u)",
|
|
variableSize, variableSize,
|
|
header.size(), header.size(),
|
|
body.size(), body.size());
|
|
|
|
// Add correct offset to parsing data
|
|
pdata.offset = parentOffset + offset;
|
|
|
|
// Add tree item
|
|
model->addItem(Types::FsysEntry, 0, UString(name), UString(), info, header, body, UByteArray(), false, parsingDataToUByteArray(pdata), index);
|
|
|
|
// Move to next variable
|
|
offset += variableSize;
|
|
}
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
USTATUS FfsParser::parseEvsaStoreBody(const UModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return U_INVALID_PARAMETER;
|
|
|
|
// Get parsing data for the current item
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(index);
|
|
UINT32 parentOffset = pdata.offset + model->header(index).size();
|
|
const UByteArray data = model->body(index);
|
|
|
|
// Check that the is enough space for entry header
|
|
const UINT32 dataSize = (UINT32)data.size();
|
|
UINT32 offset = 0;
|
|
|
|
std::map<UINT16, EFI_GUID> guidMap;
|
|
std::map<UINT16, UString> nameMap;
|
|
|
|
// Parse all entries
|
|
UINT32 unparsedSize = dataSize;
|
|
while (unparsedSize) {
|
|
UINT32 variableSize = 0;
|
|
UString name;
|
|
UString info;
|
|
UByteArray header;
|
|
UByteArray body;
|
|
UINT8 subtype;
|
|
UINT8 calculated;
|
|
|
|
const EVSA_ENTRY_HEADER* entryHeader = (const EVSA_ENTRY_HEADER*)(data.constData() + offset);
|
|
|
|
// Check entry size
|
|
variableSize = sizeof(EVSA_ENTRY_HEADER);
|
|
if (unparsedSize < variableSize || unparsedSize < entryHeader->Size) {
|
|
UByteArray body = data.mid(offset);
|
|
UString info = usprintf("Full size: %Xh (%u)", body.size(), body.size());
|
|
|
|
// Checke type
|
|
UString name("Free space");
|
|
UINT8 type = Types::FreeSpace;
|
|
UINT8 subtype = 0;
|
|
if (getPaddingType(body) == Subtypes::DataPadding) {
|
|
name = UString("Padding");
|
|
type = Types::Padding;
|
|
subtype = Subtypes::DataPadding;
|
|
}
|
|
|
|
// Add correct offset to parsing data
|
|
pdata.offset = parentOffset + offset;
|
|
|
|
// Add free space tree item
|
|
UModelIndex itemIndex = model->addItem(type, subtype, name, UString(), info, UByteArray(), body, UByteArray(), false, parsingDataToUByteArray(pdata), index);
|
|
|
|
// Show message
|
|
if (type == Types::Padding)
|
|
msg(UString("parseEvsaStoreBody: variable parsing failed, rest of unparsed store added as padding"), itemIndex);
|
|
|
|
break;
|
|
}
|
|
variableSize = entryHeader->Size;
|
|
|
|
// Recalculate entry checksum
|
|
calculated = calculateChecksum8(((const UINT8*)entryHeader) + 2, entryHeader->Size - 2);
|
|
|
|
// GUID entry
|
|
if (entryHeader->Type == NVRAM_EVSA_ENTRY_TYPE_GUID1 ||
|
|
entryHeader->Type == NVRAM_EVSA_ENTRY_TYPE_GUID2) {
|
|
const EVSA_GUID_ENTRY* guidHeader = (const EVSA_GUID_ENTRY*)entryHeader;
|
|
header = data.mid(offset, sizeof(EVSA_GUID_ENTRY));
|
|
body = data.mid(offset + sizeof(EVSA_GUID_ENTRY), guidHeader->Header.Size - sizeof(EVSA_GUID_ENTRY));
|
|
EFI_GUID guid = *(EFI_GUID*)body.constData();
|
|
name = guidToUString(guid);
