Version 0.15.0

- implemented PE and TE executables relocation for correct Boot Firmware
Volume modification
This commit is contained in:
Nikolaj Schlej 2014-01-09 11:45:49 +01:00
parent 17ee8a445a
commit ead41ba5bb
6 changed files with 1111 additions and 197 deletions

View File

@ -76,6 +76,9 @@ typedef uint16_t CHAR16;
#define ERR_UNKNOWN_COMPRESSION_ALGORITHM 26
#define ERR_UNKNOWN_EXTRACT_MODE 27
#define ERR_UNKNOWN_INSERT_MODE 28
#define ERR_UNKNOWN_IMAGE_TYPE 29
#define ERR_UNKNOWN_PE_OPTIONAL_HEADER_TYPE 30
#define ERR_UNKNOWN_RELOCATION_TYPE 31
#define ERR_NOT_IMPLEMENTED 0xFF
// Compression algorithms

View File

@ -1709,7 +1709,7 @@ UINT8 FfsEngine::constructPadFile(const UINT32 size, const UINT8 revision, const
return ERR_SUCCESS;
}
UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & queue, const UINT8 revision, const UINT8 erasePolarity)
UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & queue, const UINT8 revision, const UINT8 erasePolarity, const UINT32 base)
{
if (!index.isValid())
return ERR_SUCCESS;
@ -1718,13 +1718,13 @@ UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & que
UINT8 result;
// No action is needed, just return header + body + tail
if (model->action(index) == NoAction) {
if (!base && model->action(index) == NoAction) {
reconstructed = model->header(index).append(model->body(index)).append(model->tail(index));
queue.enqueue(reconstructed);
return ERR_SUCCESS;
}
// Remove item
else if (model->action(index) == Remove) {
if (model->action(index) == Remove) {
// Volume can be removed by replacing all it's contents with empty bytes
if (model->type(index) == Volume) {
EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (EFI_FIRMWARE_VOLUME_HEADER*) model->header(index).constData();
@ -1746,10 +1746,10 @@ UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & que
return ERR_NOT_IMPLEMENTED;
}
// Reconstruct item and it's children recursive
else if (model->action(index) == Create
|| model->action(index) == Insert
|| model->action(index) == Replace
|| model->action(index) == Rebuild) {
if (base || model->action(index) == Create
|| model->action(index) == Insert
|| model->action(index) == Replace
|| model->action(index) == Rebuild) {
QQueue<QByteArray> childrenQueue;
switch (model->type(index)) {
@ -1887,7 +1887,7 @@ UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & que
case Volume:
{
//!TODO: add check for weak aligned volumes
//!TODO: add check for weak aligned volume
QByteArray header = model->header(index);
EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (EFI_FIRMWARE_VOLUME_HEADER*) header.data();
@ -1895,63 +1895,35 @@ UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & que
volumeHeader->Checksum = 0;
volumeHeader->Checksum = calculateChecksum16((UINT16*) volumeHeader, volumeHeader->HeaderLength);
// Get volume size
UINT32 volumeSize;
result = getVolumeSize(header, 0, volumeSize);
if (result)
return result;
// Reconstruct volume body
if (model->rowCount(index)) {
UINT8 polarity = volumeHeader->Attributes & EFI_FVB_ERASE_POLARITY ? ERASE_POLARITY_TRUE : ERASE_POLARITY_FALSE;
char empty = volumeHeader->Attributes & EFI_FVB_ERASE_POLARITY ? '\xFF' : '\x00';
bool bootVolume = false;
// Check for boot volume
for (int i = 0; i < model->rowCount(index); i++) {
QByteArray hdr = model->header(index.child(i, index.column()));
EFI_FFS_FILE_HEADER* fileHeader = (EFI_FFS_FILE_HEADER*) hdr.data();
if (fileHeader->Type == EFI_FV_FILETYPE_PEI_CORE) {
bootVolume = true;
break;
}
}
// Reconstruct files in volume
for (int i = 0; i < model->rowCount(index); i++) {
// Reconstruct files
result = reconstruct(index.child(i, index.column()), childrenQueue, volumeHeader->Revision, polarity);
if (result)
return result;
}
// Remove all pad files, they will be recreated later
foreach(const QByteArray & child, childrenQueue) {
EFI_FFS_FILE_HEADER* fileHeader = (EFI_FFS_FILE_HEADER*) child.constData();
if (fileHeader->Type == EFI_FV_FILETYPE_PAD)
childrenQueue.removeAll(child);
}
// Ensure that Volume Top File is the last file of the volume
foreach(const QByteArray & child, childrenQueue) {
// Check for VTF
if (child.left(sizeof(EFI_GUID)) == EFI_FFS_VOLUME_TOP_FILE_GUID) {
// If VTF is not the last file in the volume
if(childrenQueue.indexOf(child) + 1 != childrenQueue.length()) {
// Remove VTF and add it to the end of the volume
QByteArray vtf = child;
childrenQueue.removeAll(child);
childrenQueue.append(vtf);
}
}
}
// Ensure that AMI file before VTF is the second latest file of the volume
foreach(const QByteArray & child, childrenQueue) {
// Check for AMI before VTF file
if (child.left(sizeof(EFI_GUID)) == EFI_AMI_FFS_FILE_BEFORE_VTF_GUID) {
if(childrenQueue.indexOf(child) + 2 != childrenQueue.length()) {
// Remove file and add it to the end of the volume
QByteArray amiBeforeVtf = child;
childrenQueue.removeAll(child);
childrenQueue.insert(--childrenQueue.end(), amiBeforeVtf);
}
}
}
// Get volume size
UINT32 volumeSize;
result = getVolumeSize(header, 0, volumeSize);
if (result)
return result;
// Construct new volume body
UINT32 offset = 0;
while (!childrenQueue.isEmpty())
{
QByteArray vtf;
QModelIndex vtfIndex;
QByteArray amiBeforeVtf;
QModelIndex amiBeforeVtfIndex;
for (int i = 0; i < model->rowCount(index); i++) {
// Align to 8 byte boundary
UINT32 alignment = offset % 8;
if (alignment) {
@ -1960,46 +1932,54 @@ UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & que
reconstructed.append(QByteArray(alignment, empty));
}
// Get file from queue
// Calculate file base
UINT32 newbase = 0;
if (bootVolume) {
newbase = (UINT32) 0x100000000 - volumeSize + header.size() + offset;
}
// Reconstruct file
result = reconstruct(index.child(i, index.column()), childrenQueue, volumeHeader->Revision, polarity, newbase);
if (result)
return result;
// Check for empty queue
if (childrenQueue.isEmpty())
continue;
// Get file from queue
QByteArray file = childrenQueue.dequeue();
EFI_FFS_FILE_HEADER* fileHeader = (EFI_FFS_FILE_HEADER*) file.data();
// This is the second latest file in the volume
if (childrenQueue.count() == 1) {
// This file can be AMI file before VTF
if (file.left(sizeof(EFI_GUID)) == EFI_AMI_FFS_FILE_BEFORE_VTF_GUID) {
// Determine correct offset
