UEFITool/ffsengine.cpp
Nikolaj Schlej ead41ba5bb Version 0.15.0
- implemented PE and TE executables relocation for correct Boot Firmware
Volume modification
2014-01-09 11:45:49 +01:00

2662 lines
108 KiB
C++

/* ffsengine.cpp
Copyright (c) 2013, Nikolaj Schlej. All rights reserved.
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHWARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*/
#include <math.h>
#include "ffsengine.h"
#include "treeitem.h"
#include "treemodel.h"
#include "descriptor.h"
#include "ffs.h"
#include "gbe.h"
#include "me.h"
#include "Tiano/EfiTianoCompress.h"
#include "Tiano/EfiTianoDecompress.h"
#include "LZMA/LzmaCompress.h"
#include "LZMA/LzmaDecompress.h"
FfsEngine::FfsEngine(QObject *parent)
: QObject(parent)
{
model = new TreeModel();
}
FfsEngine::~FfsEngine(void)
{
delete model;
}
TreeModel* FfsEngine::treeModel() const
{
return model;
}
void FfsEngine::msg(const QString & message, const QModelIndex index)
{
messageItems.enqueue(MessageListItem(message, NULL, 0, index));
}
QQueue<MessageListItem> FfsEngine::messages() const
{
return messageItems;
}
void FfsEngine::clearMessages()
{
messageItems.clear();
}
bool FfsEngine::hasIntersection(const UINT32 begin1, const UINT32 end1, const UINT32 begin2, const UINT32 end2)
{
if (begin1 < begin2 && begin2 < end1)
return true;
if (begin1 < end2 && end2 < end1)
return true;
if (begin2 < begin1 && begin1 < end2)
return true;
if (begin2 < end1 && end1 < end2)
return true;
return false;
}
// Firmware image parsing
UINT8 FfsEngine::parseInputFile(const QByteArray & buffer)
{
UINT32 capsuleHeaderSize = 0;
FLASH_DESCRIPTOR_HEADER* descriptorHeader = NULL;
QModelIndex index;
QByteArray flashImage;
// Check buffer size to be more then or equal to sizeof(EFI_CAPSULE_HEADER)
if ((UINT32) buffer.size() <= sizeof(EFI_CAPSULE_HEADER))
{
msg(tr("parseInputFile: Input file is smaller then minimum size of %1 bytes").arg(sizeof(EFI_CAPSULE_HEADER)));
return ERR_INVALID_PARAMETER;
}
// Check buffer for being normal EFI capsule header
if (buffer.startsWith(EFI_CAPSULE_GUID)) {
// Get info
EFI_CAPSULE_HEADER* capsuleHeader = (EFI_CAPSULE_HEADER*) buffer.constData();
capsuleHeaderSize = capsuleHeader->HeaderSize;
QByteArray header = buffer.left(capsuleHeaderSize);
QByteArray body = buffer.right(buffer.size() - capsuleHeaderSize);
QString name = tr("UEFI capsule");
QString info = tr("Header size: %1\nFlags: %2\nImage size: %3")
.arg(capsuleHeader->HeaderSize, 8, 16, QChar('0'))
.arg(capsuleHeader->Flags, 8, 16, QChar('0'))
.arg(capsuleHeader->CapsuleImageSize, 8, 16, QChar('0'));
// Add tree item
index = model->addItem(Capsule, UefiCapsule, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body);
}
// Check buffer for being extended Aptio capsule header
else if (buffer.startsWith(APTIO_CAPSULE_GUID)) {
// Get info
APTIO_CAPSULE_HEADER* aptioCapsuleHeader = (APTIO_CAPSULE_HEADER*) buffer.constData();
capsuleHeaderSize = aptioCapsuleHeader->RomImageOffset;
QByteArray header = buffer.left(capsuleHeaderSize);
QByteArray body = buffer.right(buffer.size() - capsuleHeaderSize);
QString name = tr("AMI Aptio capsule");
QString info = tr("Header size: %1\nFlags: %2\nImage size: %3")
.arg(aptioCapsuleHeader->RomImageOffset, 4, 16, QChar('0'))
.arg(aptioCapsuleHeader->CapsuleHeader.Flags, 8, 16, QChar('0'))
.arg(aptioCapsuleHeader->CapsuleHeader.CapsuleImageSize - aptioCapsuleHeader->RomImageOffset, 8, 16, QChar('0'));
//!TODO: more info about Aptio capsule
// Add tree item
index = model->addItem(Capsule, AptioCapsule, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body);
}
// Skip capsule header to have flash chip image
flashImage = buffer.right(buffer.size() - capsuleHeaderSize);
// Check for Intel flash descriptor presence
descriptorHeader = (FLASH_DESCRIPTOR_HEADER*) flashImage.constData();
// Check descriptor signature
UINT8 result;
if (descriptorHeader->Signature == FLASH_DESCRIPTOR_SIGNATURE) {
// Parse as Intel image
QModelIndex imageIndex;
result = parseIntelImage(flashImage, imageIndex, index);
if (result != ERR_INVALID_FLASH_DESCRIPTOR)
return result;
}
// Get info
QString name = tr("BIOS image");
QString info = tr("Size: %1")
.arg(flashImage.size(), 8, 16, QChar('0'));
// Add tree item
index = model->addItem(Image, BiosImage, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), flashImage, QByteArray(), index);
return parseBios(flashImage, index);
}
UINT8 FfsEngine::parseIntelImage(const QByteArray & flashImage, QModelIndex & index, const QModelIndex & parent)
{
FLASH_DESCRIPTOR_MAP* descriptorMap;
FLASH_DESCRIPTOR_REGION_SECTION* regionSection;
//FLASH_DESCRIPTOR_COMPONENT_SECTION* componentSection;
// Store the beginning of descriptor as descriptor base address
UINT8* descriptor = (UINT8*) flashImage.constData();
UINT32 descriptorBegin = 0;
UINT32 descriptorEnd = FLASH_DESCRIPTOR_SIZE;
// Check for buffer size to be greater or equal to descriptor region size
if (flashImage.size() < FLASH_DESCRIPTOR_SIZE) {
msg(tr("parseInputFile: Input file is smaller then minimum descriptor size of %1 bytes").arg(FLASH_DESCRIPTOR_SIZE));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
// Parse descriptor map
descriptorMap = (FLASH_DESCRIPTOR_MAP*) (descriptor + sizeof(FLASH_DESCRIPTOR_HEADER));
regionSection = (FLASH_DESCRIPTOR_REGION_SECTION*) calculateAddress8(descriptor, descriptorMap->RegionBase);
//componentSection = (FLASH_DESCRIPTOR_COMPONENT_SECTION*) calculateAddress8(descriptor, descriptorMap->ComponentBase);
// GbE region
QByteArray gbe;
UINT32 gbeBegin = 0;
UINT32 gbeEnd = 0;
if (regionSection->GbeLimit) {
gbeBegin = calculateRegionOffset(regionSection->GbeBase);
gbeEnd = calculateRegionSize(regionSection->GbeBase, regionSection->GbeLimit);
gbe = flashImage.mid(gbeBegin, gbeEnd);
gbeEnd += gbeBegin;
}
// ME region
QByteArray me;
UINT32 meBegin = 0;
UINT32 meEnd = 0;
if (regionSection->MeLimit) {
meBegin = calculateRegionOffset(regionSection->MeBase);
meEnd = calculateRegionSize(regionSection->MeBase, regionSection->MeLimit);
me = flashImage.mid(meBegin, meEnd);
meEnd += meBegin;
}
// PDR region
QByteArray pdr;
UINT32 pdrBegin = 0;
UINT32 pdrEnd = 0;
if (regionSection->PdrLimit) {
pdrBegin = calculateRegionOffset(regionSection->PdrBase);
pdrEnd = calculateRegionSize(regionSection->PdrBase, regionSection->PdrLimit);
pdr = flashImage.mid(pdrBegin, pdrEnd);
pdrEnd += pdrBegin;
}
// BIOS region
QByteArray bios;
UINT32 biosBegin = 0;
UINT32 biosEnd = 0;
if (regionSection->BiosLimit) {
biosBegin = calculateRegionOffset(regionSection->BiosBase);
biosEnd = calculateRegionSize(regionSection->BiosBase, regionSection->BiosLimit);
bios = flashImage.mid(biosBegin, biosEnd);
biosEnd += biosBegin;
}
else {
msg(tr("parseInputFile: descriptor parsing failed, BIOS region not found in descriptor"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
// Check for intersections between regions
if (hasIntersection(descriptorBegin, descriptorEnd, gbeBegin, gbeEnd)) {
msg(tr("parseInputFile: descriptor parsing failed, descriptor region has intersection with GbE region"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
if (hasIntersection(descriptorBegin, descriptorEnd, meBegin, meEnd)) {
msg(tr("parseInputFile: descriptor parsing failed, descriptor region has intersection with ME region"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
if (hasIntersection(descriptorBegin, descriptorEnd, biosBegin, biosEnd)) {
msg(tr("parseInputFile: descriptor parsing failed, descriptor region has intersection with BIOS region"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
if (hasIntersection(descriptorBegin, descriptorEnd, pdrBegin, pdrEnd)) {
msg(tr("parseInputFile: descriptor parsing failed, descriptor region has intersection with PDR region"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
if (hasIntersection(gbeBegin, gbeEnd, meBegin, meEnd)) {
msg(tr("parseInputFile: descriptor parsing failed, GbE region has intersection with ME region"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
if (hasIntersection(gbeBegin, gbeEnd, biosBegin, biosEnd)) {
msg(tr("parseInputFile: descriptor parsing failed, GbE region has intersection with BIOS region"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
if (hasIntersection(gbeBegin, gbeEnd, pdrBegin, pdrEnd)) {
msg(tr("parseInputFile: descriptor parsing failed, GbE region has intersection with PDR region"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
if (hasIntersection(meBegin, meEnd, biosBegin, biosEnd)) {
msg(tr("parseInputFile: descriptor parsing failed, ME region has intersection with BIOS region"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
if (hasIntersection(meBegin, meEnd, pdrBegin, pdrEnd)) {
msg(tr("parseInputFile: descriptor parsing failed, ME region has intersection with PDR region"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
if (hasIntersection(biosBegin, biosEnd, pdrBegin, pdrEnd)) {
msg(tr("parseInputFile: descriptor parsing failed, BIOS region has intersection with PDR region"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
// Region map is consistent
QByteArray body;
QString name;
QString info;
// Intel image
name = tr("Intel image");
info = tr("Size: %1\nFlash chips: %2\nRegions: %3\nMasters: %4\nPCH straps: %5\nPROC straps: %6\nICC table entries: %7")
.arg(flashImage.size(), 8, 16, QChar('0'))
.arg(descriptorMap->NumberOfFlashChips + 1) //
.arg(descriptorMap->NumberOfRegions + 1) // Zero-based numbers in storage
.arg(descriptorMap->NumberOfMasters + 1) //
.arg(descriptorMap->NumberOfPchStraps)
.arg(descriptorMap->NumberOfProcStraps)
.arg(descriptorMap->NumberOfIccTableEntries);
// Add Intel image tree item
index = model->addItem(Image, IntelImage, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), flashImage, QByteArray(), parent);
// Descriptor
// Get descriptor info
body = flashImage.left(FLASH_DESCRIPTOR_SIZE);
name = tr("Descriptor region");
info = tr("Size: %1").arg(FLASH_DESCRIPTOR_SIZE, 4, 16, QChar('0'));
// Check regions presence once again
QVector<UINT32> offsets;
if (regionSection->GbeLimit) {
offsets.append(gbeBegin);
info += tr("\nGbE region offset: %1").arg(gbeBegin, 8, 16, QChar('0'));
}
if (regionSection->MeLimit) {
offsets.append(meBegin);
info += tr("\nME region offset: %1").arg(meBegin, 8, 16, QChar('0'));
}
if (regionSection->BiosLimit) {
offsets.append(biosBegin);
info += tr("\nBIOS region offset: %1").arg(biosBegin, 8, 16, QChar('0'));
}
if (regionSection->PdrLimit) {
offsets.append(pdrBegin);
info += tr("\nPDR region offset: %1").arg(pdrBegin, 8, 16, QChar('0'));
}
// Add descriptor tree item
model->addItem(Region, DescriptorRegion, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), body, QByteArray(), index);
// Sort regions in ascending order
qSort(offsets);
// Parse regions
UINT8 result = 0;
for (int i = 0; i < offsets.count(); i++) {
// Parse GbE region
if (offsets.at(i) == gbeBegin) {
QModelIndex gbeIndex;
result = parseGbeRegion(gbe, gbeIndex, index);
}
// Parse ME region
else if (offsets.at(i) == meBegin) {
QModelIndex meIndex;
result = parseMeRegion(me, meIndex, index);
}
// Parse BIOS region
else if (offsets.at(i) == biosBegin) {
QModelIndex biosIndex;
result = parseBiosRegion(bios, biosIndex, index);
}
// Parse PDR region
else if (offsets.at(i) == pdrBegin) {
QModelIndex pdrIndex;
result = parsePdrRegion(pdr, pdrIndex, index);
}
if (result)
return result;
}
return ERR_SUCCESS;
}
UINT8 FfsEngine::parseGbeRegion(const QByteArray & gbe, QModelIndex & index, const QModelIndex & parent)
{
if (gbe.isEmpty())
return ERR_EMPTY_REGION;
// Get info
QString name = tr("GbE region");
GBE_MAC* mac = (GBE_MAC*) gbe.constData();
GBE_VERSION* version = (GBE_VERSION*) (gbe.constData() + GBE_VERSION_OFFSET);
QString info = tr("Size: %1\nMAC: %2:%3:%4:%5:%6:%7\nVersion: %8.%9")
.arg(gbe.size(), 8, 16, QChar('0'))
.arg(mac->vendor[0], 2, 16, QChar('0'))
.arg(mac->vendor[1], 2, 16, QChar('0'))
.arg(mac->vendor[2], 2, 16, QChar('0'))
.arg(mac->device[0], 2, 16, QChar('0'))
.arg(mac->device[1], 2, 16, QChar('0'))
.arg(mac->device[2], 2, 16, QChar('0'))
.arg(version->major)
.arg(version->minor);
// Add tree item
index = model->addItem( Region, GbeRegion, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), gbe, QByteArray(), parent);
return ERR_SUCCESS;
}
UINT8 FfsEngine::parseMeRegion(const QByteArray & me, QModelIndex & index, const QModelIndex & parent)
{
if (me.isEmpty())
return ERR_EMPTY_REGION;
// Get info
QString name = tr("ME region");
QString info = tr("Size: %1").