|
|
info = UString("GUID: ") + name + usprintf("\nFull size: %Xh (%u)\nHeader size %Xh (%u)\nBody size: %Xh (%u)\nType: %02Xh\nChecksum: %02Xh",
|
|
variableSize, variableSize,
|
|
header.size(), header.size(),
|
|
body.size(), body.size(),
|
|
guidHeader->Header.Type,
|
|
guidHeader->Header.Checksum)
|
|
+ (guidHeader->Header.Checksum != calculated ? usprintf(", invalid, should be %02Xh", calculated) : UString(", valid"))
|
|
+ usprintf("\nGuidId: %04Xh", guidHeader->GuidId);
|
|
subtype = Subtypes::GuidEvsaEntry;
|
|
guidMap.insert(std::pair<UINT16, EFI_GUID>(guidHeader->GuidId, guid));
|
|
}
|
|
// Name entry
|
|
else if (entryHeader->Type == NVRAM_EVSA_ENTRY_TYPE_NAME1 ||
|
|
entryHeader->Type == NVRAM_EVSA_ENTRY_TYPE_NAME2) {
|
|
const EVSA_NAME_ENTRY* nameHeader = (const EVSA_NAME_ENTRY*)entryHeader;
|
|
header = data.mid(offset, sizeof(EVSA_NAME_ENTRY));
|
|
body = data.mid(offset + sizeof(EVSA_NAME_ENTRY), nameHeader->Header.Size - sizeof(EVSA_NAME_ENTRY));
|
|
name = UString::fromUtf16((const CHAR16*)body.constData());
|
|
info = UString("GUID: ") + name + usprintf("\nFull size: %Xh (%u)\nHeader size %Xh (%u)\nBody size: %Xh (%u)\nType: %02Xh\nChecksum: %02Xh",
|
|
variableSize, variableSize,
|
|
header.size(), header.size(),
|
|
body.size(), body.size(),
|
|
nameHeader->Header.Type,
|
|
nameHeader->Header.Checksum)
|
|
+ (nameHeader->Header.Checksum != calculated ? usprintf(", invalid, should be %02Xh", calculated) : UString(", valid"))
|
|
+ usprintf("\nVarId: %04Xh", nameHeader->VarId);
|
|
subtype = Subtypes::NameEvsaEntry;
|
|
nameMap.insert(std::pair<UINT16, UString>(nameHeader->VarId, name));
|
|
}
|
|
// Data entry
|
|
else if (entryHeader->Type == NVRAM_EVSA_ENTRY_TYPE_DATA1 ||
|
|
entryHeader->Type == NVRAM_EVSA_ENTRY_TYPE_DATA2 ||
|
|
entryHeader->Type == NVRAM_EVSA_ENTRY_TYPE_DATA_INVALID) {
|
|
const EVSA_DATA_ENTRY* dataHeader = (const EVSA_DATA_ENTRY*)entryHeader;
|
|
// Check for extended header
|
|
UINT32 headerSize = sizeof(EVSA_DATA_ENTRY);
|
|
UINT32 dataSize = dataHeader->Header.Size - sizeof(EVSA_DATA_ENTRY);
|
|
if (dataHeader->Attributes & NVRAM_EVSA_DATA_EXTENDED_HEADER) {
|
|
const EVSA_DATA_ENTRY_EXTENDED* dataHeaderExtended = (const EVSA_DATA_ENTRY_EXTENDED*)entryHeader;
|
|
headerSize = sizeof(EVSA_DATA_ENTRY_EXTENDED);
|
|
dataSize = dataHeaderExtended->DataSize;
|
|
variableSize = headerSize + dataSize;
|
|
}
|
|
|
|
header = data.mid(offset, headerSize);
|
|
body = data.mid(offset + headerSize, dataSize);
|
|
name = UString("Data");
|
|
info = usprintf("Full size: %Xh (%u)\nHeader size %Xh (%u)\nBody size: %Xh (%u)\nType: %02Xh\nChecksum: %02Xh",
|
|
variableSize, variableSize,
|
|
headerSize, headerSize,
|
|
dataSize, dataSize,
|
|
dataHeader->Header.Type,
|
|
dataHeader->Header.Checksum)
|
|
+ (dataHeader->Header.Checksum != calculated ? usprintf(", invalid, should be %02Xh", calculated) : UString(", valid"))
|
|
+ usprintf("\nVarId: %04Xh\nGuidId: %04Xh\nAttributes: %08Xh (",
|
|
dataHeader->VarId,
|
|
dataHeader->GuidId,
|
|
dataHeader->Attributes)