UINT32 amiOffset = volumeSize - header.size() - file.size() - EFI_AMI_FFS_FILE_BEFORE_VTF_OFFSET;
// Insert pad file to fill the gap
if (amiOffset > offset) {
// Determine pad file size
UINT32 size = amiOffset - offset;
// Construct pad file
QByteArray pad;
result = constructPadFile(size, revision, polarity, pad);
if (result)
return result;
// Append constructed pad file to volume body
reconstructed.append(pad);
offset = amiOffset;
}
if (amiOffset < offset) {
msg(tr("%1: volume has no free space left").arg(guidToQString(volumeHeader->FileSystemGuid)), index);
return ERR_INVALID_VOLUME;
}
}
// Pad file
if (fileHeader->Type == EFI_FV_FILETYPE_PAD)
continue;
// AMI file before VTF
if (file.left(sizeof(EFI_GUID)) == EFI_AMI_FFS_FILE_BEFORE_VTF_GUID) {
amiBeforeVtf = file;
amiBeforeVtfIndex = index.child(i, index.column());
continue;
}
// Check alignment
// Volume Top File
if (file.left(sizeof(EFI_GUID)) == EFI_FFS_VOLUME_TOP_FILE_GUID) {
vtf = file;
vtfIndex = index.child(i, index.column());
continue;
}
// Normal file
// Ensure correct alignment
UINT8 alignmentPower;
UINT32 base;
UINT32 alignmentBase;
alignmentPower = ffsAlignmentTable[(fileHeader->Attributes & FFS_ATTRIB_DATA_ALIGNMENT) >> 3];
alignment = (UINT32) pow(2.0, alignmentPower);
base = header.size() + offset + sizeof(EFI_FFS_FILE_HEADER);
if (base % alignment) {
alignmentBase = header.size() + offset + sizeof(EFI_FFS_FILE_HEADER);
if (alignmentBase % alignment) {
// File will be unaligned if added as is, so we must add pad file before it
// Determine pad file size
UINT32 size = alignment - (base % alignment);
UINT32 size = alignment - (alignmentBase % alignment);
// Required padding is smaler then minimal pad file size
while (size < sizeof(EFI_FFS_FILE_HEADER)) {
size += alignment;
@ -2014,92 +1994,6 @@ UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & que
offset += size;
}
// If this is the last file in volume
if (childrenQueue.isEmpty())
{
// Last file of the volume can be Volume Top File
if (file.left(sizeof(EFI_GUID)) == EFI_FFS_VOLUME_TOP_FILE_GUID) {
// Determine correct VTF offset
UINT32 vtfOffset = volumeSize - header.size() - file.size();
if (vtfOffset % 8) {
msg(tr("reconstruct: %1: Wrong size of Volume Top File")
.arg(guidToQString(volumeHeader->FileSystemGuid)), index);
return ERR_INVALID_FILE;
}
// Insert pad file to fill the gap
if (vtfOffset > offset) {
// Determine pad file size
UINT32 size = vtfOffset - offset;
// Construct pad file
QByteArray pad;
result = constructPadFile(size, revision, polarity, pad);
if (result)
return result;
// Append constructed pad file to volume body
reconstructed.append(pad);
offset = vtfOffset;
}
// No more space left in volume
else if (vtfOffset < offset) {
// Check if volume can be grown
UINT8 parentType = model->type(index.parent());
if(parentType != File && parentType != Section) {
msg(tr("%1: can't grow root volume").arg(guidToQString(volumeHeader->FileSystemGuid)), index);
return ERR_INVALID_VOLUME;
}
// Grow volume to fit VTF
UINT32 newSize = volumeSize + (offset - vtfOffset) + sizeof(EFI_FFS_FILE_HEADER);
result = growVolume(header, volumeSize, newSize);
if (result)
return result;
// Determine new VTF offset
vtfOffset = newSize - header.size() - file.size();
if (vtfOffset % 8) {
msg(tr("reconstruct: %1: Wrong size of Volume Top File")
.arg(guidToQString(volumeHeader->FileSystemGuid)), index);
return ERR_INVALID_FILE;
}
// Construct pad file
QByteArray pad;
result = constructPadFile(vtfOffset - offset, revision, polarity, pad);
if (result)
return result;
// Append constructed pad file to volume body
reconstructed.append(pad);
reconstructed.append(file);
volumeSize = newSize;
break;
}
}
// Append last file and fill the rest with empty char
else {
reconstructed.append(file);
UINT32 volumeBodySize = volumeSize - header.size();
if (volumeBodySize > (UINT32) reconstructed.size()) {
// Fill volume end with empty char
reconstructed.append(QByteArray(volumeBodySize - reconstructed.size(), empty));
}
else {
// Check if volume can be grown
UINT8 parentType = model->type(index.parent());
if(parentType != File && parentType != Section) {
msg(tr("%1: can't grow root volume").arg(guidToQString(volumeHeader->FileSystemGuid)), index);
return ERR_INVALID_VOLUME;
}
// Grow volume to fit new body
UINT32 newSize = header.size() + reconstructed.size();
result = growVolume(header, volumeSize, newSize);
if (result)
return result;
// Fill volume end with empty char
reconstructed.append(QByteArray(newSize - header.size() - reconstructed.size(), empty));
volumeSize = newSize;
}
break;
}
}
// Append current file to new volume body
reconstructed.append(file);
@ -2107,6 +2001,132 @@ UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & que
offset += file.size();
}
// Insert AMI file before VTF to it's correct place
if (!amiBeforeVtf.isEmpty()) {
// Determine correct offset
UINT32 amiOffset = volumeSize - header.size() - amiBeforeVtf.size() - EFI_AMI_FFS_FILE_BEFORE_VTF_OFFSET;
// Insert pad file to fill the gap
if (amiOffset > offset) {
// Determine pad file size
UINT32 size = amiOffset - offset;
// Construct pad file
QByteArray pad;
result = constructPadFile(size, revision, polarity, pad);
if (result)
return result;
// Append constructed pad file to volume body
reconstructed.append(pad);
offset = amiOffset;
}
if (amiOffset < offset) {
msg(tr("reconstruct: %1: volume has no free space left").arg(guidToQString(volumeHeader->FileSystemGuid)), index);
return ERR_INVALID_VOLUME;
}
// Calculate file base
UINT32 newbase = 0;
if (bootVolume) {
newbase = (UINT32) 0x100000000 - volumeSize + header.size() + amiOffset;
}
// Reconstruct file again
result = reconstruct(amiBeforeVtfIndex, childrenQueue, volumeHeader->Revision, polarity, newbase);
if (result)
return result;
// Get file from queue
amiBeforeVtf = childrenQueue.dequeue();
// Append AMI file before VTF
reconstructed.append(amiBeforeVtf);
// Change current file offset
offset += amiBeforeVtf.size();
// Align to 8 byte boundary
UINT32 alignment = offset % 8;
if (alignment) {
alignment = 8 - alignment;
offset += alignment;
reconstructed.append(QByteArray(alignment, empty));
}
}
// Insert VTF to it's correct place
if (!vtf.isEmpty()) {
// Determine correct VTF offset
UINT32 vtfOffset = volumeSize - header.size() - vtf.size();