arg(me.size(), 8, 16, QChar('0'));
ME_VERSION* version;
INT32 versionOffset = me.indexOf(ME_VERSION_SIGNATURE);
if (versionOffset < 0){
info += tr("\nVersion: unknown");
msg(tr("parseRegion: ME region version is unknown, it can be damaged"), parent);
}
else {
version = (ME_VERSION*) (me.constData() + versionOffset);
info += tr("\nVersion: %1.%2.%3.%4")
.arg(version->major)
.arg(version->minor)
.arg(version->bugfix)
.arg(version->build);
}
// Add tree item
index = model->addItem( Region, MeRegion, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), me, QByteArray(), parent);
return ERR_SUCCESS;
}
UINT8 FfsEngine::parsePdrRegion(const QByteArray & pdr, QModelIndex & index, const QModelIndex & parent)
{
if (pdr.isEmpty())
return ERR_EMPTY_REGION;
// Get info
QString name = tr("PDR region");
QString info = tr("Size: %1").
arg(pdr.size(), 8, 16, QChar('0'));
// Add tree item
index = model->addItem( Region, PdrRegion, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), pdr, QByteArray(), parent);
return ERR_SUCCESS;
}
UINT8 FfsEngine::parseBiosRegion(const QByteArray & bios, QModelIndex & index, const QModelIndex & parent)
{
if (bios.isEmpty())
return ERR_EMPTY_REGION;
// Get info
QString name = tr("BIOS region");
QString info = tr("Size: %1").
arg(bios.size(), 8, 16, QChar('0'));
// Add tree item
index = model->addItem( Region, BiosRegion, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), bios, QByteArray(), parent);
return parseBios(bios, index);
}
UINT8 FfsEngine::parseBios(const QByteArray & bios, const QModelIndex & parent)
{
// Search for first volume
UINT32 prevVolumeOffset;
UINT8 result;
result = findNextVolume(bios, 0, prevVolumeOffset);
if (result)
return result;
// First volume is not at the beginning of BIOS space
QString name;
QString info;
if (prevVolumeOffset > 0) {
// Get info
QByteArray padding = bios.left(prevVolumeOffset);
name = tr("Padding");
info = tr("Size: %1")
.arg(padding.size(), 8, 16, QChar('0'));
// Add tree item
model->addItem( Padding, 0, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), padding, QByteArray(), parent);
}
// Search for and parse all volumes
UINT32 volumeOffset = prevVolumeOffset;
UINT32 prevVolumeSize = 0;
UINT32 volumeSize = 0;
while(true)
{
// Padding between volumes
if (volumeOffset > prevVolumeOffset + prevVolumeSize) {
UINT32 paddingSize = volumeOffset - prevVolumeOffset - prevVolumeSize;
QByteArray padding = bios.mid(prevVolumeOffset + prevVolumeSize, paddingSize);
// Get info
name = tr("Padding");
info = tr("Size: %1")
.arg(padding.size(), 8, 16, QChar('0'));
// Add tree item
model->addItem( Padding, 0, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), padding, QByteArray(), parent);
}
// Get volume size
result = getVolumeSize(bios, volumeOffset, volumeSize);
if (result)
return result;
//Check that volume is fully present in input
if (volumeOffset + volumeSize > (UINT32) bios.size()) {
msg(tr("parseBios: Volume overlaps the end of input buffer"), parent);
return ERR_INVALID_VOLUME;
}
// Check volume revision and alignment
EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (EFI_FIRMWARE_VOLUME_HEADER*) (bios.constData() + volumeOffset);
UINT32 alignment;
if (volumeHeader->Revision == 1) {
// Acquire alignment bits
bool alignmentCap = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_CAP;
bool alignment2 = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_2;
bool alignment4 = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_4;
bool alignment8 = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_8;
bool alignment16 = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_16;
bool alignment32 = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_32;
bool alignment64 = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_64;
bool alignment128 = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_128;
bool alignment256 = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_256;
bool alignment512 = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_512;
bool alignment1k = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_1K;
bool alignment2k = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_2K;
bool alignment4k = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_4K;
bool alignment8k = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_8K;
bool alignment16k = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_16K;
bool alignment32k = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_32K;
bool alignment64k = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_64K;
// Check alignment setup
if (!alignmentCap &&
( alignment2 || alignment4 || alignment8 || alignment16
|| alignment32 || alignment64 || alignment128 || alignment256
|| alignment512 || alignment1k || alignment2k || alignment4k
|| alignment8k || alignment16k || alignment32k || alignment64k))
msg("parseBios: Incompatible revision 1 volume alignment setup", parent);
// Assume that smaller alignment value consumes greater
//!TODO: refactor this code
alignment = 0x01;
if (alignment2)
alignment = 0x02;
else if (alignment4)
alignment = 0x04;
else if (alignment8)
alignment = 0x08;
else if (alignment16)
alignment = 0x10;
else if (alignment32)
alignment = 0x20;
else if (alignment64)
alignment = 0x40;
else if (alignment128)
alignment = 0x80;
else if (alignment256)
alignment = 0x100;
else if (alignment512)
alignment = 0x200;
else if (alignment1k)
alignment = 0x400;
else if (alignment2k)
alignment = 0x800;
else if (alignment4k)
alignment = 0x1000;
else if (alignment8k)
alignment = 0x2000;
else if (alignment16k)
alignment = 0x4000;
else if (alignment32k)
alignment = 0x8000;
else if (alignment64k)
alignment = 0x10000;
// Check alignment
if (volumeOffset % alignment) {
msg(tr("parseBios: Unaligned revision 1 volume"), parent);
}
}
else if (volumeHeader->Revision == 2) {
// Acquire alignment
alignment = (UINT32) pow(2.0, (int) (volumeHeader->Attributes & EFI_FVB2_ALIGNMENT) >> 16);
// Check alignment
if (volumeOffset % alignment) {
msg(tr("parseBios: Unaligned revision 2 volume"), parent);
}
}
else
msg(tr("parseBios: Unknown volume revision (%1)").arg(volumeHeader->Revision), parent);
// Parse volume
QModelIndex index;
UINT8 result = parseVolume(bios.mid(volumeOffset, volumeSize), index, parent);
if (result)
msg(tr("parseBios: Volume parsing failed (%1)").arg(result), parent);
// Go to next volume
prevVolumeOffset = volumeOffset;
prevVolumeSize = volumeSize;
result = findNextVolume(bios, volumeOffset + prevVolumeSize, volumeOffset);
if (result) {
UINT32 endPaddingSize = bios.size() - prevVolumeOffset - prevVolumeSize;
// Padding at the end of BIOS space
if (endPaddingSize > 0) {
QByteArray padding = bios.right(endPaddingSize);
// Get info
name = tr("Padding");
info = tr("Size: %2")
.arg(padding.size(), 8, 16, QChar('0'));
// Add tree item
model->addItem( Padding, 0, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), padding, QByteArray(), parent);
}
break;
}
}
return ERR_SUCCESS;
}
UINT8 FfsEngine::findNextVolume(const QByteArray & bios, UINT32 volumeOffset, UINT32 & nextVolumeOffset)
{
int nextIndex = bios.indexOf(EFI_FV_SIGNATURE, volumeOffset);
if (nextIndex < EFI_FV_SIGNATURE_OFFSET) {
return ERR_VOLUMES_NOT_FOUND;
}
nextVolumeOffset = nextIndex - EFI_FV_SIGNATURE_OFFSET;
return ERR_SUCCESS;
}
UINT8 FfsEngine::getVolumeSize(const QByteArray & bios, UINT32 volumeOffset, UINT32 & volumeSize)
{
// Populate volume header
EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (EFI_FIRMWARE_VOLUME_HEADER*) (bios.constData() + volumeOffset);
// Check volume signature
if (QByteArray((const char*) &volumeHeader->Signature, sizeof(volumeHeader->Signature)) != EFI_FV_SIGNATURE)
return ERR_INVALID_VOLUME;
// Use BlockMap to determine volume size
EFI_FV_BLOCK_MAP_ENTRY* entry = (EFI_FV_BLOCK_MAP_ENTRY*) (bios.constData() + volumeOffset + sizeof(EFI_FIRMWARE_VOLUME_HEADER));
volumeSize = 0;
while(entry->NumBlocks != 0 && entry->Length != 0) {
if ((void*) entry > bios.constData() + bios.size())
return ERR_INVALID_VOLUME;
volumeSize += entry->NumBlocks * entry->Length;
entry += 1;
}
return ERR_SUCCESS;
}
UINT8 FfsEngine::parseVolume(const QByteArray & volume, QModelIndex & index, const QModelIndex & parent, const UINT8 mode)
{
// Populate volume header
EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (EFI_FIRMWARE_VOLUME_HEADER*) (volume.constData());
// Check filesystem GUID to be known
// Do not parse volume with unknown FFS, because parsing will fail
bool parseCurrentVolume = true;
// FFS GUID v1
if (QByteArray((const char*) &volumeHeader->FileSystemGuid, sizeof(EFI_GUID)) == EFI_FIRMWARE_FILE_SYSTEM_GUID) {
// Code can be added here
}
// FFS GUID v2
else if (QByteArray((const char*) &volumeHeader->FileSystemGuid, sizeof(EFI_GUID)) == EFI_FIRMWARE_FILE_SYSTEM2_GUID) {
// Code can be added here
}
// Other GUID
else {
msg(tr("parseBios: Unknown file system (%1)").arg(guidToQString(volumeHeader->FileSystemGuid)), parent);
parseCurrentVolume = false;
}
// Check attributes
// Determine value of empty byte
char empty = volumeHeader->Attributes & EFI_FVB_ERASE_POLARITY ? '\xFF' : '\x00';
// Check header checksum by recalculating it
if (calculateChecksum16((UINT16*) volumeHeader, volumeHeader->HeaderLength)) {
msg(tr("parseBios: Volume header checksum is invalid"), parent);
}
// Check for presence of extended header, only if header revision is greater then 1
UINT32 headerSize;
if (volumeHeader->Revision > 1 && volumeHeader->ExtHeaderOffset) {
EFI_FIRMWARE_VOLUME_EXT_HEADER* extendedHeader = (EFI_FIRMWARE_VOLUME_EXT_HEADER*) ((UINT8*) volumeHeader + volumeHeader->ExtHeaderOffset);
headerSize = volumeHeader->ExtHeaderOffset + extendedHeader->ExtHeaderSize;
} else {
headerSize = volumeHeader->HeaderLength;
}
// Get volume size
UINT8 result;
UINT32 volumeSize;
result = getVolumeSize(volume, 0, volumeSize);
if (result)
return result;
// Check reported size
if (volumeSize != volumeHeader->FvLength) {
msg(tr("%1: volume size stored in header %2 differs from calculated size %3")
.arg(guidToQString(volumeHeader->FileSystemGuid))
.arg(volumeHeader->FvLength, 8, 16, QChar('0'))
.arg(volumeSize, 8, 16, QChar('0')), parent);
}
// Get info
QString name = guidToQString(volumeHeader->FileSystemGuid);
QString info = tr("Size: %1\nRevision: %2\nAttributes: %3\nHeader size: %4")
.arg(volumeSize, 8, 16, QChar('0'))