|
|
+ evsaAttributesToUString(dataHeader->Attributes) + UString(")");
|
|
subtype = Subtypes::DataEvsaEntry;
|
|
}
|
|
// Unknown entry or free space
|
|
else {
|
|
UByteArray body = data.mid(offset);
|
|
UString info = usprintf("Full size: %Xh (%u)", body.size(), body.size());
|
|
|
|
// Check type
|
|
UString name("Free space");
|
|
UINT8 type = Types::FreeSpace;
|
|
UINT8 subtype = 0;
|
|
if (getPaddingType(body) == Subtypes::DataPadding) {
|
|
name = UString("Padding");
|
|
type = Types::Padding;
|
|
subtype = Subtypes::DataPadding;
|
|
}
|
|
|
|
// Add correct offset to parsing data
|
|
pdata.offset = parentOffset + offset;
|
|
|
|
// Add free space tree item
|
|
UModelIndex itemIndex = model->addItem(type, subtype, name, UString(), info, UByteArray(), body, UByteArray(), false, parsingDataToUByteArray(pdata), index);
|
|
|
|
// Show message
|
|
if (type == Types::Padding)
|
|
msg(usprintf("parseEvsaStoreBody: unknown variable of type %02Xh found at offset %Xh, the rest of unparsed store added as padding",entryHeader->Type, offset), itemIndex);
|
|
break;
|
|
}
|
|
|
|
// Add correct offset to parsing data
|
|
pdata.offset = parentOffset + offset;
|
|
|
|
// Add tree item
|
|
model->addItem(Types::EvsaEntry, subtype, name, UString(), info, header, body, UByteArray(), false, parsingDataToUByteArray(pdata), index);
|
|
|
|
// Move to next variable
|
|
offset += variableSize;
|
|
unparsedSize = dataSize - offset;
|
|
}
|
|
|
|
// Reparse all data variables to detect invalid ones and assign name and test to valid ones
|
|
for (int i = 0; i < model->rowCount(index); i++) {
|
|
UModelIndex current = index.child(i, 0);
|
|
if (model->subtype(current) == Subtypes::DataEvsaEntry) {
|
|
UByteArray header = model->header(current);
|
|
const EVSA_DATA_ENTRY* dataHeader = (const EVSA_DATA_ENTRY*)header.constData();
|
|
UString guid;
|
|
if (guidMap.count(dataHeader->GuidId))
|
|
guid = guidToUString(guidMap[dataHeader->GuidId]);
|
|
UString name;
|
|
if (nameMap.count(dataHeader->VarId))
|
|
name = nameMap[dataHeader->VarId];
|
|
|
|
// Check for variable validity
|
|
if (guid.isEmpty() && name.isEmpty()) { // Both name and guid aren't found
|
|
model->setSubtype(current, Subtypes::InvalidEvsaEntry);
|
|
model->setName(current, UString("Invalid"));
|
|
msg(UString("parseEvsaStoreBody: data variable with invalid GuidId and invalid VarId"), current);
|
|
}
|
|
else if (guid.isEmpty()) { // Guid not found
|
|
model->setSubtype(current, Subtypes::InvalidEvsaEntry);
|
|
model->setName(current, UString("Invalid"));
|
|
msg(UString("parseEvsaStoreBody: data variable with invalid GuidId"), current);
|
|
}
|
|
else if (name.isEmpty()) { // Name not found
|
|
model->setSubtype(current, Subtypes::InvalidEvsaEntry);
|
|
model->setName(current, UString("Invalid"));
|
|
msg(UString("parseEvsaStoreBody: data variable with invalid VarId"), current);
|
|
}
|
|
else { // Variable is OK, rename it
|
|
if (dataHeader->Header.Type == NVRAM_EVSA_ENTRY_TYPE_DATA_INVALID) {
|
|
model->setSubtype(current, Subtypes::InvalidEvsaEntry);