if (vtfOffset % 8) {
msg(tr("reconstruct: %1: Wrong size of Volume Top File")
.arg(guidToQString(volumeHeader->FileSystemGuid)), index);
return ERR_INVALID_FILE;
}
// Insert pad file to fill the gap
if (vtfOffset > offset) {
// Determine pad file size
UINT32 size = vtfOffset - offset;
// Construct pad file
QByteArray pad;
result = constructPadFile(size, revision, polarity, pad);
if (result)
return result;
// Append constructed pad file to volume body
reconstructed.append(pad);
offset = vtfOffset;
}
// No more space left in volume
else if (vtfOffset < offset) {
msg(tr("reconstruct: %1: volume has no free space left").arg(guidToQString(volumeHeader->FileSystemGuid)), index);
return ERR_INVALID_VOLUME;
}
// Calculate file base
UINT32 newbase = 0;
if (bootVolume) {
newbase = (UINT32) 0x100000000 - volumeSize + header.size() + vtfOffset;
}
// Reconstruct file
result = reconstruct(vtfIndex, childrenQueue, volumeHeader->Revision, polarity, newbase);
if (result)
return result;
// Get file from queue
vtf = childrenQueue.dequeue();
// Append VTF
reconstructed.append(vtf);
}
else {
// Fill the rest of volume space with empty char
UINT32 volumeBodySize = volumeSize - header.size();
if (volumeBodySize > (UINT32) reconstructed.size()) {
// Fill volume end with empty char
reconstructed.append(QByteArray(volumeBodySize - reconstructed.size(), empty));
}
else if (volumeBodySize < (UINT32) reconstructed.size()) {
// Check if volume can be grown
// Root volume can't be grown yet
UINT8 parentType = model->type(index.parent());
if(parentType != File && parentType != Section) {
msg(tr("reconstruct: %1: can't grow root volume").arg(guidToQString(volumeHeader->FileSystemGuid)), index);
return ERR_INVALID_VOLUME;
}
// Grow volume to fit new body
UINT32 newSize = header.size() + reconstructed.size();
result = growVolume(header, volumeSize, newSize);
if (result)
return result;
// Fill volume end with empty char
reconstructed.append(QByteArray(newSize - header.size() - reconstructed.size(), empty));
volumeSize = newSize;
}
}
// Check new volume size
if ((UINT32)(header.size() + reconstructed.size()) > volumeSize)
{
@ -2182,17 +2202,9 @@ UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & que
// Reconstruct file body
if (model->rowCount(index)) {
for (int i = 0; i < model->rowCount(index); i++) {
// Reconstruct sections
result = reconstruct(index.child(i, index.column()), childrenQueue, revision, empty);
if (result)
return result;
}
// Construct new file body
UINT32 offset = 0;
while (!childrenQueue.isEmpty())
{
for (int i = 0; i < model->rowCount(index); i++) {
// Align to 4 byte boundary
UINT8 alignment = offset % 4;
if (alignment) {
@ -2201,11 +2213,27 @@ UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & que
reconstructed.append(QByteArray(alignment, empty));
}
// Correct base, if needed
UINT32 newbase = 0;
if (base) {
newbase = base + header.size() + offset;
}
// Reconstruct section
result = reconstruct(index.child(i, index.column()), childrenQueue, revision, empty, newbase);
if (result)
return result;
// Check for empty queue
if (childrenQueue.isEmpty())
continue;
// Get section from queue
QByteArray section = childrenQueue.dequeue();
// Append current section to new file body
reconstructed.append(section);
// Change current file offset
offset += section.size();
}
@ -2256,18 +2284,11 @@ UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & que
// Section with children
if (model->rowCount(index)) {
// Reconstruct section body
for (int i = 0; i < model->rowCount(index); i++) {
// Reconstruct subsections
result = reconstruct(index.child(i, index.column()), childrenQueue);
if (result)
return result;
}
// Construct new section body
UINT32 offset = 0;
while (!childrenQueue.isEmpty())
{
// Reconstruct section body
for (int i = 0; i < model->rowCount(index); i++) {
// Align to 4 byte boundary
UINT8 alignment = offset % 4;
if (alignment) {
@ -2276,6 +2297,22 @@ UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & que
reconstructed.append(QByteArray(alignment, '\x00'));
}
// No rebase needed for subsections
/*// Correct base, if needed
UINT32 newbase = 0;
if (base) {
newbase += offset;
}*/
// Reconstruct subsections
result = reconstruct(index.child(i, index.column()), childrenQueue/*, revision, erasePolarity, newbase*/);
if (result)
return result;
// Check for empty queue
if (childrenQueue.isEmpty())
continue;
// Get section from queue
QByteArray section = childrenQueue.dequeue();
@ -2325,7 +2362,7 @@ UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & que
reconstructed = compressed;
}
else if (model->compression(index) != COMPRESSION_ALGORITHM_NONE) {
msg(tr("reconstruct: incorreclty required compression for section of type %1")
msg(tr("reconstruct: incorrectly required compression for section of type %1")
.arg(model->subtype(index)));
return ERR_INVALID_SECTION;
}
@ -2337,6 +2374,15 @@ UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & que
else
reconstructed = model->body(index);
// Rebase executable section, if needed
if (base && (model->subtype(index) == EFI_SECTION_PE32 || model->subtype(index) == EFI_SECTION_TE)) {
result = rebase(reconstructed, base + header.size());
if (result) {
msg(tr("reconstruct: can't rebase executable"));
return result;
}
}
// Enqueue reconstructed item
queue.enqueue(header.append(reconstructed));
}
@ -2475,3 +2521,141 @@ UINT8 FfsEngine::findTextPatternIn(const QModelIndex & index, const QString & pa
return ERR_SUCCESS;
}
UINT8 FfsEngine::rebase(QByteArray &executable, const UINT32 base)
{
// Relocation data
UINT32 delta; // Delta between old and new bases
UINT32 relocOffset; // Offset of relocation region
UINT32 relocSize; // Size of relocation region
UINT32 teFixup = 0;
// Copy input data to local storage
QByteArray file = executable;
// Populate DOS header
EFI_IMAGE_DOS_HEADER* dosHeader = (EFI_IMAGE_DOS_HEADER*) file.data();
// Check signature
if (dosHeader->e_magic == EFI_IMAGE_DOS_SIGNATURE){
UINT32 offset = dosHeader->e_lfanew;
EFI_IMAGE_PE_HEADER* peHeader = (EFI_IMAGE_PE_HEADER*) (file.data() + offset);
if (peHeader->Signature != EFI_IMAGE_PE_SIGNATURE)
return ERR_UNKNOWN_IMAGE_TYPE;
offset += sizeof(EFI_IMAGE_PE_HEADER);
// Skip file header