.arg(volumeHeader->Revision)
.arg(volumeHeader->Attributes, 8, 16, QChar('0'))
.arg(volumeHeader->HeaderLength, 4, 16, QChar('0'));
// Add tree item
QByteArray header = volume.left(headerSize);
QByteArray body = volume.mid(headerSize, volumeSize - headerSize);
index = model->addItem( Volume, 0, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body, QByteArray(), parent, mode);
// Do not parse volumes with unknown FS
if (!parseCurrentVolume)
return ERR_SUCCESS;
// Search for and parse all files
UINT32 fileOffset = headerSize;
UINT32 fileSize;
QQueue<QByteArray> files;
while (true) {
result = getFileSize(volume, fileOffset, fileSize);
if (result)
return result;
// Check file size to be at least sizeof(EFI_FFS_FILE_HEADER)
if (fileSize < sizeof(EFI_FFS_FILE_HEADER)) {
msg(tr("parseVolume: File with invalid size"), index);
return ERR_INVALID_FILE;
}
QByteArray file = volume.mid(fileOffset, fileSize);
QByteArray header = file.left(sizeof(EFI_FFS_FILE_HEADER));
// If we are at empty space in the end of volume
if (header.count(empty) == header.size())
break; // Exit from loop
// Check file alignment
EFI_FFS_FILE_HEADER* fileHeader = (EFI_FFS_FILE_HEADER*) header.constData();
UINT8 alignmentPower = ffsAlignmentTable[(fileHeader->Attributes & FFS_ATTRIB_DATA_ALIGNMENT) >> 3];
UINT32 alignment = (UINT32) pow(2.0, alignmentPower);
if ((fileOffset + sizeof(EFI_FFS_FILE_HEADER)) % alignment) {
msg(tr("parseVolume: %1, unaligned file").arg(guidToQString(fileHeader->Name)), index);
}
// Check file GUID
if (fileHeader->Type != EFI_FV_FILETYPE_PAD && files.indexOf(header.left(sizeof(EFI_GUID))) != -1)
msg(tr("%1: file with duplicate GUID").arg(guidToQString(fileHeader->Name)), index);
// Add file GUID to queue
files.enqueue(header.left(sizeof(EFI_GUID)));
// Parse file
QModelIndex fileIndex;
result = parseFile(file, fileIndex, empty == '\xFF' ? ERASE_POLARITY_TRUE : ERASE_POLARITY_FALSE, index);
if (result)
msg(tr("parseVolume: Parse FFS file failed (%1)").arg(result), index);
// Move to next file
fileOffset += fileSize;
fileOffset = ALIGN8(fileOffset);
// Exit from loop if no files left
if (fileOffset >= (UINT32) volume.size())
break;
}
return ERR_SUCCESS;
}
UINT8 FfsEngine::getFileSize(const QByteArray & volume, const UINT32 fileOffset, UINT32 & fileSize)
{
EFI_FFS_FILE_HEADER* fileHeader = (EFI_FFS_FILE_HEADER*) (volume.constData() + fileOffset);
fileSize = uint24ToUint32(fileHeader->Size);
return ERR_SUCCESS;
}
UINT8 FfsEngine::parseFile(const QByteArray & file, QModelIndex & index, const UINT8 erasePolarity, const QModelIndex & parent, const UINT8 mode)
{
// Populate file header
EFI_FFS_FILE_HEADER* fileHeader = (EFI_FFS_FILE_HEADER*) file.constData();
// Check file state
// Determine file erase polarity
bool fileErasePolarity = fileHeader->State | EFI_FILE_ERASE_POLARITY;
// Check file erase polarity to be the same as parent erase polarity
if (erasePolarity != ERASE_POLARITY_UNKNOWN && (bool) erasePolarity != fileErasePolarity) {
msg(tr("parseFile: %1, erase polarity differs from parent erase polarity"), parent);
}
// Construct empty byte for this file
char empty = fileErasePolarity ? '\xFF' : '\x00';
// Check header checksum
QByteArray header = file.left(sizeof(EFI_FFS_FILE_HEADER));
QByteArray tempHeader = header;
EFI_FFS_FILE_HEADER* tempFileHeader = (EFI_FFS_FILE_HEADER*) (tempHeader.data());
tempFileHeader->IntegrityCheck.Checksum.Header = 0;
tempFileHeader->IntegrityCheck.Checksum.File = 0;
UINT8 calculated = calculateChecksum8((UINT8*) tempFileHeader, sizeof(EFI_FFS_FILE_HEADER) - 1);
if (fileHeader->IntegrityCheck.Checksum.Header != calculated)
{
msg(tr("parseFile: %1, stored header checksum %2 differs from calculated %3")
.arg(guidToQString(fileHeader->Name))
.arg(fileHeader->IntegrityCheck.Checksum.Header, 2, 16, QChar('0'))
.arg(calculated, 2, 16, QChar('0')), parent);
}
// Check data checksum
// Data checksum must be calculated
if (fileHeader->Attributes & FFS_ATTRIB_CHECKSUM) {
UINT32 bufferSize = file.size() - sizeof(EFI_FFS_FILE_HEADER);
// Exclude file tail from data checksum calculation
if(fileHeader->Attributes & FFS_ATTRIB_TAIL_PRESENT)
bufferSize -= sizeof(UINT16);
calculated = calculateChecksum8((UINT8*)(file.constData() + sizeof(EFI_FFS_FILE_HEADER)), bufferSize);
if (fileHeader->IntegrityCheck.Checksum.File != calculated) {
msg(tr("parseFile: %1, stored data checksum %2 differs from calculated %3")
.arg(guidToQString(fileHeader->Name))
.arg(fileHeader->IntegrityCheck.Checksum.File, 2, 16, QChar('0'))
.arg(calculated, 2, 16, QChar('0')), parent);
}
}
// Data checksum must be one of predefined values
else {
if (fileHeader->IntegrityCheck.Checksum.File != FFS_FIXED_CHECKSUM && fileHeader->IntegrityCheck.Checksum.File != FFS_FIXED_CHECKSUM2) {
msg(tr("parseVolume: %1, stored data checksum %2 differs from standard value")
.arg(guidToQString(fileHeader->Name))
.arg(fileHeader->IntegrityCheck.Checksum.File, 2, 16, QChar('0')), parent);
}
}
// Get file body
QByteArray body = file.right(file.size() - sizeof(EFI_FFS_FILE_HEADER));
// Check for file tail presence
QByteArray tail;
if (fileHeader->Attributes & FFS_ATTRIB_TAIL_PRESENT)
{
//Check file tail;
tail = body.right(sizeof(UINT16));
UINT16 tailValue = *(UINT16*) tail.constData();
if (fileHeader->IntegrityCheck.TailReference != (UINT16)~tailValue)
msg(tr("parseFile: %1, bitwise not of tail value %2 differs from %3 stored in file header")
.arg(guidToQString(fileHeader->Name))
.arg(~tailValue, 4, 16, QChar('0'))
.arg(fileHeader->IntegrityCheck.TailReference, 4, 16, QChar('0')), parent);
// Remove tail from file body
body = body.left(body.size() - sizeof(UINT16));
}
// Parse current file by default
bool parseCurrentFile = true;
bool parseAsBios = false;
// Check file type
//!TODO: add more file specific checks
switch (fileHeader->Type)
{
case EFI_FV_FILETYPE_ALL:
parseAsBios = true;
break;
case EFI_FV_FILETYPE_RAW:
parseAsBios = true;
break;
case EFI_FV_FILETYPE_FREEFORM:
break;
case EFI_FV_FILETYPE_SECURITY_CORE:
break;
case EFI_FV_FILETYPE_PEI_CORE:
break;
case EFI_FV_FILETYPE_DXE_CORE:
break;
case EFI_FV_FILETYPE_PEIM:
break;
case EFI_FV_FILETYPE_DRIVER:
break;
case EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER:
break;
case EFI_FV_FILETYPE_APPLICATION:
break;
case EFI_FV_FILETYPE_SMM:
break;
case EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE:
break;
case EFI_FV_FILETYPE_COMBINED_SMM_DXE:
break;
case EFI_FV_FILETYPE_SMM_CORE:
break;
case EFI_FV_FILETYPE_PAD:
parseCurrentFile = false;
break;
default:
parseCurrentFile = false;
msg(tr("parseFile: Unknown file type (%1)").arg(fileHeader->Type, 2, 16, QChar('0')), parent);
};
// Check for empty file
if (body.count(empty) == body.size()) {
// No need to parse empty files
parseCurrentFile = false;
}
// Get info
QString name;
QString info;
if (fileHeader->Type != EFI_FV_FILETYPE_PAD)
name = guidToQString(fileHeader->Name);
else
name = tr("Padding");
info = tr("Type: %1\nAttributes: %2\nSize: %3\nState: %4")
.arg(fileHeader->Type, 2, 16, QChar('0'))
.arg(fileHeader->Attributes, 2, 16, QChar('0'))
.arg(uint24ToUint32(fileHeader->Size), 6, 16, QChar('0'))
.arg(fileHeader->State, 2, 16, QChar('0'));
// Add tree item
index = model->addItem( File, fileHeader->Type, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body, tail, parent, mode);
if (!parseCurrentFile)
return ERR_SUCCESS;
// Parse file as BIOS space
UINT8 result;
if (parseAsBios) {
result = parseBios(body, index);
if (result && result != ERR_VOLUMES_NOT_FOUND)
msg(tr("parseFile: Parse file as BIOS failed (%1)").arg(result), index);
return ERR_SUCCESS;
}
// Parse sections
result = parseSections(body, index);
if (result)
return result;
return ERR_SUCCESS;
}
UINT8 FfsEngine::getSectionSize(const QByteArray & file, const UINT32 sectionOffset, UINT32 & sectionSize)
{
EFI_COMMON_SECTION_HEADER* sectionHeader = (EFI_COMMON_SECTION_HEADER*) (file.constData() + sectionOffset);
sectionSize = uint24ToUint32(sectionHeader->Size);
return ERR_SUCCESS;
}
UINT8 FfsEngine::parseSections(const QByteArray & body, const QModelIndex & parent)
{
// Search for and parse all sections
UINT32 sectionOffset = 0;
UINT32 sectionSize;
UINT32 bodySize = body.size();
UINT8 result;
while (true) {
// Get section size
result = getSectionSize(body, sectionOffset, sectionSize);
if (result)
return result;
// Parse section
QModelIndex sectionIndex;
result = parseSection(body.mid(sectionOffset, sectionSize), sectionIndex, parent);
if (result)
return result;
// Move to next section
sectionOffset += sectionSize;
sectionOffset = ALIGN4(sectionOffset);
// Exit from loop if no sections left
if (sectionOffset >= bodySize)
break;
}
return ERR_SUCCESS;
}
UINT8 FfsEngine::parseSection(const QByteArray & section, QModelIndex & index, const QModelIndex & parent, const UINT8 mode)
{
EFI_COMMON_SECTION_HEADER* sectionHeader = (EFI_COMMON_SECTION_HEADER*) (section.constData());
UINT32 sectionSize = uint24ToUint32(sectionHeader->Size);
QString name = sectionTypeToQString(sectionHeader->Type) + tr(" section");
QString info;
QByteArray header;
QByteArray body;
UINT32 headerSize;
UINT8 result;
switch (sectionHeader->Type) {
// Encapsulated sections
case EFI_SECTION_COMPRESSION:
{
bool parseCurrentSection = true;
QByteArray decompressed;
UINT8 algorithm;
EFI_COMPRESSION_SECTION* compressedSectionHeader = (EFI_COMPRESSION_SECTION*) sectionHeader;
header = section.left(sizeof(EFI_COMPRESSION_SECTION));
body = section.mid(sizeof(EFI_COMPRESSION_SECTION), sectionSize - sizeof(EFI_COMPRESSION_SECTION));
algorithm = COMPRESSION_ALGORITHM_UNKNOWN;
// Decompress section
result = decompress(body, compressedSectionHeader->CompressionType, decompressed, &algorithm);
if (result) {
msg(tr("parseSection: Section decompression failed (%1)").arg(result), parent);
parseCurrentSection = false;
}
// Get info
info = tr("Type: %1\nSize: %2\nCompression type: %3\nDecompressed size: %4")
.arg(sectionHeader->Type, 2, 16, QChar('0'))
.arg(body.size(), 8, 16, QChar('0'))
.arg(compressionTypeToQString(algorithm))
.arg(compressedSectionHeader->UncompressedLength, 8, 16, QChar('0'));
// Add tree item
index = model->addItem( Section, sectionHeader->Type, algorithm, name, "", info, header, body, QByteArray(), parent, mode);
// Parse decompressed data
if (parseCurrentSection) {
result = parseSections(decompressed, index);
if (result)
return result;
}