|
|
model->setName(current, UString("Invalid"));
|
|
}
|
|
else {
|
|
model->setName(current, guid);
|
|
}
|
|
model->setText(current, name);
|
|
model->addInfo(current, UString("GUID: ") + guid + UString("\nName: ") + name + UString("\n"), false);
|
|
}
|
|
}
|
|
}
|
|
|
|
return U_SUCCESS;
|
|
}
|
|
|
|
|
|
USTATUS FfsParser::parseFlashMapBody(const UModelIndex & index)
|
|
{
|
|
// Sanity check
|
|
if (!index.isValid())
|
|
return U_INVALID_PARAMETER;
|
|
|
|
// Get parsing data for the current item
|
|
PARSING_DATA pdata = parsingDataFromUModelIndex(index);
|
|
UINT32 parentOffset = pdata.offset + model->header(index).size();
|
|
const UByteArray data = model->body(index);
|
|
|
|
|
|
const UINT32 dataSize = (UINT32)data.size();
|
|
UINT32 offset = 0;
|
|
UINT32 unparsedSize = dataSize;
|
|
// Parse all entries
|
|
while (unparsedSize) {
|
|
const PHOENIX_FLASH_MAP_ENTRY* entryHeader = (const PHOENIX_FLASH_MAP_ENTRY*)(data.constData() + offset);
|
|
|
|
// Check entry size
|
|
if (unparsedSize < sizeof(PHOENIX_FLASH_MAP_ENTRY)) {
|
|
// Last variable is bad, add the rest as padding and return
|
|
UByteArray body = data.mid(offset);
|
|
UString info = usprintf("Full size: %Xh (%u)", body.size(), body.size());
|
|
|
|
// Add correct offset to parsing data
|
|
pdata.offset = parentOffset + offset;
|
|
|
|
// Add free space tree item
|
|
model->addItem(Types::Padding, getPaddingType(body), UString("Padding"), UString(), info, UByteArray(), body, UByteArray(), false, parsingDataToUByteArray(pdata), index);
|
|
|
|
// Show message
|
|
if (unparsedSize < entryHeader->Size)
|
|
msg(UString("parseFlashMapBody: next entry appears too big, added as padding"), index);
|
|
|
|
break;
|
|
}
|
|
|
|
UString name = guidToUString(entryHeader->Guid);
|
|
|
|
// Construct header
|
|
UByteArray header = data.mid(offset, sizeof(PHOENIX_FLASH_MAP_ENTRY));
|
|
|
|
// Add info
|
|
UString info = UString("Entry GUID: ") + name + usprintf("\nFull size: 24h (36)\nHeader size: 24h (36)\nBody size: 0h (0)\n"
|
|
"Entry type: %04Xh\nData type: %04Xh\nMemory address: %08Xh\nSize: %08Xh\nOffset: %08Xh",
|
|
entryHeader->EntryType,
|
|
entryHeader->DataType,
|
|
entryHeader->PhysicalAddress,
|
|
entryHeader->Size,
|
|
entryHeader->Offset);
|
|
|
|
// Add correct offset to parsing data
|
|
pdata.offset = parentOffset + offset;
|
|
|
|
// Determine subtype
|
|
UINT8 subtype = 0;
|
|
switch (entryHeader->DataType) {
|
|
case NVRAM_PHOENIX_FLASH_MAP_ENTRY_TYPE_VOLUME:
|
|
subtype = Subtypes::VolumeFlashMapEntry;
|
|
break;
|
|
case NVRAM_PHOENIX_FLASH_MAP_ENTRY_TYPE_DATA_BLOCK:
|
|
subtype = Subtypes::DataFlashMapEntry;
|
|
break;
|
|
}
|
|
|
|
// Add tree item
|
|
model->addItem(Types::FlashMapEntry, subtype, name, flashMapGuidToUString(entryHeader->Guid), info, header, UByteArray(), UByteArray(), true, parsingDataToUByteArray(pdata), index);
|
|
|
|
// Move to next variable
|
|
offset += sizeof(PHOENIX_FLASH_MAP_ENTRY);
|
|
unparsedSize = dataSize - offset;
|
|
}
|
|
|
|
return U_SUCCESS;
|
|
}
|