offset += sizeof(EFI_IMAGE_FILE_HEADER);
// Check optional header magic
UINT16 magic = *(UINT16*) (file.data() + offset);
if (magic == EFI_IMAGE_PE_OPTIONAL_HDR32_MAGIC) {
EFI_IMAGE_OPTIONAL_HEADER32* optHeader = (EFI_IMAGE_OPTIONAL_HEADER32*) (file.data() + offset);
// Get relocation data
delta = base - optHeader->ImageBase;
if (!delta)
// No need to rebase
return ERR_SUCCESS;
relocOffset = optHeader->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress;
relocSize = optHeader->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].Size;
// Set new base
optHeader->ImageBase = base;
}
else if (magic == EFI_IMAGE_PE_OPTIONAL_HDR32_MAGIC) {
EFI_IMAGE_OPTIONAL_HEADER64* optHeader = (EFI_IMAGE_OPTIONAL_HEADER64*) (file.data() + offset);
// Get relocation data
delta = base - optHeader->ImageBase;
if (!delta)
// No need to rebase
return ERR_SUCCESS;
relocOffset = optHeader->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress;
relocSize = optHeader->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].Size;
// Set new base
optHeader->ImageBase = base;
}
else
return ERR_UNKNOWN_PE_OPTIONAL_HEADER_TYPE;
}
else if (dosHeader->e_magic == EFI_IMAGE_TE_SIGNATURE){
// Populate TE header
EFI_IMAGE_TE_HEADER* teHeader = (EFI_IMAGE_TE_HEADER*) file.data();
// Get relocation data
delta = base - teHeader->ImageBase;
if (!delta)
// No need to rebase
return ERR_SUCCESS;
relocOffset = teHeader->DataDirectory[EFI_IMAGE_TE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress ;
teFixup = teHeader->StrippedSize - sizeof(EFI_IMAGE_TE_HEADER);
relocSize = teHeader->DataDirectory[EFI_IMAGE_TE_DIRECTORY_ENTRY_BASERELOC].Size;
// Set new base
teHeader->ImageBase = base;
}
else
return ERR_UNKNOWN_IMAGE_TYPE;
// No relocations
if (relocOffset == 0)
// No need to rebase
return ERR_SUCCESS;
// Locate relocation section using data directory
EFI_IMAGE_BASE_RELOCATION *RelocBase;
EFI_IMAGE_BASE_RELOCATION *RelocBaseEnd;
UINT16 *Reloc;
UINT16 *RelocEnd;
UINT16 *F16;
UINT32 *F32;
UINT64 *F64;
// Run the whole relocation block
RelocBase = (EFI_IMAGE_BASE_RELOCATION*) (file.data() + relocOffset - teFixup);
RelocBaseEnd = (EFI_IMAGE_BASE_RELOCATION*) (file.data() + relocOffset - teFixup + relocSize);
while (RelocBase < RelocBaseEnd) {
Reloc = (UINT16*) ((UINT8*) RelocBase + sizeof(EFI_IMAGE_BASE_RELOCATION));
RelocEnd = (UINT16*) ((UINT8*) RelocBase + RelocBase->SizeOfBlock);
// Run this relocation record
while (Reloc < RelocEnd) {
UINT8* data = (UINT8*) (file.data() + RelocBase->VirtualAddress - teFixup + (*Reloc & 0x0FFF));
switch ((*Reloc) >> 12) {
case EFI_IMAGE_REL_BASED_ABSOLUTE:
// Do nothing
break;
case EFI_IMAGE_REL_BASED_HIGH:
// Add second 16 bits of delta
F16 = (UINT16*) data;
*F16 = (UINT16)(*F16 + (UINT16)(((UINT32) delta) >> 16));
break;
case EFI_IMAGE_REL_BASED_LOW:
// Add first 16 bits of delta
F16 = (UINT16*) data;
*F16 = (UINT16) (*F16 + (UINT16) delta);
break;
case EFI_IMAGE_REL_BASED_HIGHLOW:
// Add first 32 bits of delta
F32 = (UINT32*) data;
*F32 = *F32 + (UINT32) delta;
break;
case EFI_IMAGE_REL_BASED_DIR64:
// Add all 64 bits of delta
F64 = (UINT64*) data;
*F64 = *F64 + (UINT64) delta;
break;
default:
return ERR_UNKNOWN_RELOCATION_TYPE;
}
// Next reloc record
Reloc += 1;
}
// Next reloc block
RelocBase = (EFI_IMAGE_BASE_RELOCATION*)RelocEnd;
}
executable = file;
return ERR_SUCCESS;
}

View File

@ -21,6 +21,7 @@ WITHWARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
#include "basetypes.h"
#include "treemodel.h"
#include "messagelistitem.h"
#include "peimage.h"
class TreeModel;
@ -66,7 +67,7 @@ public:
// Construction routines
UINT8 reconstructImage(QByteArray & reconstructed);
UINT8 constructPadFile(const UINT32 size, const UINT8 revision, const UINT8 erasePolarity, QByteArray & pad);
UINT8 reconstruct(const QModelIndex & index, QQueue<QByteArray> & queue, const UINT8 revision = 2, const UINT8 erasePolarity = ERASE_POLARITY_UNKNOWN);
UINT8 reconstruct(const QModelIndex & index, QQueue<QByteArray> & queue, const UINT8 revision = 2, const UINT8 erasePolarity = ERASE_POLARITY_UNKNOWN, const UINT32 base = 0);
UINT8 growVolume(QByteArray & header, const UINT32 size, UINT32 & newSize);
// Operations on tree items
@ -86,6 +87,9 @@ public:
UINT8 findTextPattern(const QString & pattern, const bool unicode, const Qt::CaseSensitivity caseSensitive);
UINT8 findTextPatternIn(const QModelIndex & index, const QString & pattern, const bool unicode, const Qt::CaseSensitivity caseSensitive);
// Rebase routines
UINT8 rebase(QByteArray & executable, const UINT32 base);
private:
TreeModel *model;

722
peimage.h Normal file
View File

@ -0,0 +1,722 @@
/** peimage.h
EFI image format for PE32, PE32+ and TE. Please note some data structures are
different for PE32 and PE32+. EFI_IMAGE_NT_HEADERS32 is for PE32 and
EFI_IMAGE_NT_HEADERS64 is for PE32+.
This file is coded to the Visual Studio, Microsoft Portable Executable and
Common Object File Format Specification, Revision 8.0 - May 16, 2006.
This file also includes some definitions in PI Specification, Revision 1.0.
Copyright (c) 2014, Nikolaj Schlej. All rights reserved.
Copyright (c) 2006 - 2010, Intel Corporation. All rights reserved.
Portions copyright (c) 2008 - 2009, Apple Inc. All rights reserved.
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php.
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#ifndef __PE_IMAGE_H__
#define __PE_IMAGE_H__
// Make sure we use right packing rules
#pragma pack(push,1)
//
// PE32+ Subsystem type for EFI images
//
#define EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION 10
#define EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER 11
#define EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER 12
#define EFI_IMAGE_SUBSYSTEM_SAL_RUNTIME_DRIVER 13
//
// PE32+ Machine type for EFI images
//
#define IMAGE_FILE_MACHINE_I386 0x014c
#define IMAGE_FILE_MACHINE_IA64 0x0200
#define IMAGE_FILE_MACHINE_EBC 0x0EBC
#define IMAGE_FILE_MACHINE_X64 0x8664
#define IMAGE_FILE_MACHINE_ARMTHUMB_MIXED 0x01c2
//
// EXE file formats
//
#define EFI_IMAGE_DOS_SIGNATURE 0x5A4D // MZ
#define EFI_IMAGE_PE_SIGNATURE 0x00004550 // PE
//
// PE images can start with an optional DOS header, so if an image is run
// under DOS it can print an error message.