}
break;
case EFI_SECTION_GUID_DEFINED:
{
bool parseCurrentSection = true;
EFI_GUID_DEFINED_SECTION* guidDefinedSectionHeader;
header = section.left(sizeof(EFI_GUID_DEFINED_SECTION));
guidDefinedSectionHeader = (EFI_GUID_DEFINED_SECTION*) (header.constData());
header = section.left(guidDefinedSectionHeader->DataOffset);
guidDefinedSectionHeader = (EFI_GUID_DEFINED_SECTION*) (header.constData());
body = section.mid(guidDefinedSectionHeader->DataOffset, sectionSize - guidDefinedSectionHeader->DataOffset);
QByteArray decompressed = body;
UINT8 algorithm = COMPRESSION_ALGORITHM_NONE;
// Check if section requires processing
if (guidDefinedSectionHeader->Attributes & EFI_GUIDED_SECTION_PROCESSING_REQUIRED) {
// Try to decompress section body using both known compression algorithms
algorithm = COMPRESSION_ALGORITHM_UNKNOWN;
// Tiano
result = decompress(body, EFI_STANDARD_COMPRESSION, decompressed, &algorithm);
if (result) {
result = decompress(body, EFI_CUSTOMIZED_COMPRESSION, decompressed, &algorithm);
if (result) {
msg(tr("parseSection: GUID defined section can not be decompressed (%1)").arg(result), parent);
parseCurrentSection = false;
}
}
}
// Get info
name = guidToQString(guidDefinedSectionHeader->SectionDefinitionGuid);
info = tr("Type: %1\nSize: %2\nData offset: %3\nAttributes: %4\nCompression type: %5")
.arg(sectionHeader->Type, 2, 16, QChar('0'))
.arg(body.size(), 8, 16, QChar('0'))
.arg(guidDefinedSectionHeader->DataOffset, 4, 16, QChar('0'))
.arg(guidDefinedSectionHeader->Attributes, 4, 16, QChar('0'))
.arg(compressionTypeToQString(algorithm));
// Add tree item
index = model->addItem( Section, sectionHeader->Type, algorithm, name, "", info, header, body, QByteArray(), parent, mode);
// Parse decompressed data
if (parseCurrentSection) {
result = parseSections(decompressed, index);
if (result)
return result;
}
}
break;
case EFI_SECTION_DISPOSABLE:
{
header = section.left(sizeof(EFI_DISPOSABLE_SECTION));
body = section.mid(sizeof(EFI_DISPOSABLE_SECTION), sectionSize - sizeof(EFI_DISPOSABLE_SECTION));
// Get info
info = tr("parseSection: %1\nSize: %2")
.arg(sectionHeader->Type, 2, 16, QChar('0'))
.arg(body.size(), 8, 16, QChar('0'));
// Add tree item
index = model->addItem( Section, sectionHeader->Type, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body, QByteArray(), parent, mode);
// Parse section body
result = parseSections(body, index);
if (result)
return result;
}
break;
// Leaf sections
case EFI_SECTION_PE32:
case EFI_SECTION_PIC:
case EFI_SECTION_TE:
case EFI_SECTION_VERSION:
case EFI_SECTION_FREEFORM_SUBTYPE_GUID:
case EFI_SECTION_DXE_DEPEX:
case EFI_SECTION_PEI_DEPEX:
case EFI_SECTION_SMM_DEPEX:
case EFI_SECTION_COMPATIBILITY16:
headerSize = sizeOfSectionHeaderOfType(sectionHeader->Type);
header = section.left(headerSize);
body = section.mid(headerSize, sectionSize - headerSize);
// Get info
info = tr("Type: %1\nSize: %2")
.arg(sectionHeader->Type, 2, 16, QChar('0'))
.arg(body.size(), 8, 16, QChar('0'));
// Add tree item
index = model->addItem( Section, sectionHeader->Type, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body, QByteArray(), parent, mode);
break;
case EFI_SECTION_USER_INTERFACE:
{
header = section.left(sizeof(EFI_USER_INTERFACE_SECTION));
body = section.mid(sizeof(EFI_USER_INTERFACE_SECTION), sectionSize - sizeof(EFI_USER_INTERFACE_SECTION));
// Get info
info = tr("Type: %1\nSize: %2")
.arg(sectionHeader->Type, 2, 16, QChar('0'))
.arg(body.size(), 8, 16, QChar('0'));
// Add tree item
index = model->addItem( Section, sectionHeader->Type, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body, QByteArray(), parent, mode);
// Rename parent file
QString text = QString::fromUtf16((const ushort*)body.constData());
model->setTextString(model->findParentOfType(parent, File), text);
}
break;
case EFI_SECTION_FIRMWARE_VOLUME_IMAGE:
header = section.left(sizeof(EFI_FIRMWARE_VOLUME_IMAGE_SECTION));
body = section.mid(sizeof(EFI_FIRMWARE_VOLUME_IMAGE_SECTION), sectionSize - sizeof(EFI_FIRMWARE_VOLUME_IMAGE_SECTION));
// Get info
info = tr("Type: %1\nSize: %2")
.arg(sectionHeader->Type, 2, 16, QChar('0'))
.arg(body.size(), 8, 16, QChar('0'));
// Add tree item
index = model->addItem( Section, sectionHeader->Type, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body, QByteArray(), parent, mode);
// Parse section body as BIOS space
result = parseBios(body, index);
if (result && result != ERR_VOLUMES_NOT_FOUND) {
msg(tr("parseSection: Firmware volume image can not be parsed as BIOS (%1)").arg(result), index);
return result;
}
break;
case EFI_SECTION_RAW:
header = section.left(sizeof(EFI_RAW_SECTION));
body = section.mid(sizeof(EFI_RAW_SECTION), sectionSize - sizeof(EFI_RAW_SECTION));
// Get info
info = tr("Type: %1\nSize: %2")
.arg(sectionHeader->Type, 2, 16, QChar('0'))
.arg(body.size(), 8, 16, QChar('0'));
// Add tree item
index = model->addItem( Section, sectionHeader->Type, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body, QByteArray(), parent, mode);
// Parse section body as BIOS space
result = parseBios(body, index);
if (result && result != ERR_VOLUMES_NOT_FOUND) {
msg(tr("parseSection: Raw section can not be parsed as BIOS (%1)").arg(result), index);
return result;
}
break;
default:
header = section.left(sizeof(EFI_COMMON_SECTION_HEADER));
body = section.mid(sizeof(EFI_COMMON_SECTION_HEADER), sectionSize - sizeof(EFI_COMMON_SECTION_HEADER));
// Get info
info = tr("Type: %1\nSize: %2")
.arg(sectionHeader->Type, 2, 16, QChar('0'))
.arg(body.size(), 8, 16, QChar('0'));
// Add tree item
index = model->addItem( Section, sectionHeader->Type, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body, QByteArray(), parent, mode);
msg(tr("parseSection: Section with unknown type (%1)").arg(sectionHeader->Type, 2, 16, QChar('0')), index);
}
return ERR_SUCCESS;
}
// Operations on tree items
UINT8 FfsEngine::create(const QModelIndex & index, const UINT8 type, const QByteArray & header, const QByteArray & body, const UINT8 mode, const UINT8 action, const UINT8 algorithm)
{
QByteArray created;
UINT8 result;
if (!index.isValid() || !index.parent().isValid())
return ERR_INVALID_PARAMETER;
QModelIndex parent;
if (mode == CREATE_MODE_BEFORE || mode == CREATE_MODE_AFTER)
parent = index.parent();
else
parent = index;
// Create item
if (type == File) {
if (model->type(parent) != Volume)
return ERR_INVALID_FILE;
EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (EFI_FIRMWARE_VOLUME_HEADER*) model->header(parent).constData();
UINT8 revision = volumeHeader->Revision;
bool erasePolarity = volumeHeader->Attributes & EFI_FVB_ERASE_POLARITY;
if (header.size() != sizeof(EFI_FFS_FILE_HEADER))
return ERR_INVALID_FILE;
QByteArray newHeader = header;
EFI_FFS_FILE_HEADER* fileHeader = (EFI_FFS_FILE_HEADER*) newHeader.data();
// Correct file size
UINT8 tailSize = fileHeader->Attributes & FFS_ATTRIB_TAIL_PRESENT ? sizeof(UINT16) : 0;
uint32ToUint24(sizeof(EFI_FFS_FILE_HEADER) + body.size() + tailSize, fileHeader->Size);
// Recalculate header checksum
fileHeader->IntegrityCheck.Checksum.Header = 0;
fileHeader->IntegrityCheck.Checksum.File = 0;
fileHeader->IntegrityCheck.Checksum.Header = calculateChecksum8((UINT8*) fileHeader, sizeof(EFI_FFS_FILE_HEADER) - 1);
// Recalculate data checksum, if needed
if (fileHeader->Attributes & FFS_ATTRIB_CHECKSUM)
fileHeader->IntegrityCheck.Checksum.File = calculateChecksum8((UINT8*) body.constData(), body.size());
else if (revision == 1)
fileHeader->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM;
else
fileHeader->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM2;
// Append body
created.append(body);
// Append tail, if needed
if (tailSize)
created.append(~fileHeader->IntegrityCheck.TailReference);
// Set file state
UINT8 state = EFI_FILE_DATA_VALID | EFI_FILE_HEADER_VALID | EFI_FILE_HEADER_CONSTRUCTION;
if (erasePolarity)
state = ~state;
fileHeader->State = state;
// Prepend header
created.prepend(newHeader);
// Parse file
QModelIndex fileIndex;
result = parseFile(created, fileIndex, erasePolarity ? ERASE_POLARITY_TRUE : ERASE_POLARITY_FALSE, index, mode);
if (result)
return result;
// Set action
model->setAction(fileIndex, action);
}
else if (type == Section) {
if (model->type(parent) != File && model->type(parent) != Section)
return ERR_INVALID_SECTION;
if (header.size() < sizeof(EFI_COMMON_SECTION_HEADER))
return ERR_INVALID_SECTION;
QByteArray newHeader = header;
EFI_COMMON_SECTION_HEADER* commonHeader = (EFI_COMMON_SECTION_HEADER*) newHeader.data();
switch (commonHeader->Type)
{
case EFI_SECTION_COMPRESSION: {
EFI_COMPRESSION_SECTION* sectionHeader = (EFI_COMPRESSION_SECTION*) newHeader.data();
// Correct uncompressed size
sectionHeader->UncompressedLength = body.size();
// Set compression type
if (algorithm == COMPRESSION_ALGORITHM_NONE)
sectionHeader->CompressionType = EFI_NOT_COMPRESSED;
else if (algorithm == COMPRESSION_ALGORITHM_EFI11 || algorithm == COMPRESSION_ALGORITHM_TIANO)
sectionHeader->CompressionType = EFI_STANDARD_COMPRESSION;
else if (algorithm == COMPRESSION_ALGORITHM_LZMA || algorithm == COMPRESSION_ALGORITHM_IMLZMA)
sectionHeader->CompressionType = EFI_CUSTOMIZED_COMPRESSION;
else
return ERR_UNKNOWN_COMPRESSION_ALGORITHM;
// Compress body
QByteArray compressed;
result = compress(body, algorithm, compressed);
if (result)
return result;
// Correct section size
uint32ToUint24(header.size() + compressed.size(), commonHeader->Size);
// Append header and body
created.append(newHeader).append(compressed);
// Parse section
QModelIndex sectionIndex;
result = parseSection(created, sectionIndex, index, mode);
if (result)
return result;
// Set create action
model->setAction(sectionIndex, action);
}
break;
case EFI_SECTION_GUID_DEFINED:{
// Compress body
QByteArray compressed;
result = compress(body, algorithm, compressed);
if (result)
return result;
// Correct section size
uint32ToUint24(header.size() + compressed.size(), commonHeader->Size);
// Append header and body
created.append(newHeader).append(compressed);
// Parse section
QModelIndex sectionIndex;
result = parseSection(created, sectionIndex, index, mode);
if (result)
return result;
// Set create action
model->setAction(sectionIndex, action);
}
break;
default:
// Correct section size
uint32ToUint24(header.size() + body.size(), commonHeader->Size);
// Append header and body
created.append(newHeader).append(body);