//
typedef struct {
UINT16 e_magic; // Magic number
UINT16 e_cblp; // Bytes on last page of file
UINT16 e_cp; // Pages in file
UINT16 e_crlc; // Relocations
UINT16 e_cparhdr; // Size of header in paragraphs
UINT16 e_minalloc; // Minimum extra paragraphs needed
UINT16 e_maxalloc; // Maximum extra paragraphs needed
UINT16 e_ss; // Initial (relative) SS value
UINT16 e_sp; // Initial SP value
UINT16 e_csum; // Checksum
UINT16 e_ip; // Initial IP value
UINT16 e_cs; // Initial (relative) CS value
UINT16 e_lfarlc; // File address of relocation table
UINT16 e_ovno; // Overlay number
UINT16 e_res[4]; // Reserved words
UINT16 e_oemid; // OEM identifier (for e_oeminfo)
UINT16 e_oeminfo; // OEM information; e_oemid specific
UINT16 e_res2[10]; // Reserved words
UINT32 e_lfanew; // File address of new exe header
} EFI_IMAGE_DOS_HEADER;
//
// COFF File Header (Object and Image)
//
typedef struct {
UINT16 Machine;
UINT16 NumberOfSections;
UINT32 TimeDateStamp;
UINT32 PointerToSymbolTable;
UINT32 NumberOfSymbols;
UINT16 SizeOfOptionalHeader;
UINT16 Characteristics;
} EFI_IMAGE_FILE_HEADER;
//
// Size of EFI_IMAGE_FILE_HEADER.
//
#define EFI_IMAGE_SIZEOF_FILE_HEADER 20
//
// Characteristics
//
#define EFI_IMAGE_FILE_RELOCS_STRIPPED 0x0001 // Relocation info stripped from file
#define EFI_IMAGE_FILE_EXECUTABLE_IMAGE 0x0002 // File is executable (i.e. no unresolved externel references)
#define EFI_IMAGE_FILE_LINE_NUMS_STRIPPED 0x0004 // Line nunbers stripped from file
#define EFI_IMAGE_FILE_LOCAL_SYMS_STRIPPED 0x0008 // Local symbols stripped from file
#define EFI_IMAGE_FILE_BYTES_REVERSED_LO 0x0080 // Bytes of machine word are reversed
#define EFI_IMAGE_FILE_32BIT_MACHINE 0x0100 // 32 bit word machine
#define EFI_IMAGE_FILE_DEBUG_STRIPPED 0x0200 // Debugging info stripped from file in .DBG file
#define EFI_IMAGE_FILE_SYSTEM 0x1000 // System File
#define EFI_IMAGE_FILE_DLL 0x2000 // File is a DLL
#define EFI_IMAGE_FILE_BYTES_REVERSED_HI 0x8000 // Bytes of machine word are reversed
//
// Header Data Directories.
//
typedef struct {
UINT32 VirtualAddress;
UINT32 Size;
} EFI_IMAGE_DATA_DIRECTORY;
//
// Directory Entries
//
#define EFI_IMAGE_DIRECTORY_ENTRY_EXPORT 0
#define EFI_IMAGE_DIRECTORY_ENTRY_IMPORT 1
#define EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE 2
#define EFI_IMAGE_DIRECTORY_ENTRY_EXCEPTION 3
#define EFI_IMAGE_DIRECTORY_ENTRY_SECURITY 4
#define EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC 5
#define EFI_IMAGE_DIRECTORY_ENTRY_DEBUG 6
#define EFI_IMAGE_DIRECTORY_ENTRY_COPYRIGHT 7
#define EFI_IMAGE_DIRECTORY_ENTRY_GLOBALPTR 8
#define EFI_IMAGE_DIRECTORY_ENTRY_TLS 9
#define EFI_IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG 10
#define EFI_IMAGE_NUMBER_OF_DIRECTORY_ENTRIES 16
//
// EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC means PE32 and
// EFI_IMAGE_OPTIONAL_HEADER32 must be used.
// The data structures only vary after NT additional fields
//
#define EFI_IMAGE_PE_OPTIONAL_HDR32_MAGIC 0x10b
//
// Optional Header Standard Fields for PE32
//
typedef struct {
//
// Standard fields.
//
UINT16 Magic;
UINT8 MajorLinkerVersion;
UINT8 MinorLinkerVersion;
UINT32 SizeOfCode;
UINT32 SizeOfInitializedData;
UINT32 SizeOfUninitializedData;
UINT32 AddressOfEntryPoint;
UINT32 BaseOfCode;
UINT32 BaseOfData; // PE32 contains this additional field, which is absent in PE32+.
//
// Optional Header Windows-Specific Fields.
//
UINT32 ImageBase;
UINT32 SectionAlignment;
UINT32 FileAlignment;
UINT16 MajorOperatingSystemVersion;
UINT16 MinorOperatingSystemVersion;
UINT16 MajorImageVersion;
UINT16 MinorImageVersion;
UINT16 MajorSubsystemVersion;
UINT16 MinorSubsystemVersion;
UINT32 Win32VersionValue;
UINT32 SizeOfImage;
UINT32 SizeOfHeaders;
UINT32 CheckSum;
UINT16 Subsystem;
UINT16 DllCharacteristics;
UINT32 SizeOfStackReserve;
UINT32 SizeOfStackCommit;
UINT32 SizeOfHeapReserve;
UINT32 SizeOfHeapCommit;
UINT32 LoaderFlags;
UINT32 NumberOfRvaAndSizes;
EFI_IMAGE_DATA_DIRECTORY DataDirectory[EFI_IMAGE_NUMBER_OF_DIRECTORY_ENTRIES];
} EFI_IMAGE_OPTIONAL_HEADER32;
//
// EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC means PE32+ and
// EFI_IMAGE_OPTIONAL_HEADER64 must be used.
// The data structures only vary after NT additional fields
//
#define EFI_IMAGE_PE_OPTIONAL_HDR64_MAGIC 0x20b
//
// Optional Header Standard Fields for PE32+.
//
typedef struct {
//
// Standard fields.
//
UINT16 Magic;
UINT8 MajorLinkerVersion;
UINT8 MinorLinkerVersion;
UINT32 SizeOfCode;
UINT32 SizeOfInitializedData;
UINT32 SizeOfUninitializedData;
UINT32 AddressOfEntryPoint;
UINT32 BaseOfCode;
//
// Optional Header Windows-Specific Fields.