// Parse section
QModelIndex sectionIndex;
result = parseSection(created, sectionIndex, index, mode);
if (result)
return result;
// Set create action
model->setAction(sectionIndex, action);
}
}
else
return ERR_NOT_IMPLEMENTED;
return ERR_SUCCESS;
}
UINT8 FfsEngine::insert(const QModelIndex & index, const QByteArray & object, const UINT8 mode)
{
if (!index.isValid() || !index.parent().isValid())
return ERR_INVALID_PARAMETER;
QModelIndex parent;
if (mode == CREATE_MODE_BEFORE || mode == CREATE_MODE_AFTER)
parent = index.parent();
else
parent = index;
// Determine type of item to insert
UINT8 type;
UINT32 headerSize;
if (model->type(parent) == Volume) {
type = File;
headerSize = sizeof(EFI_FFS_FILE_HEADER);
}
else if (model->type(parent) == File) {
type = Section;
EFI_COMMON_SECTION_HEADER* commonHeader = (EFI_COMMON_SECTION_HEADER*) object.constData();
headerSize = sizeOfSectionHeaderOfType(commonHeader->Type);
}
else
return ERR_NOT_IMPLEMENTED;
return create(index, type, object.left(headerSize), object.right(object.size() - headerSize), mode, Insert);
}
UINT8 FfsEngine::replace(const QModelIndex & index, const QByteArray & object, const UINT8 mode)
{
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Determine type of item to replace
UINT32 headerSize;
UINT8 result;
if (model->type(index) == File) {
if (mode == REPLACE_MODE_AS_IS) {
headerSize = sizeof(EFI_FFS_FILE_HEADER);
result = create(index, File, object.left(headerSize), object.right(object.size() - headerSize), CREATE_MODE_AFTER, Replace);
}
else if (mode == REPLACE_MODE_BODY)
result = create(index, File, model->header(index), object, CREATE_MODE_AFTER, Replace);
else
return ERR_NOT_IMPLEMENTED;
}
else if (model->type(index) == Section) {
if (mode == REPLACE_MODE_AS_IS) {
EFI_COMMON_SECTION_HEADER* commonHeader = (EFI_COMMON_SECTION_HEADER*) object.constData();
headerSize = sizeOfSectionHeaderOfType(commonHeader->Type);
result = create(index, Section, object.left(headerSize), object.right(object.size() - headerSize), CREATE_MODE_AFTER, Replace);
}
else if (mode == REPLACE_MODE_BODY) {
result = create(index, Section, model->header(index), object, CREATE_MODE_AFTER, Replace, model->compression(index));
}
else
return ERR_NOT_IMPLEMENTED;
}
else
return ERR_NOT_IMPLEMENTED;
// Check create result
if (result)
return result;
// Set remove action to replaced item
model->setAction(index, Remove);
return ERR_SUCCESS;
}
UINT8 FfsEngine::extract(const QModelIndex & index, QByteArray & extracted, const UINT8 mode)
{
if (!index.isValid())
return ERR_INVALID_PARAMETER;
if (mode == EXTRACT_MODE_AS_IS) {
// Extract as is, with header, body and tail
extracted.clear();
extracted.append(model->header(index));
extracted.append(model->body(index));
extracted.append(model->tail(index));
}
else if (mode == EXTRACT_MODE_BODY) {
// Extract without header and tail
extracted.clear();
// Special case of compressed bodies
if (model->type(index) == Section) {
QByteArray decompressed;
UINT8 result;
if (model->subtype(index) == EFI_SECTION_COMPRESSION) {
EFI_COMPRESSION_SECTION* compressedHeader = (EFI_COMPRESSION_SECTION*) model->header(index).constData();
result = decompress(model->body(index), compressedHeader->CompressionType, decompressed);
if (result)
return result;
extracted.append(decompressed);
return ERR_SUCCESS;
}
else if (model->subtype(index) == EFI_SECTION_GUID_DEFINED) {
QByteArray decompressed;
// Check if section requires processing
EFI_GUID_DEFINED_SECTION* guidDefinedSectionHeader = (EFI_GUID_DEFINED_SECTION*) model->header(index).constData();
if (guidDefinedSectionHeader->Attributes & EFI_GUIDED_SECTION_PROCESSING_REQUIRED) {
// Try to decompress section body using both known compression algorithms
result = decompress(model->body(index), EFI_STANDARD_COMPRESSION, decompressed);
if (result) {
result = decompress(model->body(index), EFI_CUSTOMIZED_COMPRESSION, decompressed);
if (result)
return result;
}
extracted.append(decompressed);
return ERR_SUCCESS;
}
}
}
extracted.append(model->body(index));
}
else
return ERR_UNKNOWN_EXTRACT_MODE;
return ERR_SUCCESS;
}
UINT8 FfsEngine::remove(const QModelIndex & index)
{
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Set action for the item
model->setAction(index, Remove);
return ERR_SUCCESS;
}
UINT8 FfsEngine::rebuild(const QModelIndex & index)
{
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Set action for the item
model->setAction(index, Rebuild);
return ERR_SUCCESS;
}
// Compression routines
UINT8 FfsEngine::decompress(const QByteArray & compressedData, const UINT8 compressionType, QByteArray & decompressedData, UINT8 * algorithm)
{
UINT8* data;
UINT32 dataSize;
UINT8* decompressed;
UINT32 decompressedSize = 0;
UINT8* scratch;
UINT32 scratchSize = 0;
EFI_TIANO_HEADER* header;
switch (compressionType)
{
case EFI_NOT_COMPRESSED:
decompressedData = compressedData;
if (algorithm)
*algorithm = COMPRESSION_ALGORITHM_NONE;
return ERR_SUCCESS;
case EFI_STANDARD_COMPRESSION:
// Get buffer sizes
data = (UINT8*) compressedData.constData();
dataSize = compressedData.size();
// Check header to be valid
header = (EFI_TIANO_HEADER*) data;
if (header->CompSize + sizeof(EFI_TIANO_HEADER) != dataSize)
return ERR_STANDARD_DECOMPRESSION_FAILED;
// Get info function is the same for both algorithms
if (ERR_SUCCESS != EfiTianoGetInfo(data, dataSize, &decompressedSize, &scratchSize))
return ERR_STANDARD_DECOMPRESSION_FAILED;
// Allocate memory
decompressed = new UINT8[decompressedSize];
scratch = new UINT8[scratchSize];
// Decompress section data
// Try Tiano decompression first
if (ERR_SUCCESS != TianoDecompress(data, dataSize, decompressed, decompressedSize, scratch, scratchSize)) {
// Not Tiano, try EFI 1.1
if (ERR_SUCCESS != EfiDecompress(data, dataSize, decompressed, decompressedSize, scratch, scratchSize)) {
if (algorithm)
*algorithm = COMPRESSION_ALGORITHM_UNKNOWN;
return ERR_STANDARD_DECOMPRESSION_FAILED;
}
else if (algorithm)
*algorithm = COMPRESSION_ALGORITHM_EFI11;
}
else if (algorithm)
*algorithm = COMPRESSION_ALGORITHM_TIANO;
decompressedData = QByteArray((const char*) decompressed, decompressedSize);
// Free allocated memory
delete[] decompressed;
delete[] scratch;
return ERR_SUCCESS;
case EFI_CUSTOMIZED_COMPRESSION:
// Get buffer sizes
data = (UINT8*) compressedData.constData();
dataSize = compressedData.size();
// Get info
if (ERR_SUCCESS != LzmaGetInfo(data, dataSize, &decompressedSize))
return ERR_CUSTOMIZED_DECOMPRESSION_FAILED;
// Allocate memory
decompressed = new UINT8[decompressedSize];
// Decompress section data
if (ERR_SUCCESS != LzmaDecompress(data, dataSize, decompressed)) {
// Intel modified LZMA workaround
EFI_COMMON_SECTION_HEADER* shittySectionHeader;
UINT32 shittySectionSize;
// Shitty compressed section with a section header between COMPRESSED_SECTION_HEADER and LZMA_HEADER
// We must determine section header size by checking it's type before we can unpack that non-standard compressed section
shittySectionHeader = (EFI_COMMON_SECTION_HEADER*) data;
shittySectionSize = sizeOfSectionHeaderOfType(shittySectionHeader->Type);
// Decompress section data once again
data += shittySectionSize;
// Get info again
if (ERR_SUCCESS != LzmaGetInfo(data, dataSize, &decompressedSize))
return ERR_CUSTOMIZED_DECOMPRESSION_FAILED;
// Decompress section data again
if (ERR_SUCCESS != LzmaDecompress(data, dataSize, decompressed)) {
if (algorithm)
*algorithm = COMPRESSION_ALGORITHM_UNKNOWN;
return ERR_CUSTOMIZED_DECOMPRESSION_FAILED;
}
else {
if (algorithm)
*algorithm = COMPRESSION_ALGORITHM_IMLZMA;
decompressedData = QByteArray((const char*) decompressed, decompressedSize);
}
}
else {
if (algorithm)
*algorithm = COMPRESSION_ALGORITHM_LZMA;
decompressedData = QByteArray((const char*) decompressed, decompressedSize);
}
// Free memory
delete[] decompressed;
return ERR_SUCCESS;
default:
msg(tr("decompress: Unknown compression type (%1)").arg(compressionType));
if (algorithm)
*algorithm = COMPRESSION_ALGORITHM_UNKNOWN;
return ERR_UNKNOWN_COMPRESSION_ALGORITHM;
}
}
UINT8 FfsEngine::compress(const QByteArray & data, const UINT8 algorithm, QByteArray & compressedData)
{
UINT8* compressed;
UINT32 compressedSize = 0;
switch (algorithm) {
case COMPRESSION_ALGORITHM_NONE:
{
compressedData = data;
return ERR_SUCCESS;
}
break;
case COMPRESSION_ALGORITHM_EFI11:
{
if (EfiCompress((UINT8*) data.constData(), data.size(), NULL, &compressedSize) != ERR_BUFFER_TOO_SMALL)
return ERR_STANDARD_COMPRESSION_FAILED;
compressed = new UINT8[compressedSize];
if (EfiCompress((UINT8*) data.constData(), data.size(), compressed, &compressedSize) != ERR_SUCCESS)
return ERR_STANDARD_COMPRESSION_FAILED;
compressedData = QByteArray((const char*) compressed, compressedSize);
delete[] compressed;
return ERR_SUCCESS;
}
break;
case COMPRESSION_ALGORITHM_TIANO:
{
if (TianoCompress((UINT8*) data.constData(), data.size(), NULL, &compressedSize) != ERR_BUFFER_TOO_SMALL)
return ERR_STANDARD_COMPRESSION_FAILED;
compressed = new UINT8[compressedSize];
if (TianoCompress((UINT8*) data.constData(), data.size(), compressed, &compressedSize) != ERR_SUCCESS)
return ERR_STANDARD_COMPRESSION_FAILED;
compressedData = QByteArray((const char*) compressed, compressedSize);
delete[] compressed;
return ERR_SUCCESS;
}
break;
case COMPRESSION_ALGORITHM_LZMA:
{
if (LzmaCompress((const UINT8*) data.constData(), data.size(), NULL, &compressedSize) != ERR_BUFFER_TOO_SMALL)
return ERR_CUSTOMIZED_COMPRESSION_FAILED;
compressed = new UINT8[compressedSize];
if (LzmaCompress((const UINT8*) data.constData(), data.size(), compressed, &compressedSize) != ERR_SUCCESS)
return ERR_CUSTOMIZED_COMPRESSION_FAILED;
compressedData = QByteArray((const char*) compressed, compressedSize);
delete[] compressed;
return ERR_SUCCESS;
}
break;
case COMPRESSION_ALGORITHM_IMLZMA:
{
QByteArray header = data.left(sizeof(EFI_COMMON_SECTION_HEADER));
EFI_COMMON_SECTION_HEADER* sectionHeader = (EFI_COMMON_SECTION_HEADER*) header.constData();
UINT32 headerSize = sizeOfSectionHeaderOfType(sectionHeader->Type);
header = data.left(headerSize);
QByteArray newData = data.mid(headerSize);
if (LzmaCompress((UINT8*) newData.constData(), newData.size(), NULL, &compressedSize) != ERR_BUFFER_TOO_SMALL)
return ERR_CUSTOMIZED_COMPRESSION_FAILED;
compressed = new UINT8[compressedSize];
if (LzmaCompress((UINT8*) newData.constData(), newData.size(), compressed, &compressedSize) != ERR_SUCCESS)
return ERR_CUSTOMIZED_COMPRESSION_FAILED;
compressedData = header.append(QByteArray((const char*) compressed, compressedSize));
delete[] compressed;
return ERR_SUCCESS;
}
break;
default:
msg(tr("compress: Unknown compression algorithm (%1)").arg(algorithm));
return ERR_UNKNOWN_COMPRESSION_ALGORITHM;
}
}
// Construction routines
UINT8 FfsEngine::reconstructImage(QByteArray & reconstructed)
{
QQueue<QByteArray> queue;
UINT8 result = reconstruct(model->index(0,0), queue);
if (result)
return result;
reconstructed.clear();
while (!queue.isEmpty())
reconstructed.append(queue.dequeue());
return ERR_SUCCESS;
}
UINT8 FfsEngine::constructPadFile(const UINT32 size, const UINT8 revision, const UINT8 erasePolarity, QByteArray & pad)
{
if (size < sizeof(EFI_FFS_FILE_HEADER) || erasePolarity == ERASE_POLARITY_UNKNOWN)
return ERR_INVALID_PARAMETER;
pad = QByteArray(size, erasePolarity == ERASE_POLARITY_TRUE ? '\xFF' : '\x00');
EFI_FFS_FILE_HEADER* header = (EFI_FFS_FILE_HEADER*) pad.data();
uint32ToUint24(size, header->Size);
header->Attributes = 0x00;
header->Type = EFI_FV_FILETYPE_PAD;
header->State = EFI_FILE_HEADER_CONSTRUCTION | EFI_FILE_HEADER_VALID | EFI_FILE_DATA_VALID;
// Invert state bits if erase polarity is true
if (erasePolarity == ERASE_POLARITY_TRUE)
header->State = ~header->State;
// Calculate header checksum
header->IntegrityCheck.Checksum.Header = 0;
header->IntegrityCheck.Checksum.File = 0;
header->IntegrityCheck.Checksum.Header = calculateChecksum8((UINT8*) header, sizeof(EFI_FFS_FILE_HEADER) - 1);
// Set data checksum
if (revision == 1)
header->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM;
else
header->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM2;
return ERR_SUCCESS;
}
UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & queue, const UINT8 revision, const UINT8 erasePolarity, const UINT32 base)
{
if (!index.isValid())
return ERR_SUCCESS;
QByteArray reconstructed;
UINT8 result;
// No action is needed, just return header + body + tail
if (!base && model->action(index) == NoAction) {
reconstructed = model->header(index).append(model->body(index)).append(model->tail(index));
queue.enqueue(reconstructed);
return ERR_SUCCESS;
}
// Remove item
if (model->action(index) == Remove) {
// Volume can be removed by replacing all it's contents with empty bytes
if (model->type(index) == Volume) {
EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (EFI_FIRMWARE_VOLUME_HEADER*) model->header(index).constData();
char empty = volumeHeader->Attributes & EFI_FVB_ERASE_POLARITY ? '\xFF' : '\x00';
reconstructed.fill(empty, model->header(index).size() + model->body(index).size() + model->tail(index).size());
queue.enqueue(reconstructed);
return ERR_SUCCESS;
}
// File can be removed
if (model->type(index) == File)
// Add nothing to queue
return ERR_SUCCESS;
// Section can be removed
else if (model->type(index) == Section)
// Add nothing to queue
return ERR_SUCCESS;
// Other item types can't be removed
else
return ERR_NOT_IMPLEMENTED;
}
// Reconstruct item and it's children recursive
if (base || model->action(index) == Create
|| model->action(index) == Insert
|| model->action(index) == Replace
|| model->action(index) == Rebuild) {
QQueue<QByteArray> childrenQueue;
switch (model->type(index)) {
case Image:
if (model->subtype(index) == IntelImage) {
// Reconstruct Intel image
// First child will always be descriptor for this type of image
result = reconstruct(index.child(0, index.column()), childrenQueue);
if (result)
return result;
QByteArray descriptor = childrenQueue.dequeue();
reconstructed.append(descriptor);
FLASH_DESCRIPTOR_MAP* descriptorMap = (FLASH_DESCRIPTOR_MAP*) (descriptor.constData() + sizeof(FLASH_DESCRIPTOR_HEADER));
FLASH_DESCRIPTOR_REGION_SECTION* regionSection = (FLASH_DESCRIPTOR_REGION_SECTION*) calculateAddress8((UINT8*)descriptor.constData(), descriptorMap->RegionBase);
QByteArray gbe;
UINT32 gbeBegin = calculateRegionOffset(regionSection->GbeBase);
UINT32 gbeEnd = gbeBegin + calculateRegionSize(regionSection->GbeBase, regionSection->GbeLimit);
QByteArray me;
UINT32 meBegin = calculateRegionOffset(regionSection->MeBase);
UINT32 meEnd = meBegin + calculateRegionSize(regionSection->MeBase, regionSection->MeLimit);
QByteArray bios;
UINT32 biosBegin = calculateRegionOffset(regionSection->BiosBase);
UINT32 biosEnd = biosBegin + calculateRegionSize(regionSection->BiosBase, regionSection->BiosLimit);
QByteArray pdr;
UINT32 pdrBegin = calculateRegionOffset(regionSection->PdrBase);
UINT32 pdrEnd = pdrBegin + calculateRegionSize(regionSection->PdrBase, regionSection->PdrLimit);
UINT32 offset = descriptor.size();
// Reconstruct other regions
char empty = '\xFF'; //!TODO: determine empty char using one of reserved descriptor fields
for (int i = 1; i < model->rowCount(index); i++) {
result = reconstruct(index.child(i, index.column()), childrenQueue);
if (result)
return result;
switch(model->subtype(model->index(i, 0, index)))
{
case GbeRegion:
gbe = childrenQueue.dequeue();
if (gbeBegin > offset)
reconstructed.append(QByteArray(gbeBegin - offset, empty));
reconstructed.append(gbe);
offset = gbeEnd;
break;
case MeRegion:
me = childrenQueue.dequeue();
if (meBegin > offset)
reconstructed.append(QByteArray(meBegin - offset, empty));
reconstructed.append(me);
offset = meEnd;
break;
case BiosRegion:
bios = childrenQueue.dequeue();
if (biosBegin > offset)
reconstructed.append(QByteArray(biosBegin - offset, empty));
reconstructed.append(bios);
offset = biosEnd;
break;
case PdrRegion:
pdr = childrenQueue.dequeue();
if (pdrBegin > offset)
reconstructed.append(QByteArray(pdrBegin - offset, empty));
reconstructed.append(pdr);
offset = pdrEnd;
break;
default:
msg(tr("reconstruct: unknown region type found while reconstructing Intel image"), index);
return ERR_INVALID_REGION;
}
}
if ((UINT32)model->body(index).size() > offset)
reconstructed.append(QByteArray((UINT32)model->body(index).size() - offset, empty));
// Check size of reconstructed image, it must be same
if (reconstructed.size() > model->body(index).size()) {
msg(tr("reconstruct: reconstructed body %1 is bigger then original %2")
.arg(reconstructed.size(), 8, 16, QChar('0'))
.arg(model->body(index).size(), 8, 16, QChar('0')), index);
return ERR_INVALID_PARAMETER;
}
else if (reconstructed.size() < model->body(index).size()) {
msg(tr("reconstruct: reconstructed body %1 is smaller then original %2")
.arg(reconstructed.size(), 8, 16, QChar('0'))
.arg(model->body(index).size(), 8, 16, QChar('0')), index);
return ERR_INVALID_PARAMETER;
}
// Enqueue reconstructed item
queue.enqueue(model->header(index).append(reconstructed));
return ERR_SUCCESS;
}
// BIOS Image must be treated like region
case Capsule:
if (model->subtype(index) == AptioCapsule)
msg(tr("reconstruct: Aptio capsule checksum and signature can now become invalid"), index);
case Region:
{
// Reconstruct item body
if (model->rowCount(index)) {
// Reconstruct item children
for (int i = 0; i < model->rowCount(index); i++) {
result = reconstruct(index.child(i, index.column()), childrenQueue);
if (result)
return result;
}
// No additional checks needed
while (!childrenQueue.isEmpty())
reconstructed.append(childrenQueue.dequeue());
}
// Use stored item body
else
reconstructed = model->body(index);
// Check size of reconstructed image, it must be same
if (model->type(index) != Root) {
if (reconstructed.size() > model->body(index).size()) {
msg(tr("reconstructed: reconstructed body %1 is bigger then original %2")
.arg(reconstructed.size(), 8, 16, QChar('0'))
.arg(model->body(index).size(), 8, 16, QChar('0')), index);
return ERR_INVALID_PARAMETER;
}
else if (reconstructed.size() < model->body(index).size()) {
msg(tr("reconstructed: reconstructed body %1 is smaller then original %2")
.arg(reconstructed.size(), 8, 16, QChar('0'))
.arg(model->body(index).size(), 8, 16, QChar('0')), index);
return ERR_INVALID_PARAMETER;
}
}
// Enqueue reconstructed item
queue.enqueue(model->header(index).append(reconstructed));
}
break;
case Volume:
{
//!TODO: add check for weak aligned volume
QByteArray header = model->header(index);
EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (EFI_FIRMWARE_VOLUME_HEADER*) header.data();
// Recalculate volume header checksum
volumeHeader->Checksum = 0;
volumeHeader->Checksum = calculateChecksum16((UINT16*) volumeHeader, volumeHeader->HeaderLength);
// Get volume size
UINT32 volumeSize;
result = getVolumeSize(header, 0, volumeSize);
if (result)
return result;
// Reconstruct volume body
if (model->rowCount(index)) {
UINT8 polarity = volumeHeader->Attributes & EFI_FVB_ERASE_POLARITY ? ERASE_POLARITY_TRUE : ERASE_POLARITY_FALSE;
char empty = volumeHeader->Attributes & EFI_FVB_ERASE_POLARITY ? '\xFF' : '\x00';
bool bootVolume = false;
// Check for boot volume
for (int i = 0; i < model->rowCount(index); i++) {
QByteArray hdr = model->header(index.child(i, index.column()));
EFI_FFS_FILE_HEADER* fileHeader = (EFI_FFS_FILE_HEADER*) hdr.data();
if (fileHeader->Type == EFI_FV_FILETYPE_PEI_CORE) {
bootVolume = true;
break;
}
}
// Reconstruct files in volume
UINT32 offset = 0;
QByteArray vtf;
QModelIndex vtfIndex;
QByteArray amiBeforeVtf;
QModelIndex amiBeforeVtfIndex;
for (int i = 0; i < model->rowCount(index); i++) {
// Align to 8 byte boundary
UINT32 alignment = offset % 8;
if (alignment) {
alignment = 8 - alignment;
offset += alignment;
reconstructed.append(QByteArray(alignment, empty));
}
// Calculate file base
UINT32 newbase = 0;
if (bootVolume) {
newbase = (UINT32) 0x100000000 - volumeSize + header.size() + offset;
}
// Reconstruct file
result = reconstruct(index.child(i, index.column()), childrenQueue, volumeHeader->Revision, polarity, newbase);
if (result)
return result;
// Check for empty queue
if (childrenQueue.isEmpty())
continue;
// Get file from queue
QByteArray file = childrenQueue.dequeue();
EFI_FFS_FILE_HEADER* fileHeader = (EFI_FFS_FILE_HEADER*) file.data();
// Pad file
if (fileHeader->Type == EFI_FV_FILETYPE_PAD)
continue;
// AMI file before VTF
if (file.left(sizeof(EFI_GUID)) == EFI_AMI_FFS_FILE_BEFORE_VTF_GUID) {
amiBeforeVtf = file;
amiBeforeVtfIndex = index.child(i, index.column());
continue;
}
// Volume Top File
if (file.left(sizeof(EFI_GUID)) == EFI_FFS_VOLUME_TOP_FILE_GUID) {
vtf = file;
vtfIndex = index.child(i, index.column());
continue;
}
// Normal file