//
UINT64 ImageBase;
UINT32 SectionAlignment;
UINT32 FileAlignment;
UINT16 MajorOperatingSystemVersion;
UINT16 MinorOperatingSystemVersion;
UINT16 MajorImageVersion;
UINT16 MinorImageVersion;
UINT16 MajorSubsystemVersion;
UINT16 MinorSubsystemVersion;
UINT32 Win32VersionValue;
UINT32 SizeOfImage;
UINT32 SizeOfHeaders;
UINT32 CheckSum;
UINT16 Subsystem;
UINT16 DllCharacteristics;
UINT64 SizeOfStackReserve;
UINT64 SizeOfStackCommit;
UINT64 SizeOfHeapReserve;
UINT64 SizeOfHeapCommit;
UINT32 LoaderFlags;
UINT32 NumberOfRvaAndSizes;
EFI_IMAGE_DATA_DIRECTORY DataDirectory[EFI_IMAGE_NUMBER_OF_DIRECTORY_ENTRIES];
} EFI_IMAGE_OPTIONAL_HEADER64;
typedef struct
{
UINT32 Signature;
//EFI_IMAGE_FILE_HEADER FileHeader;
//EFI_IMAGE_OPTIONAL_HEADER OptionalHeader;
} EFI_IMAGE_PE_HEADER;
//
// Other Windows Subsystem Values
//
#define EFI_IMAGE_SUBSYSTEM_UNKNOWN 0
#define EFI_IMAGE_SUBSYSTEM_NATIVE 1
#define EFI_IMAGE_SUBSYSTEM_WINDOWS_GUI 2
#define EFI_IMAGE_SUBSYSTEM_WINDOWS_CUI 3
#define EFI_IMAGE_SUBSYSTEM_OS2_CUI 5
#define EFI_IMAGE_SUBSYSTEM_POSIX_CUI 7
//
// Length of ShortName
//
#define EFI_IMAGE_SIZEOF_SHORT_NAME 8
//
// Section Table. This table immediately follows the optional header.
//
typedef struct {
UINT8 Name[EFI_IMAGE_SIZEOF_SHORT_NAME];
union {
UINT32 PhysicalAddress;
UINT32 VirtualSize;
} Misc;
UINT32 VirtualAddress;
UINT32 SizeOfRawData;
UINT32 PointerToRawData;
UINT32 PointerToRelocations;
UINT32 PointerToLinenumbers;
UINT16 NumberOfRelocations;
UINT16 NumberOfLinenumbers;
UINT32 Characteristics;
} EFI_IMAGE_SECTION_HEADER;
//
// Size of EFI_IMAGE_SECTION_HEADER
//
#define EFI_IMAGE_SIZEOF_SECTION_HEADER 40
//
// Section Flags Values
//
#define EFI_IMAGE_SCN_TYPE_NO_PAD 0x00000008 // Reserved
#define EFI_IMAGE_SCN_CNT_CODE 0x00000020
#define EFI_IMAGE_SCN_CNT_INITIALIZED_DATA 0x00000040
#define EFI_IMAGE_SCN_CNT_UNINITIALIZED_DATA 0x00000080
#define EFI_IMAGE_SCN_LNK_OTHER 0x00000100 // Reserved
#define EFI_IMAGE_SCN_LNK_INFO 0x00000200 // Section contains comments or some other type of information
#define EFI_IMAGE_SCN_LNK_REMOVE 0x00000800 // Section contents will not become part of image
#define EFI_IMAGE_SCN_LNK_COMDAT 0x00001000
#define EFI_IMAGE_SCN_ALIGN_1BYTES 0x00100000
#define EFI_IMAGE_SCN_ALIGN_2BYTES 0x00200000
#define EFI_IMAGE_SCN_ALIGN_4BYTES 0x00300000
#define EFI_IMAGE_SCN_ALIGN_8BYTES 0x00400000
#define EFI_IMAGE_SCN_ALIGN_16BYTES 0x00500000
#define EFI_IMAGE_SCN_ALIGN_32BYTES 0x00600000
#define EFI_IMAGE_SCN_ALIGN_64BYTES 0x00700000
#define EFI_IMAGE_SCN_MEM_DISCARDABLE 0x02000000
#define EFI_IMAGE_SCN_MEM_NOT_CACHED 0x04000000
#define EFI_IMAGE_SCN_MEM_NOT_PAGED 0x08000000
#define EFI_IMAGE_SCN_MEM_SHARED 0x10000000
#define EFI_IMAGE_SCN_MEM_EXECUTE 0x20000000
#define EFI_IMAGE_SCN_MEM_READ 0x40000000
#define EFI_IMAGE_SCN_MEM_WRITE 0x80000000
//
// Size of a Symbol Table Record
//
#define EFI_IMAGE_SIZEOF_SYMBOL 18
//
// Symbols have a section number of the section in which they are
// defined. Otherwise, section numbers have the following meanings:
//
#define EFI_IMAGE_SYM_UNDEFINED (UINT16) 0 ///< Symbol is undefined or is common
#define EFI_IMAGE_SYM_ABSOLUTE (UINT16) -1 ///< Symbol is an absolute value
#define EFI_IMAGE_SYM_DEBUG (UINT16) -2 ///< Symbol is a special debug item
//
// Symbol Type (fundamental) values.
//
#define EFI_IMAGE_SYM_TYPE_NULL 0 // no type
#define EFI_IMAGE_SYM_TYPE_VOID 1 // no valid type
#define EFI_IMAGE_SYM_TYPE_CHAR 2 // type character
#define EFI_IMAGE_SYM_TYPE_SHORT 3 // type short integer
#define EFI_IMAGE_SYM_TYPE_INT 4
#define EFI_IMAGE_SYM_TYPE_LONG 5
#define EFI_IMAGE_SYM_TYPE_FLOAT 6
#define EFI_IMAGE_SYM_TYPE_DOUBLE 7
#define EFI_IMAGE_SYM_TYPE_STRUCT 8
#define EFI_IMAGE_SYM_TYPE_UNION 9
#define EFI_IMAGE_SYM_TYPE_ENUM 10 // enumeration
#define EFI_IMAGE_SYM_TYPE_MOE 11 // member of enumeration
#define EFI_IMAGE_SYM_TYPE_BYTE 12
#define EFI_IMAGE_SYM_TYPE_WORD 13
#define EFI_IMAGE_SYM_TYPE_UINT 14
#define EFI_IMAGE_SYM_TYPE_DWORD 15
//
// Symbol Type (derived) values
//
#define EFI_IMAGE_SYM_DTYPE_NULL 0 // no derived type
#define EFI_IMAGE_SYM_DTYPE_POINTER 1
#define EFI_IMAGE_SYM_DTYPE_FUNCTION 2
#define EFI_IMAGE_SYM_DTYPE_ARRAY 3
//
// Storage classes
//
#define EFI_IMAGE_SYM_CLASS_END_OF_FUNCTION ((UINT8) -1)
#define EFI_IMAGE_SYM_CLASS_NULL 0
#define EFI_IMAGE_SYM_CLASS_AUTOMATIC 1
#define EFI_IMAGE_SYM_CLASS_EXTERNAL 2
#define EFI_IMAGE_SYM_CLASS_STATIC 3
#define EFI_IMAGE_SYM_CLASS_REGISTER 4
#define EFI_IMAGE_SYM_CLASS_EXTERNAL_DEF 5
#define EFI_IMAGE_SYM_CLASS_LABEL 6
#define EFI_IMAGE_SYM_CLASS_UNDEFINED_LABEL 7
#define EFI_IMAGE_SYM_CLASS_MEMBER_OF_STRUCT 8
#define EFI_IMAGE_SYM_CLASS_ARGUMENT 9
#define EFI_IMAGE_SYM_CLASS_STRUCT_TAG 10
#define EFI_IMAGE_SYM_CLASS_MEMBER_OF_UNION 11
#define EFI_IMAGE_SYM_CLASS_UNION_TAG 12
#define EFI_IMAGE_SYM_CLASS_TYPE_DEFINITION 13
#define EFI_IMAGE_SYM_CLASS_UNDEFINED_STATIC 14
#define EFI_IMAGE_SYM_CLASS_ENUM_TAG 15
#define EFI_IMAGE_SYM_CLASS_MEMBER_OF_ENUM 16
#define EFI_IMAGE_SYM_CLASS_REGISTER_PARAM 17
#define EFI_IMAGE_SYM_CLASS_BIT_FIELD 18
#define EFI_IMAGE_SYM_CLASS_BLOCK 100