// Ensure correct alignment
UINT8 alignmentPower;
UINT32 alignmentBase;
alignmentPower = ffsAlignmentTable[(fileHeader->Attributes & FFS_ATTRIB_DATA_ALIGNMENT) >> 3];
alignment = (UINT32) pow(2.0, alignmentPower);
alignmentBase = header.size() + offset + sizeof(EFI_FFS_FILE_HEADER);
if (alignmentBase % alignment) {
// File will be unaligned if added as is, so we must add pad file before it
// Determine pad file size
UINT32 size = alignment - (alignmentBase % alignment);
// Required padding is smaler then minimal pad file size
while (size < sizeof(EFI_FFS_FILE_HEADER)) {
size += alignment;
}
// Construct pad file
QByteArray pad;
result = constructPadFile(size, revision, polarity, pad);
if (result)
return result;
// Append constructed pad file to volume body
reconstructed.append(pad);
offset += size;
}
// Append current file to new volume body
reconstructed.append(file);
// Change current file offset
offset += file.size();
}
// Insert AMI file before VTF to it's correct place
if (!amiBeforeVtf.isEmpty()) {
// Determine correct offset
UINT32 amiOffset = volumeSize - header.size() - amiBeforeVtf.size() - EFI_AMI_FFS_FILE_BEFORE_VTF_OFFSET;
// Insert pad file to fill the gap
if (amiOffset > offset) {
// Determine pad file size
UINT32 size = amiOffset - offset;
// Construct pad file
QByteArray pad;
result = constructPadFile(size, revision, polarity, pad);
if (result)
return result;
// Append constructed pad file to volume body
reconstructed.append(pad);
offset = amiOffset;
}
if (amiOffset < offset) {
msg(tr("reconstruct: %1: volume has no free space left").arg(guidToQString(volumeHeader->FileSystemGuid)), index);
return ERR_INVALID_VOLUME;
}
// Calculate file base
UINT32 newbase = 0;
if (bootVolume) {
newbase = (UINT32) 0x100000000 - volumeSize + header.size() + amiOffset;
}
// Reconstruct file again
result = reconstruct(amiBeforeVtfIndex, childrenQueue, volumeHeader->Revision, polarity, newbase);
if (result)
return result;
// Get file from queue
amiBeforeVtf = childrenQueue.dequeue();
// Append AMI file before VTF
reconstructed.append(amiBeforeVtf);
// Change current file offset
offset += amiBeforeVtf.size();
// Align to 8 byte boundary
UINT32 alignment = offset % 8;
if (alignment) {
alignment = 8 - alignment;
offset += alignment;
reconstructed.append(QByteArray(alignment, empty));
}
}
// Insert VTF to it's correct place
if (!vtf.isEmpty()) {
// Determine correct VTF offset
UINT32 vtfOffset = volumeSize - header.size() - vtf.size();
if (vtfOffset % 8) {
msg(tr("reconstruct: %1: Wrong size of Volume Top File")
.arg(guidToQString(volumeHeader->FileSystemGuid)), index);
return ERR_INVALID_FILE;
}
// Insert pad file to fill the gap
if (vtfOffset > offset) {
// Determine pad file size
UINT32 size = vtfOffset - offset;
// Construct pad file
QByteArray pad;
result = constructPadFile(size, revision, polarity, pad);
if (result)
return result;
// Append constructed pad file to volume body
reconstructed.append(pad);
offset = vtfOffset;
}
// No more space left in volume
else if (vtfOffset < offset) {
msg(tr("reconstruct: %1: volume has no free space left").arg(guidToQString(volumeHeader->FileSystemGuid)), index);
return ERR_INVALID_VOLUME;
}
// Calculate file base
UINT32 newbase = 0;
if (bootVolume) {
newbase = (UINT32) 0x100000000 - volumeSize + header.size() + vtfOffset;
}
// Reconstruct file
result = reconstruct(vtfIndex, childrenQueue, volumeHeader->Revision, polarity, newbase);
if (result)
return result;
// Get file from queue
vtf = childrenQueue.dequeue();
// Append VTF
reconstructed.append(vtf);
}
else {
// Fill the rest of volume space with empty char
UINT32 volumeBodySize = volumeSize - header.size();
if (volumeBodySize > (UINT32) reconstructed.size()) {
// Fill volume end with empty char
reconstructed.append(QByteArray(volumeBodySize - reconstructed.size(), empty));
}
else if (volumeBodySize < (UINT32) reconstructed.size()) {
// Check if volume can be grown
// Root volume can't be grown yet
UINT8 parentType = model->type(index.parent());
if(parentType != File && parentType != Section) {
msg(tr("reconstruct: %1: can't grow root volume").arg(guidToQString(volumeHeader->FileSystemGuid)), index);
return ERR_INVALID_VOLUME;
}
// Grow volume to fit new body
UINT32 newSize = header.size() + reconstructed.size();
result = growVolume(header, volumeSize, newSize);
if (result)
return result;
// Fill volume end with empty char
reconstructed.append(QByteArray(newSize - header.size() - reconstructed.size(), empty));
volumeSize = newSize;
}
}
// Check new volume size
if ((UINT32)(header.size() + reconstructed.size()) > volumeSize)
{
msg(tr("reconstruct: Volume grow failed"));
return ERR_INVALID_VOLUME;
}
}
// Use current volume body
else
reconstructed = model->body(index);
// Enqueue reconstructed item
queue.enqueue(header.append(reconstructed));
}
break;
case File:
{
QByteArray header = model->header(index);
EFI_FFS_FILE_HEADER* fileHeader = (EFI_FFS_FILE_HEADER*) header.data();
// Check erase polarity
if (erasePolarity == ERASE_POLARITY_UNKNOWN) {
msg(tr("reconstruct: %1, unknown erase polarity").arg(guidToQString(fileHeader->Name)), index);
return ERR_INVALID_PARAMETER;
}
// Construct empty char for this file
char empty = (erasePolarity == ERASE_POLARITY_TRUE ? '\xFF' : '\x00');
// Check file state
// Invert it first if erase polarity is true
UINT8 state = fileHeader->State;
if (erasePolarity == ERASE_POLARITY_TRUE)
state = ~state;
// Order of this checks must be preserved
// Check file to have valid state, or delete it otherwise
if (state & EFI_FILE_HEADER_INVALID) {
// File marked to have invalid header and must be deleted
// Do not add anything to queue
msg(tr("reconstruct: %1, file is HEADER_INVALID state, and will be removed from reconstructed image")
.arg(guidToQString(fileHeader->Name)), index);
return ERR_SUCCESS;
}
else if (state & EFI_FILE_DELETED) {
// File marked to have been deleted form and must be deleted
// Do not add anything to queue
msg(tr("reconstruct: %1, file is in DELETED state, and will be removed from reconstructed image")
.arg(guidToQString(fileHeader->Name)), index);
return ERR_SUCCESS;
}
else if (state & EFI_FILE_MARKED_FOR_UPDATE) {
// File is marked for update, the mark must be removed
msg(tr("reconstruct: %1, file MARKED_FOR_UPDATE state cleared")
.arg(guidToQString(fileHeader->Name)), index);
}
else if (state & EFI_FILE_DATA_VALID) {
// File is in good condition, reconstruct it
}
else if (state & EFI_FILE_HEADER_VALID) {
// Header is valid, but data is not, so file must be deleted
msg(tr("reconstruct: %1, file is in HEADER_VALID (but not in DATA_VALID) state, and will be removed from reconstructed image")
.arg(guidToQString(fileHeader->Name)), index);
return ERR_SUCCESS;
}
else if (state & EFI_FILE_HEADER_CONSTRUCTION) {
// Header construction not finished, so file must be deleted
msg(tr("reconstruct: %1, file is in HEADER_CONSTRUCTION (but not in DATA_VALID) state, and will be removed from reconstructed image")
.arg(guidToQString(fileHeader->Name)), index);
return ERR_SUCCESS;
}
// Reconstruct file body
if (model->rowCount(index)) {
// Construct new file body
UINT32 offset = 0;
for (int i = 0; i < model->rowCount(index); i++) {
// Align to 4 byte boundary
UINT8 alignment = offset % 4;
if (alignment) {
alignment = 4 - alignment;
offset += alignment;
reconstructed.append(QByteArray(alignment, empty));
}
// Correct base, if needed
UINT32 newbase = 0;
if (base) {
newbase = base + header.size() + offset;
}
// Reconstruct section
result = reconstruct(index.child(i, index.column()), childrenQueue, revision, empty, newbase);
if (result)
return result;
// Check for empty queue
if (childrenQueue.isEmpty())
continue;
// Get section from queue
QByteArray section = childrenQueue.dequeue();
// Append current section to new file body
reconstructed.append(section);
// Change current file offset
offset += section.size();
}
// Correct file size
UINT8 tailSize = model->hasEmptyTail(index) ? 0 : sizeof(UINT16);
uint32ToUint24(sizeof(EFI_FFS_FILE_HEADER) + reconstructed.size() + tailSize, fileHeader->Size);
// Recalculate header checksum
fileHeader->IntegrityCheck.Checksum.Header = 0;
fileHeader->IntegrityCheck.Checksum.File = 0;
fileHeader->IntegrityCheck.Checksum.Header = calculateChecksum8((UINT8*) fileHeader, sizeof(EFI_FFS_FILE_HEADER) - 1);
}
// Use current file body
else
reconstructed = model->body(index);
// Recalculate data checksum, if needed
if (fileHeader->Attributes & FFS_ATTRIB_CHECKSUM) {
fileHeader->IntegrityCheck.Checksum.File = calculateChecksum8((UINT8*) reconstructed.constData(), reconstructed.size());
}
else if (revision == 1)
fileHeader->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM;
else
fileHeader->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM2;
// Append tail, if needed
if (!model->hasEmptyTail(index))
reconstructed.append(~fileHeader->IntegrityCheck.TailReference);
// Set file state
state = EFI_FILE_DATA_VALID | EFI_FILE_HEADER_VALID | EFI_FILE_HEADER_CONSTRUCTION;
if (erasePolarity == ERASE_POLARITY_TRUE)
state = ~state;
fileHeader->State = state;
// Enqueue reconstructed item
queue.enqueue(header.append(reconstructed));
}
break;
case Section:
{
QByteArray header = model->header(index);
EFI_COMMON_SECTION_HEADER* commonHeader = (EFI_COMMON_SECTION_HEADER*) header.data();
// Section with children
if (model->rowCount(index)) {
// Construct new section body
UINT32 offset = 0;
// Reconstruct section body
for (int i = 0; i < model->rowCount(index); i++) {
// Align to 4 byte boundary
UINT8 alignment = offset % 4;
if (alignment) {
alignment = 4 - alignment;
offset += alignment;
reconstructed.append(QByteArray(alignment, '\x00'));
}
// No rebase needed for subsections
/*// Correct base, if needed
UINT32 newbase = 0;
if (base) {
newbase += offset;
}*/
// Reconstruct subsections
result = reconstruct(index.child(i, index.column()), childrenQueue/*, revision, erasePolarity, newbase*/);
if (result)
return result;
// Check for empty queue
if (childrenQueue.isEmpty())
continue;
// Get section from queue
QByteArray section = childrenQueue.dequeue();
// Append current subsection to new section body
reconstructed.append(section);
// Change current file offset
offset += section.size();
}
// Only this 2 sections can have compressed body
if (model->subtype(index) == EFI_SECTION_COMPRESSION) {