#define EFI_IMAGE_SYM_CLASS_FUNCTION 101
#define EFI_IMAGE_SYM_CLASS_END_OF_STRUCT 102
#define EFI_IMAGE_SYM_CLASS_FILE 103
#define EFI_IMAGE_SYM_CLASS_SECTION 104
#define EFI_IMAGE_SYM_CLASS_WEAK_EXTERNAL 105
//
// Type packing constants
//
#define EFI_IMAGE_N_BTMASK 017
#define EFI_IMAGE_N_TMASK 060
#define EFI_IMAGE_N_TMASK1 0300
#define EFI_IMAGE_N_TMASK2 0360
#define EFI_IMAGE_N_BTSHFT 4
#define EFI_IMAGE_N_TSHIFT 2
//
// Communal selection types
//
#define EFI_IMAGE_COMDAT_SELECT_NODUPLICATES 1
#define EFI_IMAGE_COMDAT_SELECT_ANY 2
#define EFI_IMAGE_COMDAT_SELECT_SAME_SIZE 3
#define EFI_IMAGE_COMDAT_SELECT_EXACT_MATCH 4
#define EFI_IMAGE_COMDAT_SELECT_ASSOCIATIVE 5
//
// The following values only be referred in PeCoff, not defined in PECOFF
//
#define EFI_IMAGE_WEAK_EXTERN_SEARCH_NOLIBRARY 1
#define EFI_IMAGE_WEAK_EXTERN_SEARCH_LIBRARY 2
#define EFI_IMAGE_WEAK_EXTERN_SEARCH_ALIAS 3
//
// Relocation format
//
typedef struct {
UINT32 VirtualAddress;
UINT32 SymbolTableIndex;
UINT16 Type;
} EFI_IMAGE_RELOCATION;
//
// Size of EFI_IMAGE_RELOCATION
//
#define EFI_IMAGE_SIZEOF_RELOCATION 10
//
// I386 relocation types
//
#define EFI_IMAGE_REL_I386_ABSOLUTE 0x0000 // Reference is absolute, no relocation is necessary
#define EFI_IMAGE_REL_I386_DIR16 0x0001 // Direct 16-bit reference to the symbols virtual address
#define EFI_IMAGE_REL_I386_REL16 0x0002 // PC-relative 16-bit reference to the symbols virtual address
#define EFI_IMAGE_REL_I386_DIR32 0x0006 // Direct 32-bit reference to the symbols virtual address
#define EFI_IMAGE_REL_I386_DIR32NB 0x0007 // Direct 32-bit reference to the symbols virtual address, base not included
#define EFI_IMAGE_REL_I386_SEG12 0x0009 // Direct 16-bit reference to the segment-selector bits of a 32-bit virtual address
#define EFI_IMAGE_REL_I386_SECTION 0x000A
#define EFI_IMAGE_REL_I386_SECREL 0x000B
#define EFI_IMAGE_REL_I386_REL32 0x0014 // PC-relative 32-bit reference to the symbols virtual address
//
// x64 processor relocation types.
//
#define IMAGE_REL_AMD64_ABSOLUTE 0x0000
#define IMAGE_REL_AMD64_ADDR64 0x0001
#define IMAGE_REL_AMD64_ADDR32 0x0002
#define IMAGE_REL_AMD64_ADDR32NB 0x0003
#define IMAGE_REL_AMD64_REL32 0x0004
#define IMAGE_REL_AMD64_REL32_1 0x0005
#define IMAGE_REL_AMD64_REL32_2 0x0006
#define IMAGE_REL_AMD64_REL32_3 0x0007
#define IMAGE_REL_AMD64_REL32_4 0x0008
#define IMAGE_REL_AMD64_REL32_5 0x0009
#define IMAGE_REL_AMD64_SECTION 0x000A
#define IMAGE_REL_AMD64_SECREL 0x000B
#define IMAGE_REL_AMD64_SECREL7 0x000C
#define IMAGE_REL_AMD64_TOKEN 0x000D
#define IMAGE_REL_AMD64_SREL32 0x000E
#define IMAGE_REL_AMD64_PAIR 0x000F
#define IMAGE_REL_AMD64_SSPAN32 0x0010
//
// Based relocation format
//
typedef struct {
UINT32 VirtualAddress;
UINT32 SizeOfBlock;
} EFI_IMAGE_BASE_RELOCATION;
//
// Size of EFI_IMAGE_BASE_RELOCATION
//
#define EFI_IMAGE_SIZEOF_BASE_RELOCATION 8
//
// Based relocation types
//
#define EFI_IMAGE_REL_BASED_ABSOLUTE 0
#define EFI_IMAGE_REL_BASED_HIGH 1
#define EFI_IMAGE_REL_BASED_LOW 2
#define EFI_IMAGE_REL_BASED_HIGHLOW 3
#define EFI_IMAGE_REL_BASED_HIGHADJ 4
#define EFI_IMAGE_REL_BASED_MIPS_JMPADDR 5
#define EFI_IMAGE_REL_BASED_ARM_MOV32A 5
#define EFI_IMAGE_REL_BASED_ARM_MOV32T 7
#define EFI_IMAGE_REL_BASED_IA64_IMM64 9
#define EFI_IMAGE_REL_BASED_MIPS_JMPADDR16 9
#define EFI_IMAGE_REL_BASED_DIR64 10
//
// Line number format
//
typedef struct {
union {
UINT32 SymbolTableIndex; // Symbol table index of function name if Linenumber is 0
UINT32 VirtualAddress; // Virtual address of line number
} Type;
UINT16 Linenumber; // Line number
} EFI_IMAGE_LINENUMBER;
//
// Size of EFI_IMAGE_LINENUMBER
//
#define EFI_IMAGE_SIZEOF_LINENUMBER 6
//
// Archive format
//
#define EFI_IMAGE_ARCHIVE_START_SIZE 8
#define EFI_IMAGE_ARCHIVE_START "!<arch>\n"
#define EFI_IMAGE_ARCHIVE_END "`\n"
#define EFI_IMAGE_ARCHIVE_PAD "\n"
#define EFI_IMAGE_ARCHIVE_LINKER_MEMBER "/ "
#define EFI_IMAGE_ARCHIVE_LONGNAMES_MEMBER "// "
//
// Archive Member Headers
//
typedef struct {
UINT8 Name[16]; // File member name - `/' terminated
UINT8 Date[12]; // File member date - decimal
UINT8 UserID[6]; // File member user id - decimal
UINT8 GroupID[6]; // File member group id - decimal
UINT8 Mode[8]; // File member mode - octal
UINT8 Size[10]; // File member size - decimal
UINT8 EndHeader[2]; // String to end header. (0x60 0x0A)
} EFI_IMAGE_ARCHIVE_MEMBER_HEADER;
//
// Size of EFI_IMAGE_ARCHIVE_MEMBER_HEADER
//
#define EFI_IMAGE_SIZEOF_ARCHIVE_MEMBER_HDR 60
//
// DLL Support
//
//
// Export Directory Table
//
typedef struct {
UINT32 Characteristics;
UINT32 TimeDateStamp;
UINT16 MajorVersion;
UINT16 MinorVersion;
UINT32 Name;
UINT32 Base;
UINT32 NumberOfFunctions;
UINT32 NumberOfNames;
UINT32 AddressOfFunctions;
UINT32 AddressOfNames;
UINT32 AddressOfNameOrdinals;
} EFI_IMAGE_EXPORT_DIRECTORY;
//
// Hint/Name Table
//
typedef struct {
UINT16 Hint;
UINT8 Name[1];
} EFI_IMAGE_IMPORT_BY_NAME;
//
// Import Address Table RVA (Thunk Table)
//
typedef struct {
union {
UINT32 Function;
UINT32 Ordinal;
EFI_IMAGE_IMPORT_BY_NAME *AddressOfData;
} u1;
} EFI_IMAGE_THUNK_DATA;
#define EFI_IMAGE_ORDINAL_FLAG 0x80000000 // Flag for PE32.
#define EFI_IMAGE_SNAP_BY_ORDINAL(Ordinal) ((Ordinal & EFI_IMAGE_ORDINAL_FLAG) != 0)
#define EFI_IMAGE_ORDINAL(Ordinal) (Ordinal & 0xffff)
//
// Import Directory Table
//
typedef struct {
UINT32 Characteristics;
UINT32 TimeDateStamp;
UINT32 ForwarderChain;
UINT32 Name;
EFI_IMAGE_THUNK_DATA *FirstThunk;
} EFI_IMAGE_IMPORT_DESCRIPTOR;
//
// Debug Directory Format
//
typedef struct {
UINT32 Characteristics;
UINT32 TimeDateStamp;
UINT16 MajorVersion;
UINT16 MinorVersion;
UINT32 Type;
UINT32 SizeOfData;
UINT32 RVA; // The address of the debug data when loaded, relative to the image base
UINT32 FileOffset; // The file pointer to the debug data
} EFI_IMAGE_DEBUG_DIRECTORY_ENTRY;
#define EFI_IMAGE_DEBUG_TYPE_CODEVIEW 2 // The Visual C++ debug information.
//
// Debug Data Structure defined in Microsoft C++
//
#define CODEVIEW_SIGNATURE_NB10 0x3031424E // NB10
typedef struct {
UINT32 Signature;
UINT32 Unknown;
UINT32 Unknown2;
UINT32 Unknown3;
//
// Filename of .PDB goes here
//
} EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY;
//
// Debug Data Structure defined in Microsoft C++
//
#define CODEVIEW_SIGNATURE_RSDS 0x53445352 // RSDS
typedef struct {
UINT32 Signature;
UINT32 Unknown;
UINT32 Unknown2;
UINT32 Unknown3;
UINT32 Unknown4;
UINT32 Unknown5;
//
// Filename of .PDB goes here
//
} EFI_IMAGE_DEBUG_CODEVIEW_RSDS_ENTRY;
//
// Debug Data Structure defined by Apple Mach-O to Coff utility.
//
#define CODEVIEW_SIGNATURE_MTOC 0x434F544D // MTOC
typedef struct {
UINT32 Signature;
UINT8 MachOUuid[16];
//
// Filename of .DLL (Mach-O with debug info) goes here
//
} EFI_IMAGE_DEBUG_CODEVIEW_MTOC_ENTRY;
//
// Resource format
//
typedef struct {
UINT32 Characteristics;
UINT32 TimeDateStamp;
UINT16 MajorVersion;
UINT16 MinorVersion;
UINT16 NumberOfNamedEntries;
UINT16 NumberOfIdEntries;
//
// Array of EFI_IMAGE_RESOURCE_DIRECTORY_ENTRY entries goes here
//
} EFI_IMAGE_RESOURCE_DIRECTORY;
//
// Resource directory entry format
//
typedef struct {
union {
struct {
UINT32 NameOffset:31;
UINT32 NameIsString:1;
} s;
UINT32 Id;
} u1;
union {
UINT32 OffsetToData;
struct {
UINT32 OffsetToDirectory:31;
UINT32 DataIsDirectory:1;
} s;
} u2;
} EFI_IMAGE_RESOURCE_DIRECTORY_ENTRY;
//
// Resource directory entry for string
//
typedef struct {
UINT16 Length;
CHAR16 String[1];
} EFI_IMAGE_RESOURCE_DIRECTORY_STRING;
//
// Resource directory entry for data array
//
typedef struct {
UINT32 OffsetToData;
UINT32 Size;
UINT32 CodePage;
UINT32 Reserved;
} EFI_IMAGE_RESOURCE_DATA_ENTRY;
//
// Header format for TE images, defined in the PI Specification 1.0.
//
typedef struct {
UINT16 Signature; // The signature for TE format = "VZ"
UINT16 Machine; // From the original file header
UINT8 NumberOfSections; // From the original file header
UINT8 Subsystem; // From original optional header
UINT16 StrippedSize; // Number of bytes we removed from the header
UINT32 AddressOfEntryPoint; // Offset to entry point -- from original optional header
UINT32 BaseOfCode; // From original image -- required for ITP debug
UINT64 ImageBase; // From original file header
EFI_IMAGE_DATA_DIRECTORY DataDirectory[2]; // Only base relocation and debug directory
} EFI_IMAGE_TE_HEADER;
#define EFI_IMAGE_TE_SIGNATURE 0x5A56 // VZ
//
// Data directory indexes in our TE image header
//
#define EFI_IMAGE_TE_DIRECTORY_ENTRY_BASERELOC 0
#define EFI_IMAGE_TE_DIRECTORY_ENTRY_DEBUG 1
// Restore previous packing rules
#pragma pack(pop)
#endif

View File

@ -36,7 +36,8 @@ HEADERS += uefitool.h \
LZMA/LzmaCompress.h \
LZMA/LzmaDecompress.h \
Tiano/EfiTianoDecompress.h \
Tiano/EfiTianoCompress.h
Tiano/EfiTianoCompress.h \
peimage.h
FORMS += uefitool.ui \
searchdialog.ui

View File

@ -20,7 +20,7 @@
<bool>true</bool>
</property>
<property name="windowTitle">
<string>UEFITool 0.14.1</string>
<string>UEFITool 0.15.0</string>
</property>
<widget class="QWidget" name="centralWidget">
<property name="sizePolicy">