EFI_COMPRESSION_SECTION* compessionHeader = (EFI_COMPRESSION_SECTION*) header.data();
// Set new uncompressed size
compessionHeader->UncompressedLength = reconstructed.size();
// Compress new section body
QByteArray compressed;
result = compress(reconstructed, model->compression(index), compressed);
if (result)
return result;
// Correct compression type
if (model->compression(index) == COMPRESSION_ALGORITHM_NONE)
compessionHeader->CompressionType = EFI_NOT_COMPRESSED;
else if (model->compression(index) == COMPRESSION_ALGORITHM_LZMA || model->compression(index) == COMPRESSION_ALGORITHM_IMLZMA)
compessionHeader->CompressionType = EFI_CUSTOMIZED_COMPRESSION;
else if (model->compression(index) == COMPRESSION_ALGORITHM_EFI11 || model->compression(index) == COMPRESSION_ALGORITHM_TIANO)
compessionHeader->CompressionType = EFI_STANDARD_COMPRESSION;
else
return ERR_UNKNOWN_COMPRESSION_ALGORITHM;
// Replace new section body
reconstructed = compressed;
}
else if (model->subtype(index) == EFI_SECTION_GUID_DEFINED) {
EFI_GUID_DEFINED_SECTION* guidDefinedHeader = (EFI_GUID_DEFINED_SECTION*) header.data();
// Compress new section body
QByteArray compressed;
result = compress(reconstructed, model->compression(index), compressed);
if (result)
return result;
// Check for auth status valid attribute
if (guidDefinedHeader->Attributes & EFI_GUIDED_SECTION_AUTH_STATUS_VALID) {
msg(tr("reconstruct: %1: GUID defined section signature can now become invalid")
.arg(guidToQString(guidDefinedHeader->SectionDefinitionGuid)));
}
// Replace new section body
reconstructed = compressed;
}
else if (model->compression(index) != COMPRESSION_ALGORITHM_NONE) {
msg(tr("reconstruct: incorrectly required compression for section of type %1")
.arg(model->subtype(index)));
return ERR_INVALID_SECTION;
}
// Correct section size
uint32ToUint24(header.size() + reconstructed.size(), commonHeader->Size);
}
// Leaf section
else
reconstructed = model->body(index);
// Rebase executable section, if needed
if (base && (model->subtype(index) == EFI_SECTION_PE32 || model->subtype(index) == EFI_SECTION_TE)) {
result = rebase(reconstructed, base + header.size());
if (result) {
msg(tr("reconstruct: can't rebase executable"));
return result;
}
}
// Enqueue reconstructed item
queue.enqueue(header.append(reconstructed));
}
break;
default:
msg(tr("reconstruct: Unknown item type (%1)").arg(model->type(index)));
return ERR_UNKNOWN_ITEM_TYPE;
}
return ERR_SUCCESS;
}
return ERR_NOT_IMPLEMENTED;
}
UINT8 FfsEngine::growVolume(QByteArray & header, const UINT32 size, UINT32 & newSize)
{
// Adjust new size to be representable by current FvBlockMap
EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (EFI_FIRMWARE_VOLUME_HEADER*) header.data();
EFI_FV_BLOCK_MAP_ENTRY* blockMap = (EFI_FV_BLOCK_MAP_ENTRY*) (header.data() + sizeof(EFI_FIRMWARE_VOLUME_HEADER));
// Get block map size
UINT32 extHeaderOffset = volumeHeader->Revision == 2 ? volumeHeader->ExtHeaderOffset : 0;
UINT32 blockMapSize = header.size() - extHeaderOffset - sizeof(EFI_FIRMWARE_VOLUME_HEADER);
if (blockMapSize % sizeof(EFI_FV_BLOCK_MAP_ENTRY))
return ERR_INVALID_VOLUME;
UINT32 blockMapCount = blockMapSize / sizeof(EFI_FV_BLOCK_MAP_ENTRY);
// Check blockMap validity
if (blockMap[blockMapCount-1].NumBlocks != 0 || blockMap[blockMapCount-1].Length != 0)
return ERR_INVALID_VOLUME;
// Calculate new size
if (newSize <= size)
return ERR_INVALID_PARAMETER;
newSize += blockMap->Length - newSize % blockMap->Length;
// Recalculate number of blocks
blockMap->NumBlocks = newSize / blockMap->Length;
// Set new volume size
volumeHeader->FvLength = 0;
for(UINT8 i = 0; i < blockMapCount; i++) {
volumeHeader->FvLength += blockMap[i].NumBlocks * blockMap[i].Length;
}
// Recalculate volume header checksum
volumeHeader->Checksum = 0;
volumeHeader->Checksum = calculateChecksum16((UINT16*) volumeHeader, volumeHeader->HeaderLength);
return ERR_SUCCESS;
}
// Search routines
UINT8 FfsEngine::findHexPattern(const QByteArray & pattern, const UINT8 mode)
{
return findHexPatternIn(model->index(0,0), pattern, mode);
}
UINT8 FfsEngine::findHexPatternIn(const QModelIndex & index, const QByteArray & pattern, const UINT8 mode)
{
if (pattern.isEmpty())
return ERR_INVALID_PARAMETER;
if (!index.isValid())
return ERR_SUCCESS;
bool hasChildren = (model->rowCount(index) > 0);
for (int i = 0; i < model->rowCount(index); i++) {
findHexPatternIn(index.child(i, index.column()), pattern, mode);
}
QByteArray data;
if (hasChildren) {
if(mode != SEARCH_MODE_BODY)
data = model->header(index);
}
else {
if (mode == SEARCH_MODE_HEADER)
data.append(model->header(index)).append(model->tail(index));
else if (mode == SEARCH_MODE_BODY)
data.append(model->body(index));
else
data.append(model->header(index)).append(model->body(index)).append(model->tail(index));
}
int offset = -1;
while ((offset = data.indexOf(pattern, offset + 1)) >= 0) {
msg(tr("Hex pattern \"%1\" found in %2 at offset %3")
.arg(QString(pattern.toHex()))
.arg(model->nameString(index))
.arg(offset, 8, 16, QChar('0')),
index);
}
return ERR_SUCCESS;
}
UINT8 FfsEngine::findTextPattern(const QString & pattern, const bool unicode, const Qt::CaseSensitivity caseSensitive)
{
return findTextPatternIn(model->index(0,0), pattern, unicode, caseSensitive);
}
UINT8 FfsEngine::findTextPatternIn(const QModelIndex & index, const QString & pattern, const bool unicode, const Qt::CaseSensitivity caseSensitive)
{
if (pattern.isEmpty())
return ERR_INVALID_PARAMETER;
if (!index.isValid())
return ERR_SUCCESS;
bool hasChildren = (model->rowCount(index) > 0);
for (int i = 0; i < model->rowCount(index); i++) {
findTextPatternIn(index.child(i, index.column()), pattern, unicode, caseSensitive);
}
if (hasChildren)
return ERR_SUCCESS;
QString data;
if (unicode)
data = QString::fromUtf16((const ushort*) model->body(index).data(), model->body(index).length()/2);
else
data = QString::fromLatin1((const char*) model->body(index).data(), model->body(index).length());
int offset = -1;
while ((offset = data.indexOf(pattern, offset + 1, caseSensitive)) >= 0) {
msg(tr("%1 text pattern \"%2\" found in %3 at offset %4")
.arg(unicode ? "Unicode" : "ASCII")
.arg(pattern)
.arg(model->nameString(index))
.arg(unicode ? offset*2 : offset, 8, 16, QChar('0')),
index);
}
return ERR_SUCCESS;
}
UINT8 FfsEngine::rebase(QByteArray &executable, const UINT32 base)
{
// Relocation data
UINT32 delta; // Delta between old and new bases
UINT32 relocOffset; // Offset of relocation region
UINT32 relocSize; // Size of relocation region
UINT32 teFixup = 0;
// Copy input data to local storage
QByteArray file = executable;
// Populate DOS header
EFI_IMAGE_DOS_HEADER* dosHeader = (EFI_IMAGE_DOS_HEADER*) file.data();
// Check signature
if (dosHeader->e_magic == EFI_IMAGE_DOS_SIGNATURE){
UINT32 offset = dosHeader->e_lfanew;
EFI_IMAGE_PE_HEADER* peHeader = (EFI_IMAGE_PE_HEADER*) (file.data() + offset);
if (peHeader->Signature != EFI_IMAGE_PE_SIGNATURE)
return ERR_UNKNOWN_IMAGE_TYPE;
offset += sizeof(EFI_IMAGE_PE_HEADER);
// Skip file header
offset += sizeof(EFI_IMAGE_FILE_HEADER);
// Check optional header magic
UINT16 magic = *(UINT16*) (file.data() + offset);
if (magic == EFI_IMAGE_PE_OPTIONAL_HDR32_MAGIC) {
EFI_IMAGE_OPTIONAL_HEADER32* optHeader = (EFI_IMAGE_OPTIONAL_HEADER32*) (file.data() + offset);
// Get relocation data
delta = base - optHeader->ImageBase;
if (!delta)
// No need to rebase
return ERR_SUCCESS;
relocOffset = optHeader->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress;
relocSize = optHeader->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].Size;
// Set new base
optHeader->ImageBase = base;
}
else if (magic == EFI_IMAGE_PE_OPTIONAL_HDR32_MAGIC) {
EFI_IMAGE_OPTIONAL_HEADER64* optHeader = (EFI_IMAGE_OPTIONAL_HEADER64*) (file.data() + offset);
// Get relocation data
delta = base - optHeader->ImageBase;
if (!delta)
// No need to rebase
return ERR_SUCCESS;
relocOffset = optHeader->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress;
relocSize = optHeader->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].Size;
// Set new base
optHeader->ImageBase = base;
}
else
return ERR_UNKNOWN_PE_OPTIONAL_HEADER_TYPE;
}
else if (dosHeader->e_magic == EFI_IMAGE_TE_SIGNATURE){
// Populate TE header
EFI_IMAGE_TE_HEADER* teHeader = (EFI_IMAGE_TE_HEADER*) file.data();
// Get relocation data
delta = base - teHeader->ImageBase;
if (!delta)
// No need to rebase
return ERR_SUCCESS;
relocOffset = teHeader->DataDirectory[EFI_IMAGE_TE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress ;
teFixup = teHeader->StrippedSize - sizeof(EFI_IMAGE_TE_HEADER);
relocSize = teHeader->DataDirectory[EFI_IMAGE_TE_DIRECTORY_ENTRY_BASERELOC].Size;
// Set new base
teHeader->ImageBase = base;
}
else
return ERR_UNKNOWN_IMAGE_TYPE;
// No relocations
if (relocOffset == 0)
// No need to rebase
return ERR_SUCCESS;
// Locate relocation section using data directory
EFI_IMAGE_BASE_RELOCATION *RelocBase;
EFI_IMAGE_BASE_RELOCATION *RelocBaseEnd;
UINT16 *Reloc;
UINT16 *RelocEnd;
UINT16 *F16;
UINT32 *F32;
UINT64 *F64;
// Run the whole relocation block
RelocBase = (EFI_IMAGE_BASE_RELOCATION*) (file.data() + relocOffset - teFixup);
RelocBaseEnd = (EFI_IMAGE_BASE_RELOCATION*) (file.data() + relocOffset - teFixup + relocSize);
while (RelocBase < RelocBaseEnd) {
Reloc = (UINT16*) ((UINT8*) RelocBase + sizeof(EFI_IMAGE_BASE_RELOCATION));
RelocEnd = (UINT16*) ((UINT8*) RelocBase + RelocBase->SizeOfBlock);
// Run this relocation record
while (Reloc < RelocEnd) {
UINT8* data = (UINT8*) (file.data() + RelocBase->VirtualAddress - teFixup + (*Reloc & 0x0FFF));
switch ((*Reloc) >> 12) {
case EFI_IMAGE_REL_BASED_ABSOLUTE:
// Do nothing
break;
case EFI_IMAGE_REL_BASED_HIGH:
// Add second 16 bits of delta
F16 = (UINT16*) data;
*F16 = (UINT16)(*F16 + (UINT16)(((UINT32) delta) >> 16));
break;
case EFI_IMAGE_REL_BASED_LOW:
// Add first 16 bits of delta
F16 = (UINT16*) data;
*F16 = (UINT16) (*F16 + (UINT16) delta);
break;
case EFI_IMAGE_REL_BASED_HIGHLOW:
// Add first 32 bits of delta
F32 = (UINT32*) data;
*F32 = *F32 + (UINT32) delta;
break;
case EFI_IMAGE_REL_BASED_DIR64:
// Add all 64 bits of delta
F64 = (UINT64*) data;
*F64 = *F64 + (UINT64) delta;
break;
default:
return ERR_UNKNOWN_RELOCATION_TYPE;
}
// Next reloc record
Reloc += 1;
}
// Next reloc block
RelocBase = (EFI_IMAGE_BASE_RELOCATION*)RelocEnd;
}
executable = file;
return ERR_SUCCESS;
}